Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The synthesis and crystal structures of three new yttrium crotonate (crot) compounds, associated with three different nitro­genous bases, namely 1,10-phenanthroline (phen), 4-­methyl-1,10-phenanthroline (mphen) and 2,2′-bipyridyl­amine (bpa), are presented. All three compounds organize as centrosymmetric dimers, to give tetra-μ-crotonato-bis[croto­nato(1,10-phenanthroline)yttrium(III)] dihydrate, [Y2(C4H5O2)6(C12H8N2)2]·2H2O or [Y(crot)3(phen)]2·2H2O, (I), tetra-μ-crotonato-bis­[crotonato(4-methyl-1,10-phenan­throline)­yttrium(III)] dihydrate, [Y2(C4H5O2)6(C13H10N2)2]·2H2O or [Y(crot)3(mphen)]2·2H2O, (II), and tetra-μ-crot­onato-bis­[di­aqua(crotonato)yttrium(III)] 2,2′-bipyridyl­amine tetrasolvate, [Y2(C4H5O2)6(H2O)4]·4C10H9N3 or [Y(crot)3(aq)2]2·4(bpa), (III). Complexes (I) and (II) are isomorphous, with the bases acting as chelating ligands. In complex (III), the coordination sphere is built up of carboxyl­ate and aqua ligands, with the non-coordinated di­imine acting as included solvent.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103019073/ga1033sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103019073/ga1033Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103019073/ga1033IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103019073/ga1033IIIsup4.hkl
Contains datablock III

CCDC references: 193631; 193632; 193633

Comment top

In a long-term project studying magnetic interactions in homo- and heteronuclear systems, we have focused on carboxylate compounds (Atria et al., 1990, 1992, 2002; Baggio et al., 2000), as they usually present a diversity of coordination modes, leading to very interesting structures. In particular, when lanthanide cations are used as metallic centres, the carboxylate group is found to bind in a syn-syn, syn-anti or anti-anti mode (η1η1µ2 fashion; for nomenclature, see e.g. Cotton & Wilkinson, 1988). Less common, but not rare, is the chelato-bridging mode (η2η1µ2 fashion). At present, we are exploring the complexing capabilities of the crotonate ion in these types of compounds, and report herein the synthesis and full structural characterization of three new yttrium crotonate complexes, [Y(crot)3(phen)]2·2H2O, (I), [Y(crot)3(mphen)]2·2H2O, (II), and [Y(crot)3(aq)2]2.4(bpa), (III), where crot is the crotonate anion, phen is 1,10-phenanthroline, mphen is 4-methyl-1,10-phenanthroline and bpa is 2,2'-bipyridylamine. All three compounds are dimeric species. \sch

Compounds (I) and (II) are isostructural, which is not unexpected given their ligand similarities; both dimers are almost identical in their molecular structure (Figs. 1 and 2). Each cation is coordinated via the O atoms to three crotonate groups binding in dissimilar coordination modes (the atoms are labelled accordingly), viz. unit A, which is purely chelating, unit B, a pure syn-syn bridge, and unit C, which is tridentate, with one O atom chelating to one of the Y centres while the other bridges both Y atoms. The first difference between these closely related structures is that the crotonate unit A in compound (I) is disordered over two sites of similar occupancies [0.53 (2)/0.47 (2)], while it is ordered in (I). A bidentate dinitrogenated base [phen in (I), mphen in (II)] completes the coordination sphere around the cation through both N atoms. Here, the second difference between the structures arises: while the phen group in structure (I) is ordered, the mphen ligand in (II) is disordered over two positions, which are rotated by 180° relative to one another, as shown in Fig. 2. The fact that this rotation takes place around the symmetry axis of the molecular core allowed refinement of the group as if it were ordered and had full occupancy, except for the terminal methyl groups, which then appear at different sites in the molecule and with populations of 0.600 (5)/0.400 (5).

This binding scheme results in a ninefold coordination for the YIII cations, which are linked to each other through quadruple bridges. Two of these are through a single O atom (Y—O—Y') and two through a complete carboxylate, in a Y—O—C—O—Y' sequence. The resulting Y···Y' distances are 3.8948 (16) Å in (I) and 3.9009 (10) Å in (II). The main interaction between the rather isolated dimeric entities is achieved through the aromatic groups related by the centre of symmetry at (1/2,1,0), which show a significant ππ interaction. Being parallel by symmetry requirements, they lie at graphitic distances from each other [3.40 (1) for (I) and 3.49 (1) Å for (II)]. The central rings show roughly the same `slippage' (deviation from exact superposition viewed normal to the rings) of the rings in both structures [approximately 0.85 (2) Å], leading to an overlap of ca 60% of the complete ring area.

The structures are completed by one hydrate water molecule disordered over two sites. It was not possible to find its H atoms, thus preventing a detailed study of the hydrogen-bonding scheme. However, the short Ow···Ocrot distances present in both structures strongly suggest these hydrogen-bonding interactions are a stabilizing factor for the packing; short O.·O distances, for (I)/(II), are: O1WA···O2A 2.819 (9)/2.895 (7) Å, O1WB···O1A 2.631 (11)/2.689 (11) Å, and O1WB···O1A(1 − x,1 − y,-z): 2.858 (17)/2.918 (11) Å.

The major difference between structure (III) and structures (I) and (II) resides with the nitrogenous bases, which are not coordinated in (III), acting instead as solvates. The crotonate units are attached to the cations in an analogous way to (I) and (II), with the ligand displaying the three different coordination modes and building up quadruple bridges, to join YIII cations together at a distance of 3.9664 (5) Å (Fig. 3). The coordination sphere around each Y centre is, in this case, completed by two water molecules, located in similar positions to those occupied in (I) and (II) by the imine N atoms.

The two independent bpa groups in structure (III) (four units per dimer) present a trans disposition of their bpy groups, with pyridine atom N3 pointing outwards and being involved in hydrogen-bonding interactions. The other pyridine N atom (N1) points inwards and is shielded from intermolecular contacts by a weak C7—H7···N1 intramolecular hydrogen bond, with average parameters H···N ~2.20 Å and C—H···N ~120° (Fig. 3). Both moieties are distorted from planarity, through opposite rotations of the lateral pyridine groups around the corresponding N2—C5 and N2—C6 bonds. The combined effect leads to a dihedral angle between rings of 6.0 (1)° in unit U and 11.3 (1)° in unit V.

All the active H atoms in the structure of (III) (four aqua and two amino) take part in hydrogen bonding, in a complex scheme presented in Table 4 and shown in Fig. 3. The main effects of these interactions are, firstly, the attachment of the bpa molecules to the dimeric units to create a kind of a `cluster', and, secondly, to join the resulting entities into one-dimensional chains running along the crystallographic b axis (entries 4 and 5 in Table 4). The columnar structures interact weakly with each other, mainly through van der Waal's interactions. There are no ππ interactions between the planar groups of neighbouring bpa groups.

