Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The 1:1 adduct of N,N′-bis­(di­phenyl­methyl­ene)­ethyl­enedi­amine (bz2en) with copper(I) chloride, viz. [Cu(C28H24N2)2][CuCl2], has been synthesized. The structure contains cationic moieties of CuI ions (Cu on a twofold axis) coordinated to four N atoms of two bz2en mol­ecules (in a distorted tetrahedron) and linear di­chloro­cuprate(I) anions (with Cu on an inversion centre). These cations and anions are packed in columns along b. The packing of the cation and anion columns involves a significant C—H...Cl interaction and four short intermolecular C—H...π contacts, two of which are between cation columns.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104012338/ga1057sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104012338/ga1057Isup2.hkl
Contains datablock I

CCDC reference: 245863

Comment top

The reaction of copper(I) halides, CuX, with nitrogen-based ligands (L) yields CuXLn adducts. The number of ligands bound to the monovalent Cu ion is influenced greatly by both the chemical nature and the geometry of the ligand L and the type of halogen X (Zubieta et al., 1983; Kirchner et al., 1987; Alyea et al., 1990). In this context, we decided to examine the nature of the complex formed with an unconjugated diimine ligand. The title complex, (I), was prepared by reacting the bidentate ligand N,N'-bis(benzophenone)ethylenediimine (bz2en) with CuCl. \sch

The structure determination of (I) is consistent with the stoichiometry of a 1:1 copper(I) chloride-ligand adduct. The atom disposition, however, is that of an ionic complex, the asymmetric unit of the structure comprising a bis(ligand) copper(I) cation and a dichlorocuprate(I) anion (Fig. 1). The Cu ion of the dichlorocopper(I) anion lies on a centre of symmetry, the anion thus being linear [Cu—Cl 2.0832 (8) Å]. The geometry of (I) (Table 1) is in good agreement with that of several other established examples (Kaiser et al., 1983; Engelhardt et al., 1984).

The Cu atom of the cation is on a twofold axis, coordinated to four N atoms belonging to two symmetry-related bz2en molecules, in a distorted tetrahedral geometry. The N—Cu—N bond angles found in (I) [85.98 (8), 109.50 (8), 134.7 (1) and 140.0 (1)°] are similar to the corresponding data for ethylenediamine chelate rings (Engelhardt et al., 1984). The Cu—N bond lengths [2.030 (2) and 2.099 (3) Å] and angles are similar to those in the related bz2en copper(I) perchlorate (2:1) complex, in which a perchlorate ion acts as counterion (Chowdhury et al., 2000). All the phenyl rings in (I) are planar, with a maximum out-of-plane deviation for atom C26 of 0.010 (2) Å. The acute angles made by the two rings connected to the same N atoms are 85.51 (9) and 80.26 (8)°.

The crystal packing of (I) involves columns of cations and anions packed along the b axis (Fig. 2). A significant interaction between the cation and anion columns is provided by a short C—H···Cl contact (Table 2). No short C—H···π interactions are found between rings belonging to the same N atom. There are, however, four short intramolecular C—H···π interactions (Table 2), two of which (involving atoms H4 and H12) are between different cation columns.

A calculation using PLATON (Spek, 1990) indicated four equivalent solvent-accessible voids of 26 Å3. The final difference Fourier synthesis did not show any significant electron density in these areas.

Table 2. Hydrogen-bond parameters (Å, °). Cg1—Cg4 are the centroids of rings C1—C6, C8—C13, C19—C24 and C25—C30, respectively.

Experimental top

The title compound was prepared by the reaction of CuCl and bz2en (molar ratio 1:1) in a mixed acetonitrile-tetrahydrofuran solution (Ratio?) at room temperature. The solution was then concentrated under vacuum. Red crystals of (I) were formed by vapour diffusion of ether into the concentrated solution.

Refinement top

H atoms were placed in calculated positions, with C—H distances of 0.95 Å, and treated as riding atoms, with Uiso(H) = 1.3Ueq(C).

Computing details top

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR (Burla et al., 1989); program(s) used to refine structure: LSFM in MolEN; molecular graphics: ORTEPII (Johnson, 1976; Farrugia, 1998); software used to prepare material for publication: BTABLE, PTABLE and CIF in MolEN.

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing in (I), viewed along the b axis, showing the columns of cations and anions.
Bis[N,N'-bis(diphenylmethylene)ethylenediamine-κ2N,N']copper(I) dichlorocuprate(I) top
Crystal data top
[Cu(C28H24N2)2][CuCl2]F(000) = 2016
Mr = 975.02Dx = 1.33 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 26.126 (9) Åθ = 16–22.0°
b = 9.337 (5) ŵ = 2.39 mm1
c = 23.649 (9) ÅT = 294 K
β = 122.48 (5)°Block, red
V = 4867 (5) Å30.40 × 0.30 × 0.30 mm
Z = 4.0
Data collection top
Enraf-Nonius CAD-4
diffractometer
θmax = 75.0°
Radiation source: sealed X-ray tubeh = 3232
ω scansk = 011
10026 measured reflectionsl = 2929
5017 independent reflections3 standard reflections every 60 min
3291 reflections with I > σ(I) intensity decay: <0.5%
Rint = 0.038
Refinement top
Refinement on F2 w = 4Fo2/[σ2(Fo2) + 0.0016Fo4]
R[F2 > 2σ(F2)] = 0.053(Δ/σ)max = 0.02
wR(F2) = 0.137Δρmax = 0.25 e Å3
S = 1.55Δρmin = 0.29 e Å3
5017 reflectionsExtinction correction: Zachariasen (1967)
292 parametersExtinction coefficient: 0.14E-5
H-atom parameters constrained
Crystal data top
[Cu(C28H24N2)2][CuCl2]V = 4867 (5) Å3
Mr = 975.02Z = 4.0
Monoclinic, C2/cCu Kα radiation
a = 26.126 (9) ŵ = 2.39 mm1
b = 9.337 (5) ÅT = 294 K
c = 23.649 (9) Å0.40 × 0.30 × 0.30 mm
β = 122.48 (5)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.038
10026 measured reflections3 standard reflections every 60 min
5017 independent reflections intensity decay: <0.5%
3291 reflections with I > σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.053292 parameters
wR(F2) = 0.137H-atom parameters constrained
S = 1.55Δρmax = 0.25 e Å3
5017 reflectionsΔρmin = 0.29 e Å3
Special details top

Experimental. Data were collected in the ω scan mode (scan width (ω): 0.73 + 0.18 tanθ), using graphite monochromated Cu Kα radiation. The intensity data were corrected for Lorentz and polarization effects and for long time scale variation. No absorption correction was applied.