In summary, we have synthesized and solved the structures of three yttrium crotonate complexes characterized by a similar bridging mode between the cations, viz. two `short' (Y—O—Y) and two `long' (Y—O—C—O—Y) bridges. A search in the Cambridge Structural Database (CSD, version 5.24; Allen, 2002) of dimeric carboxylate-bridged YIII centres showed only four fully reported structures, one of which presented a simpler bridging scheme with just two Y—O—Y links, namely, bis(µ2-acetato)tetrakis(acetato)tetraaquadiyttrium tetrahydrate (CSD refcode TACETZ01; Ribot et al., 1991). The remaining three, bis([µ2-(trimethylsilyl)acetato-O,O,O'][µ2-(trimethylsilyl)acetato- O,O']{µ2-1-[dimethyl(prop-2-enyl)silyl]-2,3,4,5-tetramethylcyclopentadienyl} yttrium) (AFINIM; Evans et al., 2001), bis[(µ2-κO:κO'-acetato)(µ2-κO:κ2O'-acetato)(η5-cyclopentadienyl) tris(µ2-dimethylphosphito-O,P)cobaltyttrium(III)] (WEQKEI; Han et al., 1999) and bis(µ2-salicylato-O,O,O')bis(µ2-salicylato-O,O')bis(salicylato- O,O')diyttrium tetrahydrate (LESMUR; Ma et al., 1994), present very similar yttrium environments to the ones herein reported, in spite of the diversity of their carboxylate ligands. It can thus be concluded that this type of dimeric bridging is common for the yttrium-carboxylate system, leading to a rather constrained geometry with a narrow spread (3.347–4.028 Å) in the Y···Y distances. The distances found here for (I), (II) and (III) lie within the extreme values found in the literature. The existence of these structures supports the feasibility of generating heteronuclear complexes containing magnetic lanthanide cations combined with Y as a non-magnetic centre. We are at present engaged in the synthesis and characterization of this type of compound, which ought to be useful tools for studying 4f–4f magnetic interactions.

Experimental top

The three complexes, (I), (II) and (III), were synthesized by similar methods. A mixture of Y2O3 (1 mmol) and crotonic acid (6 mmol) was dissolved in water (100 ml), followed by the addition of the appropriate diimine ligand (1 mmol) dissolved in methanol (10 ml). The resultant mixture was refluxed for 24 h, filtered while hot and then concentrated to 25 ml. The filtrate was left to stand at room temperature and colourless crystals appeared after four weeks. Those corresponding to compounds (I) and (II) were very poorly diffracting, and the reported data correspond to the best of many data collections obtained from different specimens. All starting materials were used as purchased without further purification. Elemental analyses (C, H) were performed on a Carlo-Erba EA 1108 instrument; the results obtained (% calculated/% found) are as follows: for (I), C48H50N4O14Y2: C 53.15/52.9 and H 4.65/4.5; for (II), C50H54N4O14Y2: C 53.97/54.1 and H 4.89/4.8; for (III), C64H74N12O16Y2: C 53.19/53.4 and H 5.16/5.3.

Refinement top

H atoms unambiguously defined by the stereochemistry (on C atoms) were placed at their calculated positions and allowed to ride on their parent C atoms with Uiso(H) = 1.2Ueq(C). Terminal methyl groups were allowed to rotate as well. H atoms corresponding to the (disordered) hydrate water molecules in structures (I) and (II) were not included in the model. In structure (III), the bound water H atoms were found in the final difference Fourier map and, together with the amino H atoms, were refined with similarity restraints on O—H, H···H and N—H distances, so as to ensure a reasonable geometry.