The structure was refined by full-matrix least-squares. Refinements (on F2) were made, using all reflections. All heavy atoms were refined with anisotropic thermal parameters. Hydrogen atoms were placed at calculated positions (C—H distance 0.95 Å, thermal parameters fixed at 1.3 Uiso of the parent atoms) and treated as riding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.2142 (1)0.25000.0915 (2)
Cu20.25000.25000.50000.1129 (3)
Cl30.20225 (4)0.2287 (2)0.39612 (4)0.1422 (4)
N140.56393 (7)0.2886 (3)0.34231 (8)0.0771 (7)
N170.57274 (7)0.1275 (3)0.24718 (8)0.0788 (8)
C10.4697 (1)0.5006 (5)0.3109 (1)0.110 (1)
C20.4187 (1)0.5772 (5)0.2955 (1)0.114 (1)
C30.4002 (1)0.5826 (4)0.3388 (1)0.083 (1)
C40.43277 (9)0.5126 (3)0.3985 (1)0.0715 (8)
C50.48445 (9)0.4364 (3)0.41504 (9)0.0613 (8)
C60.50342 (9)0.4271 (3)0.37060 (9)0.0628 (8)
C70.55913 (9)0.3469 (3)0.38781 (9)0.0630 (8)
C80.60783 (9)0.3361 (3)0.46062 (9)0.0591 (7)
C90.6486 (1)0.4455 (3)0.4937 (1)0.0718 (9)
C100.6938 (1)0.4325 (4)0.5614 (1)0.080 (1)
C110.6973 (1)0.3104 (4)0.5947 (1)0.083 (1)
C120.6569 (1)0.2023 (4)0.5625 (1)0.087 (1)
C130.6126 (1)0.2147 (3)0.4955 (1)0.0748 (9)
C150.6228 (1)0.2196 (4)0.3620 (1)0.098 (1)
C160.62619 (9)0.2060 (4)0.2999 (1)0.096 (1)
C180.57747 (8)0.0578 (3)0.20344 (9)0.0628 (8)
C190.52606 (9)0.0268 (3)0.1498 (1)0.0664 (8)
C200.4777 (1)0.0689 (4)0.1543 (1)0.101 (1)
C210.4304 (1)0.1477 (5)0.1039 (2)0.121 (1)
C220.4303 (2)0.1843 (4)0.0482 (2)0.104 (1)
C230.4775 (1)0.1450 (4)0.0425 (1)0.088 (1)
C240.5254 (1)0.0681 (3)0.0929 (1)0.0715 (9)
C250.63429 (8)0.0590 (3)0.20248 (9)0.0546 (7)
C260.64124 (9)0.1593 (3)0.1644 (1)0.0665 (8)
C270.6919 (1)0.1592 (3)0.1601 (1)0.0745 (9)
C280.73675 (9)0.0607 (4)0.1954 (1)0.0771 (9)
C290.7317 (1)0.0371 (4)0.2342 (1)0.0756 (9)
C300.6802 (1)0.0406 (3)0.2379 (1)0.0672 (8)
H10.48200.49840.27960.143*
H20.39630.62650.25400.148*
H30.36480.63490.32780.108*
H40.41980.51600.42910.093*
H50.50710.39010.45730.080*
H90.64590.53060.47030.093*
H100.72190.50810.58400.103*
H110.72820.30060.64080.108*
H120.65930.11800.58630.113*
H130.58490.13800.47330.097*
H15A0.62500.12730.38020.128*
H15B0.65540.27690.39460.128*
H16A0.62710.29880.28400.124*
H16B0.66200.15540.31110.124*
H200.47690.04320.19280.132*
H210.39770.17640.10810.157*
H220.39730.23730.01330.135*
H230.47750.17070.00360.114*
H240.55850.04300.08880.093*
H260.61070.22970.14070.086*
H270.69560.22740.13260.097*
H280.77170.06090.19270.100*
H290.76340.10410.25910.098*
H300.67660.11090.26460.087*
Cg10.45154 (4)0.50608 (16)0.35489 (4)0.0*0.0
Cg20.65284 (4)0.32358 (14)0.52807 (4)0.0*0.0
Cg30.47789 (5)0.10680 (16)0.09860 (6)0.0*0.0
Cg40.68601 (4)0.06008 (14)0.19908 (4)0.0*0.0
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0443 (2)0.1900 (7)0.0433 (2)0.00000.0256 (1)0.0000
Cu20.0998 (2)0.1559 (7)0.1195 (3)0.0056 (4)0.0832 (2)0.0055 (4)
Cl30.1163 (4)0.225 (1)0.1187 (4)0.0021 (6)0.0852 (2)0.0202 (6)
N140.0489 (7)0.141 (2)0.0427 (6)0.017 (1)0.0256 (5)0.002 (1)
N170.0491 (7)0.143 (2)0.0513 (7)0.007 (1)0.0313 (5)0.019 (1)
C10.097 (1)0.185 (3)0.065 (1)0.066 (2)0.0551 (7)0.045 (2)
C20.094 (1)0.176 (3)0.075 (1)0.063 (2)0.0469 (9)0.041 (2)
C30.062 (1)0.106 (2)0.075 (1)0.006 (1)0.0332 (8)0.016 (1)
C40.0641 (9)0.094 (2)0.0679 (9)0.004 (1)0.0428 (6)0.018 (1)
C50.0558 (9)0.083 (2)0.0472 (8)0.003 (1)0.0290 (6)0.006 (1)
C60.0523 (8)0.094 (2)0.0452 (8)0.006 (1)0.0283 (5)0.001 (1)
C70.0538 (8)0.098 (2)0.0412 (7)0.008 (1)0.0286 (5)0.006 (1)
C80.0529 (8)0.085 (2)0.0418 (7)0.003 (1)0.0272 (5)0.001 (1)
C90.064 (1)0.085 (2)0.065 (1)0.000 (1)0.0344 (7)0.002 (1)
C100.063 (1)0.102 (2)0.063 (1)0.011 (1)0.0270 (8)0.015 (1)
C110.059 (1)0.129 (3)0.049 (1)0.002 (2)0.0208 (8)0.001 (2)
C120.084 (1)0.106 (2)0.055 (1)0.002 (2)0.0266 (9)0.018 (1)
C130.070 (1)0.092 (2)0.052 (1)0.012 (1)0.0259 (8)0.000 (1)
C150.0460 (9)0.188 (3)0.054 (1)0.020 (1)0.0227 (6)0.025 (1)
C160.0463 (8)0.178 (3)0.066 (1)0.013 (1)0.0321 (6)0.047 (1)
C180.0526 (8)0.093 (2)0.0503 (8)0.002 (1)0.0326 (5)0.002 (1)
C190.0570 (9)0.086 (2)0.0565 (9)0.007 (1)0.0306 (6)0.001 (1)
C200.080 (1)0.158 (3)0.077 (1)0.033 (2)0.0502 (7)0.009 (2)
C210.083 (1)0.174 (3)0.095 (2)0.058 (2)0.041 (1)0.006 (2)
C220.096 (2)0.096 (2)0.085 (2)0.025 (2)0.026 (1)0.004 (2)
C230.090 (2)0.088 (2)0.072 (1)0.012 (2)0.035 (1)0.017 (2)
C240.068 (1)0.083 (2)0.062 (1)0.000 (1)0.0338 (7)0.005 (1)
C250.0497 (7)0.071 (2)0.0484 (7)0.001 (1)0.0300 (5)0.004 (1)
C260.0653 (9)0.071 (2)0.070 (1)0.003 (1)0.0411 (6)0.006 (1)
C270.075 (1)0.092 (2)0.0704 (9)0.014 (1)0.0486 (6)0.004 (1)
C280.0574 (9)0.113 (2)0.070 (1)0.012 (1)0.0395 (6)0.024 (1)
C290.057 (1)0.094 (2)0.071 (1)0.012 (1)0.0314 (7)0.002 (1)
C300.063 (1)0.080 (2)0.0560 (9)0.003 (1)0.0309 (7)0.008 (1)
Geometric parameters (Å, º) top
Cu1—N142.030 (2)C25—C261.378 (4)
Cu1—N172.099 (2)C25—C301.388 (3)
Cu2—Cl32.0832 (8)C26—C271.382 (4)
N14—C71.271 (3)C27—C281.365 (4)
N14—C151.491 (4)C28—C291.350 (4)
N17—C161.473 (3)C29—C301.394 (4)
N17—C181.283 (4)C1—H10.950
C1—C21.379 (5)C2—H20.950
C1—C61.381 (3)C3—H30.950
C2—C31.349 (5)C4—H40.950
C3—C41.361 (3)C5—H50.950
C4—C51.383 (4)C9—H90.950
C5—C61.385 (4)C10—H100.950
C6—C71.486 (3)C11—H110.950
C7—C81.497 (2)C12—H120.950
C8—C91.377 (4)C13—H130.950
C8—C131.368 (4)C15—H15A0.950
C9—C101.392 (3)C15—H15B0.950
C10—C111.361 (5)C16—H16A0.950
C11—C121.359 (4)C16—H16B0.950
C12—C131.376 (3)C20—H200.950
C15—C161.525 (4)C21—H210.950
C18—C191.486 (3)C22—H220.950
C18—C251.497 (3)C23—H230.950
C19—C201.382 (4)C24—H240.950
C19—C241.391 (4)C26—H260.950
C20—C211.381 (4)C27—H270.950
C21—C221.361 (6)C28—H280.950
C22—C231.362 (6)C29—H290.950
C23—C241.378 (3)C30—H300.950
N14—Cu1—N14i140.0 (1)C2—C1—H1119.3
N14—Cu1—N1785.98 (8)C6—C1—H1119.3
N14—Cu1—N17i109.50 (8)C1—C2—H2119.7
N17—Cu1—N17i134.7 (1)C3—C2—H2119.7
Cl3—Cu2—Cl3ii180 (1)C2—C3—H3120.3
Cu1—N14—C7131.2 (2)C4—C3—H3120.3
Cu1—N14—C15107.7 (2)C3—C4—H4119.6
C7—N14—C15118.3 (2)C5—C4—H4119.6
Cu1—N17—C16104.2 (2)C4—C5—H5119.7