Computing details top

For all compounds, data collection: SMART-NT (Bruker, 2001); cell refinement: SMART-NT; data reduction: SAINT-NT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular diagram of the dimeric unit in (I). Displacement ellipsoids are drawn at the 30% probability level. Dashed atoms and bonds indicate the observed crotonate ligand disorder.
[Figure 2] Fig. 2. Molecular diagram of the dimeric unit in (II). Displacement ellipsoids are drawn at the 30% probability level. Disordered methyl groups are drawn with dashed lines and labelled with primes (see text).
[Figure 3] Fig. 3. Molecular diagram of the dimeric unit in (III). Independent atoms are drawn as full shaded ellipsoids. Only those H atoms relevant to the hydrogen-bonding description are included. Hydrogen bonds are shown by broken lines and displacement ellipsoids are drawn at the 30% probability level. Atom O1C# is at symmetry position (1/2 − x, 3/2 − y, 1 − z).
(I) tetrakis(µ-crotonato-1:2κ2O:O')bis[(crotonato-κ2O,O')(1,10- phenanthroline-κ2N,N')yttrium(III)] dihydrate top
Crystal data top
[Y2(C4H5O2)6(C12H8N2)2]·2H2OZ = 1
Mr = 1084.74F(000) = 556
Triclinic, P1Dx = 1.480 Mg m3
a = 10.5565 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9994 (15) ÅCell parameters from 98 reflections
c = 11.4194 (15) Åθ = 4.3–24.1°
α = 78.966 (2)°µ = 2.44 mm1
β = 71.685 (2)°T = 293 K
γ = 77.256 (3)°Prisms, colourless
V = 1217.1 (3) Å30.32 × 0.24 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5136 independent reflections
Radiation source: fine-focus sealed tube1717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 28.1°, θmin = 1.9°
Absorption correction: multi scan
(SADABS in SAINT-NT; Bruker, 2000)
h = 1213
Tmin = 0.50, Tmax = 0.64k = 1314
6943 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.86 w = 1/[σ2(Fo2) + (0.008P)2]
where P = (Fo2 + 2Fc2)/3
5136 reflections(Δ/σ)max = 0.012
348 parametersΔρmax = 0.73 e Å3
10 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Y2(C4H5O2)6(C12H8N2)2]·2H2Oγ = 77.256 (3)°
Mr = 1084.74V = 1217.1 (3) Å3
Triclinic, P1Z = 1
a = 10.5565 (14) ÅMo Kα radiation
b = 10.9994 (15) ŵ = 2.44 mm1
c = 11.4194 (15) ÅT = 293 K
α = 78.966 (2)°0.32 × 0.24 × 0.18 mm
β = 71.685 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5136 independent reflections
Absorption correction: multi scan
(SADABS in SAINT-NT; Bruker, 2000)
1717 reflections with I > 2σ(I)
Tmin = 0.50, Tmax = 0.64Rint = 0.059
6943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05710 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.73 e Å3
5136 reflectionsΔρmin = 0.65 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Y10.49556 (8)0.63777 (8)0.36509 (7)0.0356 (2)
C1A0.2984 (10)0.6703 (10)0.2453 (10)0.059 (3)
C2A'0.2111 (12)0.6545 (18)0.1710 (15)0.048 (7)0.53 (2)
H2AA0.24560.60780.10460.058*0.53 (2)
C3A'0.0839 (12)0.7087 (17)0.2029 (16)0.048 (6)0.53 (2)
H3AA0.05610.75960.26580.057*0.53 (2)
C4A'0.0214 (17)0.694 (3)0.144 (2)0.074 (9)0.53 (2)
H4AA0.10190.75460.16950.111*0.53 (2)
H4AB0.04290.61070.16970.111*0.53 (2)
H4AC0.01400.70700.05480.111*0.53 (2)
C2A"0.1608 (15)0.698 (2)0.2244 (19)0.063 (9)0.47 (2)
H2AB0.09250.75860.26390.076*0.47 (2)
C3A"0.1411 (16)0.634 (2)0.1489 (17)0.057 (8)0.47 (2)
H3AB0.21550.57780.11090.068*0.47 (2)
C4A"0.013 (2)0.641 (3)0.115 (3)0.080 (10)0.47 (2)
H4AD0.01060.55810.13200.121*0.47 (2)
H4AE0.02580.67140.02860.121*0.47 (2)
H4AF0.05940.69630.16410.097*0.47 (2)
O1A0.4036 (7)0.5969 (6)0.2048 (5)0.069 (2)
O2A0.2789 (6)0.7369 (6)0.3264 (5)0.0640 (19)
C1B0.3245 (8)0.6522 (8)0.6684 (7)0.043 (2)
C2B0.2372 (8)0.7323 (7)0.7602 (7)0.054 (3)
H2BA0.21910.69740.84340.065*
C3B0.1825 (7)0.8483 (7)0.7358 (7)0.055 (3)
H3BA0.19950.88100.65210.066*
C4B0.0950 (8)0.9361 (7)0.8269 (7)0.074 (3)
H4BA0.01000.96730.80870.110*
H4BB0.13971.00530.82030.110*
H4BC0.07950.89190.90980.110*
O1B0.3677 (5)0.7015 (4)0.5563 (4)0.0454 (14)
O2B0.3558 (5)0.5371 (5)0.7068 (4)0.0476 (15)
C1C0.7002 (7)0.6059 (8)0.4945 (7)0.040 (2)
C2C0.8040 (7)0.5972 (7)0.5567 (6)0.041 (2)
H2CA0.80970.53160.62070.049*
C3C0.8890 (7)0.6746 (7)0.5291 (6)0.045 (2)
H3CA0.88430.73680.46200.054*
C4C0.9914 (7)0.6762 (8)0.5903 (7)0.060 (3)
H4CA1.07970.66460.53170.089*
H4CB0.98720.60950.65860.089*
H4CC0.97440.75540.62080.089*
O1C0.6188 (4)0.5264 (5)0.5298 (4)0.0419 (14)
O2C0.6873 (5)0.6874 (5)0.4030 (4)0.0453 (15)
N10.4874 (5)0.8785 (6)0.3214 (6)0.0415 (17)
N20.6312 (6)0.7228 (6)0.1451 (5)0.0424 (18)
C10.4189 (6)0.9540 (7)0.4049 (7)0.056 (3)
H1A0.37560.91840.48410.068*
C20.4078 (8)1.0834 (8)0.3815 (8)0.065 (3)
H2A0.35701.13310.44330.078*
C30.4733 (8)1.1376 (8)0.2647 (8)0.060 (3)
H3A0.46831.22440.24800.071*
C40.5466 (8)1.0630 (8)0.1726 (7)0.046 (2)
C50.6112 (8)1.1152 (8)0.0494 (7)0.055 (3)
H5A0.60491.20190.02880.067*
C60.6808 (8)1.0393 (8)0.0363 (8)0.058 (3)
H6A0.72331.07430.11610.070*
C70.6915 (8)0.9051 (8)0.0082 (7)0.047 (2)
C80.7612 (8)0.8211 (8)0.0947 (7)0.059 (3)
H8A0.80640.85180.17530.070*
C90.7637 (8)0.6931 (8)0.0616 (7)0.061 (3)
H9A0.81060.63790.11940.073*
C100.6957 (8)0.6477 (8)0.0585 (7)0.050 (2)
H10A0.69510.56180.07910.060*
C110.6252 (7)0.8514 (8)0.1134 (7)0.039 (2)
C120.5516 (7)0.9321 (8)0.2040 (7)0.039 (2)
O1WA0.1048 (6)0.9649 (6)0.3845 (5)0.052 (2)0.737 (5)
O1WB0.5095 (17)0.4230 (17)0.0554 (15)0.052 (2)0.263 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0431 (5)0.0304 (5)0.0314 (4)0.0101 (4)0.0098 (4)0.0033 (3)
C1A0.053 (6)0.071 (7)0.064 (6)0.032 (5)0.038 (5)0.028 (5)
C2A'0.076 (14)0.036 (12)0.041 (12)0.023 (10)0.023 (10)0.004 (9)
C3A'0.037 (11)0.055 (12)0.057 (12)0.005 (10)0.030 (9)0.005 (9)
C4A'0.046 (12)0.082 (17)0.076 (14)0.014 (11)0.014 (11)0.002 (12)
C2A"0.054 (16)0.064 (16)0.057 (15)0.012 (13)0.006 (12)0.012 (11)
C3A"0.053 (15)0.067 (15)0.062 (13)0.019 (12)0.033 (11)0.001 (10)
C4A"0.079 (17)0.064 (17)0.099 (17)0.027 (13)0.027 (14)0.010 (13)
O1A0.085 (5)0.079 (5)0.050 (4)0.037 (4)0.021 (4)0.006 (4)
O2A0.060 (4)0.055 (5)0.073 (5)0.010 (4)0.027 (4)0.016 (4)
C1B0.043 (6)0.046 (6)0.034 (5)0.007 (5)0.003 (4)0.002 (5)
C2B0.073 (7)0.043 (6)0.029 (5)0.000 (6)0.004 (5)0.006 (5)
C3B0.045 (6)0.059 (7)0.055 (6)0.006 (6)0.001 (5)0.021 (5)
C4B0.075 (7)0.053 (7)0.096 (8)0.004 (6)0.026 (6)0.022 (6)
O1B0.059 (4)0.028 (3)0.036 (3)0.003 (3)0.000 (3)0.004 (3)
O2B0.062 (4)0.032 (4)0.034 (3)0.006 (3)0.001 (3)0.008 (3)
C1C0.041 (6)0.036 (6)0.038 (5)0.014 (5)0.001 (4)0.003 (4)
C2C0.046 (6)0.042 (6)0.036 (5)0.009 (5)0.020 (4)0.007 (4)
C3C0.038 (6)0.063 (7)0.035 (5)0.020 (5)0.007 (4)0.000 (5)
C4C0.047 (6)0.079 (8)0.058 (6)0.021 (5)0.014 (5)0.012 (5)
O1C0.044 (4)0.044 (4)0.043 (3)0.023 (3)0.013 (3)0.002 (3)
O2C0.056 (4)0.040 (4)0.041 (3)0.018 (3)0.018 (3)0.012 (3)
N10.046 (5)0.027 (4)0.048 (4)0.003 (4)0.010 (4)0.003 (4)
N20.052 (5)0.043 (5)0.033 (4)0.015 (4)0.015 (3)0.007 (4)
C10.066 (7)0.035 (6)0.059 (6)0.001 (5)0.018 (5)0.007 (5)
C20.080 (7)0.034 (6)0.065 (7)0.006 (6)0.007 (6)0.014 (5)
C30.066 (7)0.026 (6)0.076 (7)0.008 (5)0.018 (6)0.012 (5)
C40.050 (6)0.029 (6)0.056 (6)0.001 (5)0.018 (5)0.002 (5)
C50.067 (7)0.045 (6)0.046 (6)0.015 (6)0.014 (5)0.017 (5)
C60.063 (7)0.043 (7)0.063 (7)0.024 (6)0.019 (5)0.026 (5)
C70.044 (6)0.064 (7)0.033 (5)0.018 (5)0.014 (4)0.012 (5)
C80.071 (7)0.067 (7)0.029 (5)0.023 (6)0.004 (5)0.010 (5)
C90.077 (7)0.059 (7)0.036 (6)0.002 (6)0.003 (5)0.012 (5)
C100.075 (7)0.046 (6)0.027 (5)0.017 (5)0.003 (5)0.010 (5)
C110.034 (5)0.050 (6)0.035 (5)0.009 (5)0.015 (4)0.005 (5)
C120.041 (6)0.037 (6)0.035 (5)0.004 (5)0.012 (4)0.007 (4)
O1WA0.053 (5)0.044 (5)0.043 (4)0.014 (4)0.011 (4)0.001 (3)
O1WB0.053 (5)0.044 (5)0.043 (4)0.014 (4)0.011 (4)0.001 (3)
Geometric parameters (Å, º) top
Y1—O2Bi2.302 (5)C4B—H4BA0.9600
Y1—O1Ci2.320 (5)C4B—H4BB0.9600
Y1—O1B2.323 (5)C4B—H4BC0.9600
Y1—O2C2.390 (5)C1C—O2C1.261 (8)
Y1—O2A2.442 (5)C1C—O1C1.282 (7)
Y1—O1A2.474 (6)C1C—C2C1.460 (7)
Y1—N22.582 (6)C2C—C3C1.298 (7)
Y1—O1C2.585 (4)C2C—H2CA0.9300
Y1—N12.586 (6)C3C—C4C1.465 (7)
Y1—C1A2.757 (8)C3C—H3CA0.9300
Y1—C1C2.907 (7)C4C—H4CA0.9600
Y1—Y1i3.8948 (16)C4C—H4CB0.9600
C1A—O2A1.228 (10)C4C—H4CC0.9600
C1A—O1A1.235 (10)N1—C11.314 (8)
C1A—C2A'1.489 (11)N1—C121.381 (7)
C1A—C2A"1.501 (11)N2—C101.329 (8)
C2A'—C3A'1.309 (12)N2—C111.384 (8)
C2A'—H2AA0.9300C1—C21.383 (8)
C3A'—C4A'1.520 (11)C1—H1A0.9300
C3A'—H3AA0.9300C2—C31.382 (8)
C4A'—H4AA0.9600C2—H2A0.9300
C4A'—H4AB0.9600C3—C41.384 (8)
C4A'—H4AC0.9600C3—H3A0.9300
C2A"—C3A"1.300 (12)C4—C121.409 (9)
C2A"—H2AB0.9300C4—C51.426 (8)
C3A"—C4A"1.506 (11)C5—C61.336 (10)
C3A"—H3AB0.9300C5—H5A0.9300
C4A"—H4AD0.9600C6—C71.437 (8)
C4A"—H4AE0.9600C6—H6A0.9300
C4A"—H4AF0.9600C7—C81.401 (9)
C1B—O2B1.265 (8)C7—C111.422 (9)
C1B—O1B1.272 (8)C8—C91.383 (9)
C1B—C2B1.454 (8)C8—H8A0.9300
C2B—C3B1.296 (8)C9—C101.387 (8)
C2B—H2BA0.9300C9—H9A0.9300
C3B—C4B1.502 (8)C10—H10A0.9300
C3B—H3BA0.9300C11—C121.416 (10)
O2Bi—Y1—O1Ci76.73 (17)C3A"—C4A"—H4AE109.5
O2Bi—Y1—O1B137.35 (16)H4AD—C4A"—H4AE109.5
O1Ci—Y1—O1B74.89 (17)C3A"—C4A"—H4AF109.5
O2Bi—Y1—O2C84.32 (18)H4AD—C4A"—H4AF109.5
O1Ci—Y1—O2C126.36 (16)H4AE—C4A"—H4AF109.5
O1B—Y1—O2C87.55 (17)C1A—O1A—Y189.6 (6)
O2Bi—Y1—O2A130.0 (2)C1A—O2A—Y191.2 (6)
O1Ci—Y1—O2A84.02 (17)O2B—C1B—O1B124.0 (7)
O1B—Y1—O2A77.55 (19)O2B—C1B—C2B117.1 (7)
O2C—Y1—O2A141.39 (19)O1B—C1B—C2B118.9 (7)
O2Bi—Y1—O1A77.9 (2)C3B—C2B—C1B125.4 (7)
O1Ci—Y1—O1A78.43 (17)C3B—C2B—H2BA117.3
O1B—Y1—O1A125.5 (2)C1B—C2B—H2BA117.3
O2C—Y1—O1A145.05 (18)C2B—C3B—C4B127.6 (8)
O2A—Y1—O1A53.0 (2)C2B—C3B—H3BA116.2
O2Bi—Y1—N276.40 (19)C4B—C3B—H3BA116.2
O1Ci—Y1—N2141.33 (19)C3B—C4B—H4BA109.5
O1B—Y1—N2141.87 (19)C3B—C4B—H4BB109.5
O2C—Y1—N277.62 (17)H4BA—C4B—H4BB109.5
O2A—Y1—N292.45 (18)C3B—C4B—H4BC109.5
O1A—Y1—N269.12 (18)H4BA—C4B—H4BC109.5
O2Bi—Y1—O1C70.70 (16)H4BB—C4B—H4BC109.5
O1Ci—Y1—O1C74.99 (16)C1B—O1B—Y1138.5 (5)
O1B—Y1—O1C71.63 (16)C1B—O2B—Y1i138.6 (5)
O2C—Y1—O1C51.37 (14)O2C—C1C—O1C116.5 (6)
O2A—Y1—O1C146.21 (17)O2C—C1C—C2C123.1 (6)
O1A—Y1—O1C142.54 (19)O1C—C1C—C2C120.3 (7)
N2—Y1—O1C120.43 (16)O2C—C1C—Y153.8 (3)
O2Bi—Y1—N1136.54 (18)O1C—C1C—Y162.8 (4)
O1Ci—Y1—N1146.63 (17)C2C—C1C—Y1176.8 (6)
O1B—Y1—N177.77 (19)C3C—C2C—C1C124.7 (7)
O2C—Y1—N170.47 (14)C3C—C2C—H2CA117.7
O2A—Y1—N171.63 (17)C1C—C2C—H2CA117.7
O1A—Y1—N1102.96 (18)C2C—C3C—C4C128.1 (7)
N2—Y1—N164.2 (2)C2C—C3C—H3CA115.9
O1C—Y1—N1113.78 (15)C4C—C3C—H3CA115.9
O2Bi—Y1—C1A103.8 (3)C3C—C4C—H4CA109.5
O1Ci—Y1—C1A78.8 (2)C3C—C4C—H4CB109.5
O1B—Y1—C1A101.1 (3)H4CA—C4C—H4CB109.5
O2C—Y1—C1A154.9 (2)C3C—C4C—H4CC109.5
O2A—Y1—C1A26.4 (2)H4CA—C4C—H4CC109.5
O1A—Y1—C1A26.6 (2)H4CB—C4C—H4CC109.5
N2—Y1—C1A81.2 (2)C1C—O1C—Y1i163.9 (5)
O1C—Y1—C1A153.8 (2)C1C—O1C—Y191.0 (4)
N1—Y1—C1A88.2 (2)Y1i—O1C—Y1105.01 (16)
O2Bi—Y1—C1C77.1 (2)C1C—O2C—Y1101.0 (4)
O1Ci—Y1—C1C101.2 (2)C1—N1—C12117.8 (7)
O1B—Y1—C1C77.94 (19)C1—N1—Y1122.8 (5)
O2C—Y1—C1C25.22 (16)C12—N1—Y1119.4 (5)
O2A—Y1—C1C152.6 (2)C10—N2—C11119.2 (7)
O1A—Y1—C1C154.4 (2)C10—N2—Y1121.7 (5)
N2—Y1—C1C99.35 (19)C11—N2—Y1118.7 (5)
O1C—Y1—C1C26.18 (16)N1—C1—C2123.6 (8)
N1—Y1—C1C91.36 (18)N1—C1—H1A118.2
C1A—Y1—C1C179.0 (3)C2—C1—H1A118.2
O2Bi—Y1—Y1i69.13 (11)C3—C2—C1118.9 (8)
O1Ci—Y1—Y1i39.88 (11)C3—C2—H2A120.6
O1B—Y1—Y1i68.62 (12)C1—C2—H2A120.6
O2C—Y1—Y1i86.49 (12)C2—C3—C4120.2 (8)
O2A—Y1—Y1i119.31 (13)C2—C3—H3A119.9
O1A—Y1—Y1i114.05 (14)C4—C3—H3A119.9
N2—Y1—Y1i143.24 (15)C3—C4—C12117.3 (8)
O1C—Y1—Y1i35.12 (10)C3—C4—C5122.1 (8)
N1—Y1—Y1i139.91 (13)C12—C4—C5120.6 (8)
C1A—Y1—Y1i118.6 (2)C6—C5—C4119.9 (8)
C1C—Y1—Y1i61.29 (15)C6—C5—H5A120.1
O2A—C1A—O1A125.8 (9)C4—C5—H5A120.1
O2A—C1A—C2A'132.1 (11)C5—C6—C7121.6 (8)
O1A—C1A—C2A'102.1 (10)C5—C6—H6A119.2
O2A—C1A—C2A"100.4 (10)C7—C6—H6A119.2
O1A—C1A—C2A"133.6 (11)C8—C7—C11116.5 (8)
O2A—C1A—Y162.3 (5)C8—C7—C6124.1 (8)
O1A—C1A—Y163.8 (5)C11—C7—C6119.3 (8)
C2A'—C1A—Y1164.7 (10)C9—C8—C7120.8 (8)
C2A"—C1A—Y1159.9 (9)C9—C8—H8A119.6
C3A'—C2A'—C1A117.5 (11)C7—C8—H8A119.6
C3A'—C2A'—H2AA121.3C8—C9—C10119.4 (8)
C1A—C2A'—H2AA121.3C8—C9—H9A120.3
C2A'—C3A'—C4A'124.3 (13)C10—C9—H9A120.3
C2A'—C3A'—H3AA117.8N2—C10—C9122.3 (8)
C4A'—C3A'—H3AA117.8N2—C10—H10A118.9
C3A"—C2A"—C1A117.3 (12)C9—C10—H10A118.9
C3A"—C2A"—H2AB121.4N2—C11—C12119.4 (7)
C1A—C2A"—H2AB121.4N2—C11—C7121.7 (8)
C2A"—C3A"—C4A"127.9 (15)C12—C11—C7118.9 (7)
C2A"—C3A"—H3AB116.0N1—C12—C4122.2 (8)
C4A"—C3A"—H3AB116.0N1—C12—C11118.1 (7)
C3A"—C4A"—H4AD109.5C4—C12—C11119.6 (7)
Symmetry code: (i) x+1, y+1, z+1.
(II) tetrakis(µ-crotonato-1:2κ2O:O')bis[(crotonato-κ2O,O')(4-methyl-1,10- phenanthroline-κ2N,N')yttrium(III)] dihydrate top
Crystal data top
[Y2(C4H5O2)6(C13H10N2)2]·2H2OZ = 1
Mr = 1112.79F(000) = 572
Triclinic, P1Dx = 1.454 Mg m3
a = 10.6924 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9060 (15) ÅCell parameters from 102 reflections
c = 11.8528 (16) Åθ = 3.8–22.9°
α = 77.832 (2)°µ = 2.34 mm1
β = 72.329 (2)°T = 293 K
γ = 77.810 (2)°Prism, colourless
V = 1271.2 (3) Å30.22 × 0.20 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5329 independent reflections
Radiation source: fine-focus sealed tube2011 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi scan
(SADABS in SAINT-NT; Bruker, 2000)
h = 139
Tmin = 0.61, Tmax = 0.72k = 1311
7557 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 0.83 w = 1/[σ2(Fo2) + (0.026P)2]
where P = (Fo2 + 2Fc2)/3
5329 reflections(Δ/σ)max = 0.008
329 parametersΔρmax = 0.34 e Å3
4 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Y2(C4H5O2)6(C13H10N2)2]·2H2Oγ = 77.810 (2)°
Mr = 1112.79V = 1271.2 (3) Å3
Triclinic, P1Z = 1
a = 10.6924 (14) ÅMo Kα radiation
b = 10.9060 (15) ŵ = 2.34 mm1
c = 11.8528 (16) ÅT = 293 K
α = 77.832 (2)°0.22 × 0.20 × 0.14 mm
β = 72.329 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5329 independent reflections
Absorption correction: multi scan
(SADABS in SAINT-NT; Bruker, 2000)
2011 reflections with I > 2σ(I)
Tmin = 0.61, Tmax = 0.72Rint = 0.030
7557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.83Δρmax = 0.34 e Å3
5329 reflectionsΔρmin = 0.24 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Y0.49920 (5)0.63572 (4)0.36343 (4)0.05767 (18)
C1A0.3100 (6)0.6578 (6)0.2374 (6)0.080 (2)
C2A0.2090 (6)0.6500 (6)0.1739 (6)0.107 (2)
H2A0.23540.60140.11250.129*
C3A0.1003 (6)0.7019 (6)0.1987 (5)0.121 (2)
H3A0.07620.75500.25630.145*
C4A0.0095 (5)0.6875 (6)0.1400 (5)0.165 (3)
H4A10.02710.62680.08580.247*
H4A20.03830.76820.09680.247*
H4A30.08390.65890.20170.247*
O1A0.4182 (4)0.5865 (3)0.2086 (3)0.0849 (12)
O2A0.2916 (3)0.7285 (3)0.3146 (3)0.0835 (11)
C1B0.3262 (5)0.6581 (5)0.6479 (5)0.0632 (14)
C2B0.2369 (5)0.7425 (5)0.7330 (5)0.0870 (18)
H2B0.20470.70410.81170.104*
C3B0.2006 (5)0.8588 (5)0.7103 (5)0.1002 (19)
H3B0.22840.89640.63070.120*
C4B0.1142 (5)0.9474 (6)0.8004 (5)0.157 (3)
H4B10.03240.98310.78000.236*
H4B20.16121.01450.79730.236*
H4B30.09550.89970.87990.236*
O1B0.3723 (3)0.7061 (3)0.5401 (3)0.0682 (10)
O2B0.3514 (3)0.5417 (3)0.6922 (2)0.0662 (9)
C1C0.6961 (5)0.6073 (5)0.4904 (4)0.0562 (13)
C2C0.8015 (5)0.5998 (4)0.5488 (4)0.0708 (15)
H2C0.80860.53350.61150.085*
C3C0.8838 (4)0.6781 (5)0.5191 (4)0.0766 (15)
H3C0.87520.74360.45610.092*
C4C0.9939 (5)0.6759 (5)0.5757 (5)0.120 (2)
H4C10.98650.61180.64570.180*
H4C20.98630.75730.59820.180*
H4C31.07850.65710.51920.180*
O1C0.6144 (3)0.5280 (3)0.5318 (2)0.0603 (8)
O2C0.6870 (3)0.6894 (3)0.4006 (3)0.0705 (9)
N10.4988 (3)0.8769 (4)0.3090 (4)0.0692 (12)
N20.6365 (4)0.7183 (4)0.1534 (4)0.0655 (11)
C10.4317 (4)0.9548 (5)0.3847 (5)0.0924 (18)
H10.38680.92000.46130.111*
C20.4231 (5)1.0879 (5)0.3577 (6)0.102 (2)
H20.37841.13870.41610.122*
C30.4813 (6)1.1399 (5)0.2450 (7)0.096 (2)
H30.47421.22770.22350.115*0.400 (5)
C13'0.4730 (7)1.2818 (7)0.2001 (7)0.105 (3)0.600 (5)
H13A0.42471.32740.26530.158*0.600 (5)
H13B0.42811.30470.13810.158*0.600 (5)
H13C0.56111.30300.16880.158*0.600 (5)
C40.5520 (6)1.0605 (5)0.1612 (6)0.0787 (17)
C50.6180 (7)1.1082 (7)0.0401 (7)0.104 (2)
H50.61291.19550.01550.125*
C60.6860 (7)1.0310 (7)0.0374 (6)0.105 (2)
H60.72771.06440.11550.126*
C70.6961 (6)0.8964 (6)0.0023 (6)0.0769 (16)
C80.7691 (6)0.8108 (7)0.0805 (5)0.096 (2)
H80.81460.84070.15850.115*0.600 (5)
C13"0.8261 (11)0.8706 (10)0.2070 (9)0.105 (3)0.400 (5)
H13D0.91760.87670.21870.158*0.400 (5)
H13E0.77710.95400.22210.158*0.400 (5)
H13F0.82030.81930.26130.158*0.400 (5)
C90.7731 (6)0.6850 (6)0.0424 (5)0.0949 (18)
H90.82000.62720.09390.114*
C100.7058 (6)0.6428 (5)0.0754 (5)0.0823 (17)
H100.71010.55560.10060.099*
C110.6322 (5)0.8440 (5)0.1149 (5)0.0661 (15)
C120.5583 (5)0.9288 (5)0.1973 (6)0.0636 (15)
O1WA0.1103 (7)0.9507 (6)0.3939 (6)0.164 (2)0.608 (4)
O1WB0.5232 (11)0.4287 (10)0.0455 (10)0.164 (2)0.392 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y0.0661 (3)0.0440 (3)0.0693 (3)0.0121 (2)0.0330 (3)0.0025 (2)
C1A0.085 (5)0.071 (5)0.099 (5)0.045 (4)0.059 (5)0.038 (4)
C2A0.086 (5)0.096 (5)0.131 (6)0.021 (4)0.048 (5)0.034 (4)
C3A0.089 (5)0.152 (7)0.112 (5)0.024 (5)0.039 (5)0.026 (4)
C4A0.108 (5)0.250 (9)0.164 (6)0.053 (5)0.098 (5)0.023 (6)
O1A0.090 (3)0.094 (3)0.092 (3)0.030 (2)0.053 (3)0.002 (2)
O2A0.086 (3)0.070 (3)0.103 (3)0.015 (2)0.051 (2)0.008 (2)
C1B0.062 (4)0.047 (4)0.087 (4)0.006 (3)0.028 (4)0.015 (4)
C2B0.104 (5)0.054 (4)0.101 (4)0.006 (3)0.041 (4)0.007 (3)
C3B0.089 (5)0.097 (5)0.116 (5)0.005 (4)0.038 (4)0.025 (4)
C4B0.113 (5)0.144 (6)0.235 (8)0.035 (5)0.056 (5)0.117 (6)
O1B0.083 (3)0.040 (2)0.079 (2)0.0117 (17)0.026 (2)0.0060 (18)
O2B0.078 (2)0.051 (2)0.069 (2)0.0053 (18)0.0256 (19)0.0053 (17)
C1C0.056 (4)0.053 (3)0.069 (4)0.009 (3)0.024 (3)0.018 (3)
C2C0.076 (4)0.062 (4)0.085 (4)0.027 (3)0.033 (3)0.002 (3)
C3C0.067 (4)0.079 (4)0.094 (4)0.019 (3)0.033 (3)0.011 (3)
C4C0.089 (4)0.151 (6)0.151 (5)0.036 (4)0.056 (4)0.039 (4)
O1C0.063 (2)0.049 (2)0.077 (2)0.0180 (16)0.0316 (19)0.0024 (17)
O2C0.079 (2)0.063 (2)0.077 (2)0.0263 (18)0.041 (2)0.0159 (18)
N10.070 (3)0.055 (3)0.083 (3)0.010 (2)0.027 (3)0.001 (3)
N20.074 (3)0.062 (3)0.070 (3)0.022 (2)0.031 (3)0.002 (3)
C10.093 (5)0.058 (4)0.113 (5)0.005 (3)0.023 (4)0.001 (4)
C20.111 (5)0.051 (4)0.148 (6)0.011 (4)0.045 (5)0.011 (4)
C30.093 (5)0.045 (4)0.157 (7)0.026 (4)0.059 (5)0.022 (4)
C13'0.100 (6)0.100 (7)0.124 (6)0.041 (5)0.042 (5)0.007 (5)
C40.077 (4)0.060 (4)0.109 (5)0.020 (3)0.053 (4)0.014 (4)
C50.113 (6)0.075 (5)0.132 (7)0.045 (4)0.065 (5)0.044 (5)
C60.117 (6)0.101 (6)0.112 (6)0.059 (5)0.064 (5)0.043 (5)
C70.081 (5)0.082 (5)0.080 (5)0.034 (4)0.043 (4)0.014 (4)
C80.109 (5)0.118 (6)0.075 (5)0.065 (5)0.038 (4)0.024 (5)
C13"0.100 (6)0.100 (7)0.124 (6)0.041 (5)0.042 (5)0.007 (5)
C90.117 (5)0.105 (5)0.076 (5)0.039 (4)0.030 (4)0.014 (4)
C100.104 (5)0.083 (5)0.068 (4)0.022 (4)0.036 (4)0.004 (4)
C110.074 (4)0.069 (4)0.072 (4)0.037 (3)0.044 (4)0.015 (4)
C120.070 (4)0.051 (4)0.084 (4)0.020 (3)0.049 (4)0.012 (4)
O1WA0.173 (6)0.133 (5)0.182 (6)0.013 (4)0.054 (5)0.048 (4)
O1WB0.173 (6)0.133 (5)0.182 (6)0.013 (4)0.054 (5)0.048 (4)
Geometric parameters (Å, º) top
Y—O1Ci2.296 (3)C3C—H3C0.9300
Y—O2Bi2.307 (3)C4C—H4C10.9600
Y—O1B2.309 (3)C4C—H4C20.9600
Y—O2C2.390 (3)C4C—H4C30.9600
Y—O2A2.423 (3)O1C—Yi2.296 (3)
Y—O1A2.446 (3)N1—C11.310 (5)
Y—N22.561 (4)N1—C121.342 (5)
Y—N12.572 (4)N2—C101.315 (5)
Y—O1C2.602 (3)N2—C111.346 (5)
Y—C1A2.803 (6)C1—C21.408 (6)
Y—C1C2.872 (5)C1—H10.9300
Y—Yi3.9009 (10)C2—C31.348 (6)
C1A—O1A1.246 (6)C2—H20.9300
C1A—O2A1.263 (6)C3—C41.393 (6)
C1A—C2A1.517 (7)C3—C13'1.520 (8)
C2A—C3A1.159 (6)C3—H30.9300
C2A—H2A0.9300C13'—H13A0.9600
C3A—C4A1.583 (6)C13'—H13B0.9600
C3A—H3A0.9300C13'—H13C0.9600
C4A—H4A10.9600C4—C121.402 (6)
C4A—H4A20.9600C4—C51.434 (6)
C4A—H4A30.9600C5—C61.321 (7)
C1B—O1B1.262 (5)C5—H50.9300
C1B—O2B1.274 (5)C6—C71.429 (6)
C1B—C2B1.487 (6)C6—H60.9300
C2B—C3B1.242 (5)C7—C81.399 (6)
C2B—H2B0.9300C7—C111.406 (6)
C3B—C4B1.545 (6)C8—C91.347 (6)
C3B—H3B0.9300C8—C13"1.499 (9)
C4B—H4B10.9600C8—H80.9300
C4B—H4B20.9600C13"—H13D0.9600
C4B—H4B30.9600C13"—H13E0.9600
O2B—Yi2.307 (3)C13"—H13F0.9600
C1C—O2C1.253 (5)C9—C101.392 (6)
C1C—O1C1.277 (5)C9—H90.9300
C1C—C2C1.471 (5)C10—H100.9300
C2C—C3C1.278 (5)C11—C121.427 (6)
C2C—H2C0.9300O1WB—O1WBii1.766 (19)
C3C—C4C1.516 (5)
O1Ci—Y—O2Bi77.17 (10)C1B—C2B—H2B116.5
O1Ci—Y—O1B75.55 (10)C2B—C3B—C4B126.9 (6)
O2Bi—Y—O1B136.99 (9)C2B—C3B—H3B116.6
O1Ci—Y—O2C126.47 (9)C4B—C3B—H3B116.6
O2Bi—Y—O2C82.57 (10)C3B—C4B—H4B1109.5
O1B—Y—O2C87.62 (10)C3B—C4B—H4B2109.5
O1Ci—Y—O2A83.75 (10)H4B1—C4B—H4B2109.5
O2Bi—Y—O2A130.30 (12)C3B—C4B—H4B3109.5
O1B—Y—O2A78.57 (11)H4B1—C4B—H4B3109.5
O2C—Y—O2A142.47 (11)H4B2—C4B—H4B3109.5
O1Ci—Y—O1A78.74 (10)C1B—O1B—Y137.5 (3)
O2Bi—Y—O1A78.29 (11)C1B—O2B—Yi137.5 (3)
O1B—Y—O1A126.96 (12)O2C—C1C—O1C120.2 (4)
O2C—Y—O1A143.64 (11)O2C—C1C—C2C120.7 (4)
O2A—Y—O1A52.96 (12)O1C—C1C—C2C119.2 (4)
O1Ci—Y—N2141.84 (12)O2C—C1C—Y55.2 (2)
O2Bi—Y—N276.91 (13)O1C—C1C—Y64.9 (2)
O1B—Y—N2140.80 (13)C2C—C1C—Y175.9 (4)
O2C—Y—N276.81 (11)C3C—C2C—C1C124.4 (5)
O2A—Y—N292.17 (11)C3C—C2C—H2C117.8
O1A—Y—N268.92 (12)C1C—C2C—H2C117.8
O1Ci—Y—N1147.81 (12)C2C—C3C—C4C126.9 (5)
O2Bi—Y—N1134.99 (13)C2C—C3C—H3C116.5
O1B—Y—N177.96 (13)C4C—C3C—H3C116.5
O2C—Y—N169.72 (9)C3C—C4C—H4C1109.5
O2A—Y—N173.31 (10)C3C—C4C—H4C2109.5
O1A—Y—N1103.58 (11)H4C1—C4C—H4C2109.5
N2—Y—N162.95 (15)C3C—C4C—H4C3109.5
O1Ci—Y—O1C74.59 (10)H4C1—C4C—H4C3109.5
O2Bi—Y—O1C69.57 (9)H4C2—C4C—H4C3109.5
O1B—Y—O1C71.48 (9)C1C—O1C—Yi165.9 (3)
O2C—Y—O1C51.91 (9)C1C—O1C—Y88.7 (3)
O2A—Y—O1C146.46 (10)Yi—O1C—Y105.41 (10)
O1A—Y—O1C141.84 (11)C1C—O2C—Y99.3 (3)
N2—Y—O1C120.63 (10)C1—N1—C12117.2 (5)
N1—Y—O1C113.57 (10)C1—N1—Y121.9 (4)
O1Ci—Y—C1A78.48 (12)C12—N1—Y120.7 (4)
O2Bi—Y—C1A103.85 (16)C10—N2—C11116.8 (5)
O1B—Y—C1A102.50 (17)C10—N2—Y122.7 (4)
O2C—Y—C1A154.97 (13)C11—N2—Y120.4 (4)
O2A—Y—C1A26.72 (13)N1—C1—C2124.2 (5)
O1A—Y—C1A26.35 (14)N1—C1—H1117.9
N2—Y—C1A81.11 (15)C2—C1—H1117.9
N1—Y—C1A89.84 (13)C3—C2—C1118.5 (6)
O1C—Y—C1A153.06 (13)C3—C2—H2120.8
O1Ci—Y—C1C100.98 (13)C1—C2—H2120.8
O2Bi—Y—C1C74.75 (11)C2—C3—C4119.1 (6)
O1B—Y—C1C78.57 (12)C2—C3—C13'124.6 (6)
O2C—Y—C1C25.50 (10)C4—C3—C13'116.3 (6)
O2A—Y—C1C154.65 (13)C2—C3—H3120.5
O1A—Y—C1C152.33 (13)C4—C3—H3120.5
N2—Y—C1C98.65 (13)C13'—C3—H34.3
N1—Y—C1C91.28 (12)C3—C13'—H13A109.5
O1C—Y—C1C26.40 (10)C3—C13'—H13B109.5
C1A—Y—C1C178.59 (18)C3—C13'—H13C109.5
O1Ci—Y—Yi40.02 (6)C3—C4—C12118.4 (6)
O2Bi—Y—Yi68.69 (7)C3—C4—C5122.5 (6)
O1B—Y—Yi68.98 (7)C12—C4—C5119.1 (6)
O2C—Y—Yi86.46 (7)C6—C5—C4121.4 (7)
O2A—Y—Yi119.47 (8)C6—C5—H5119.3
O1A—Y—Yi114.18 (8)C4—C5—H5119.3
N2—Y—Yi143.38 (10)C5—C6—C7120.6 (7)
N1—Y—Yi139.89 (10)C5—C6—H6119.7
O1C—Y—Yi34.57 (7)C7—C6—H6119.7
C1A—Y—Yi118.49 (11)C8—C7—C11116.8 (6)
C1C—Y—Yi60.97 (11)C8—C7—C6122.6 (7)
O1A—C1A—O2A119.9 (5)C11—C7—C6120.5 (6)
O1A—C1A—C2A114.8 (6)C9—C8—C7119.7 (6)
O2A—C1A—C2A125.3 (6)C9—C8—C13"124.9 (7)
O1A—C1A—Y60.6 (3)C7—C8—C13"115.0 (6)
O2A—C1A—Y59.6 (3)C9—C8—H8120.1
C2A—C1A—Y172.1 (4)C7—C8—H8120.1
C3A—C2A—C1A122.8 (8)C13"—C8—H87.4
C3A—C2A—H2A118.6C8—C13"—H13D109.5
C1A—C2A—H2A118.6C8—C13"—H13E109.5
C2A—C3A—C4A123.7 (7)H13D—C13"—H13E109.5
C2A—C3A—H3A118.2C8—C13"—H13F109.5
C4A—C3A—H3A118.2H13D—C13"—H13F109.5
C3A—C4A—H4A1109.5H13E—C13"—H13F109.5
C3A—C4A—H4A2109.5C8—C9—C10118.9 (6)
H4A1—C4A—H4A2109.5C8—C9—H9120.5
C3A—C4A—H4A3109.5C10—C9—H9120.5
H4A1—C4A—H4A3109.5N2—C10—C9124.2 (6)
H4A2—C4A—H4A3109.5N2—C10—H10117.9
C1A—O1A—Y93.0 (4)C9—C10—H10117.9
C1A—O2A—Y93.7 (3)N2—C11—C7123.5 (6)
O1B—C1B—O2B125.4 (5)N2—C11—C12118.3 (5)
O1B—C1B—C2B118.8 (5)C7—C11—C12118.2 (6)
O2B—C1B—C2B115.8 (5)N1—C12—C4122.6 (6)
C3B—C2B—C1B127.0 (6)N1—C12—C11117.2 (5)
C3B—C2B—H2B116.5C4—C12—C11120.1 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
(III) tetrakis(µ-crotonato-1:2κ2O:O')bis[bis(aqua-κO)(crotonato- κ2O,O')(yttrium(III)] 2,2'-bipyridylamine tetrasolvate top
Crystal data top
[Y2(C4H5O2)6(H2O)4]·4C10H9N3F(000) = 2992
Mr = 1445.18Dx = 1.382 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 38.108 (4) ÅCell parameters from 112 reflections
b = 8.851 (1) Åθ = 4.7–23.4°
c = 25.539 (3) ŵ = 1.74 mm1
β = 126.26 (1)°T = 293 K
V = 6945.4 (14) Å3Prism, colourless
Z = 40.38 × 0.20 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7877 independent reflections
Radiation source: fine-focus sealed tube4815 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 28.2°, θmin = 2.0°
Absorption correction: multi scan
(SADABS in SAINT-NT; Bruker, 2000)
h = 5050
Tmin = 0.62, Tmax = 0.75k = 1111
23271 measured reflectionsl = 3032
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.094H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0432P)2]
where P = (Fo2 + 2Fc2)/3
7877 reflections(Δ/σ)max = 0.014
459 parametersΔρmax = 1.14 e Å3
8 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Y2(C4H5O2)6(H2O)4]·4C10H9N3V = 6945.4 (14) Å3
Mr = 1445.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 38.108 (4) ŵ = 1.74 mm1
b = 8.851 (1) ÅT = 293 K
c = 25.539 (3) Å0.38 × 0.20 × 0.14 mm
β = 126.26 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7877 independent reflections
Absorption correction: multi scan
(SADABS in SAINT-NT; Bruker, 2000)
4815 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.75Rint = 0.055
23271 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0428 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 0.88Δρmax = 1.14 e Å3
7877 reflectionsΔρmin = 0.33 e Å3
459 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.28418 (11)0.4078 (3)0.67559 (14)0.0498 (7)
C2A0.29836 (11)0.3671 (3)0.74152 (14)0.0591 (8)
H2A0.32660.39250.77630.071*
C3A0.27441 (12)0.2990 (4)0.75413 (16)0.0759 (10)
H3A0.24540.28420.71940.091*
C4A0.28798 (14)0.2412 (4)0.81816 (17)0.1010 (13)
H4A10.31900.25020.84900.152*
H4A20.27980.13690.81410.152*
H4A30.27400.29900.83280.152*
C1B0.16495 (8)0.2632 (3)0.45018 (13)0.0434 (7)
C2B0.11699 (9)0.2782 (4)0.41277 (15)0.0587 (8)
H2B0.10570.36090.42070.070*
C3B0.09078 (11)0.1821 (4)0.37028 (17)0.0840 (11)
H3B0.10270.09740.36470.101*
C4B0.04193 (13)0.1948 (6)0.3283 (2)0.160 (2)
H4B10.03370.28060.34170.239*
H4B20.02980.10480.33260.239*
H4B30.03120.20690.28370.239*
C1C0.22947 (8)0.4527 (3)0.41578 (14)0.0426 (7)
C2C0.20654 (10)0.4722 (3)0.34365 (14)0.0603 (9)
H2C0.20070.38590.31900.072*
C3C0.19437 (10)0.6019 (3)0.31372 (14)0.0618 (9)
H3C0.20140.68730.33940.074*
C4C0.17043 (13)0.6273 (4)0.24276 (16)0.0967 (13)
H4C10.16450.53180.22120.145*
H4C20.18780.68830.23510.145*
H4C30.14350.67810.22620.145*
C1U0.48641 (14)0.3308 (6)0.9084 (2)0.1128 (16)
H1U0.51300.35630.94680.135*
C2U0.47107 (16)0.1932 (6)0.9043 (3)0.1210 (18)
H2U0.48640.12560.93880.145*
C3U0.43205 (17)0.1537 (5)0.8481 (2)0.1216 (17)
H3U0.42010.05890.84360.146*
C4U0.41069 (13)0.2583 (4)0.7979 (2)0.0926 (12)
H4U0.38430.23430.75880.111*
C5U0.42928 (11)0.3970 (4)0.80712 (17)0.0645 (9)
C6U0.41987 (10)0.6410 (4)0.75019 (16)0.0631 (9)
C7U0.45929 (12)0.7093 (5)0.79584 (19)0.0983 (14)
H7U0.4783 (10)0.664 (4)0.8369 (10)0.118*
C8U0.46666 (15)0.8484 (6)0.7820 (2)0.137 (2)
H8U0.49290.89700.81210.164*
C9U0.43625 (15)0.9183 (5)0.7247 (2)0.1292 (19)
H9U0.44091.01440.71530.155*
C10U0.39920 (12)0.8419 (4)0.68246 (19)0.0881 (12)
H10U0.37850.88760.64280.106*
C1V0.08143 (14)0.2316 (6)0.58267 (19)0.0967 (14)
H1V0.05690.23380.58230.116*
C2V0.10425 (17)0.1008 (6)0.6001 (2)0.1066 (16)
H2V0.09550.01630.61120.128*
C3V0.14052 (16)0.0956 (5)0.6010 (2)0.1015 (14)
H3V0.15680.00730.61260.122*
C4V0.15244 (13)0.2223 (4)0.58449 (16)0.0747 (