Cu1—N17—C18134.6 (1)C6—C5—H5119.7
C16—N17—C18118.5 (2)C8—C9—H9119.7
C2—C1—C6121.5 (3)C10—C9—H9119.7
C1—C2—C3120.7 (3)C9—C10—H10120.3
C2—C3—C4119.3 (3)C11—C10—H10120.3
C3—C4—C5120.8 (3)C10—C11—H11119.8
C4—C5—C6120.7 (2)C12—C11—H11119.8
C1—C6—C5117.0 (2)C11—C12—H12119.9
C1—C6—C7121.5 (3)C13—C12—H12119.9
C5—C6—C7121.4 (2)C8—C13—H13119.6
N14—C7—C6120.8 (2)C12—C13—H13119.6
N14—C7—C8122.4 (2)N14—C15—H15A109.7
C6—C7—C8116.8 (2)N14—C15—H15B109.7
C7—C8—C9121.6 (2)C16—C15—H15A109.7
C7—C8—C13119.7 (2)C16—C15—H15B109.7
C9—C8—C13118.7 (2)H15A—C15—H15B109.5
C8—C9—C10120.5 (3)N17—C16—H16A109.4
C9—C10—C11119.4 (3)N17—C16—H16B109.4
C10—C11—C12120.4 (2)C15—C16—H16A109.4
C11—C12—C13120.2 (3)C15—C16—H16B109.4
C8—C13—C12120.8 (3)H16A—C16—H16B109.5
N14—C15—C16108.6 (2)C19—C20—H20119.5
N17—C16—C15109.7 (2)C21—C20—H20119.5
N17—C18—C19121.6 (2)C20—C21—H21119.8
N17—C18—C25122.3 (2)C22—C21—H21119.8
C19—C18—C25116.1 (2)C21—C22—H22120.1
C18—C19—C20122.0 (2)C23—C22—H22120.1
C18—C19—C24120.6 (2)C22—C23—H23119.9
C20—C19—C24117.3 (2)C24—C23—H23119.9
C19—C20—C21121.1 (3)C19—C24—H24119.5
C20—C21—C22120.4 (4)C23—C24—H24119.5
C21—C22—C23119.9 (3)C25—C26—H26119.5
C22—C23—C24120.2 (3)C27—C26—H26119.5
C19—C24—C23121.1 (3)C26—C27—H27120.1
C18—C25—C26119.7 (2)C28—C27—H27120.1
C18—C25—C30121.9 (2)C27—C28—H28119.8
C26—C25—C30118.4 (2)C29—C28—H28119.8
C25—C26—C27121.1 (2)C28—C29—H29119.7
C26—C27—C28119.7 (3)C30—C29—H29119.7
C27—C28—C29120.4 (3)C25—C30—H30120.1
C28—C29—C30120.6 (2)C29—C30—H30120.1
C25—C30—C29119.8 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Cl3iii0.952.713.652 (4)173
C26—H26···Cg1i0.953.083.922 (4)148
C4—H4···Cg2iv0.952.993.812 (4)146
C13—H13···Cg3i0.952.793.729 (4)167
C12—H12···Cg4v0.952.893.791 (4)158
Symmetry codes: (i) x+1, y, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C28H24N2)2][CuCl2]
Mr975.02
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)26.126 (9), 9.337 (5), 23.649 (9)
β (°)?, 122.48 (5), ?
V3)4867 (5)
Z4.0
Radiation typeCu Kα
µ (mm1)2.39
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > σ(I)] reflections
10026, 5017, 3291
Rint0.038
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.137, 1.55
No. of reflections5017
No. of parameters292
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.29

Computer programs: CAD-4 Operations Manual (Enraf-Nonius, 1977), CAD-4 Operations Manual, MolEN (Fair, 1990), SIR (Burla et al., 1989), LSFM in MolEN, ORTEPII (Johnson, 1976; Farrugia, 1998), BTABLE, PTABLE and CIF in MolEN.

Selected geometric parameters (Å, º) top
Cu1—N142.030 (2)Cu2—Cl32.0832 (8)
Cu1—N172.099 (2)N14—C71.271 (3)
N14—Cu1—N14i140.0 (1)N14—Cu1—N17i109.50 (8)
N14—Cu1—N1785.98 (8)N17—Cu1—N17i134.7 (1)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···Cl3ii0.952.713.652 (4)173
C26—H26···Cg1i0.953.083.922 (4)148
C4—H4···Cg2iii0.952.993.812 (4)146
C13—H13···Cg3i0.952.793.729 (4)167
C12—H12···Cg4iv0.952.893.791 (4)158
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds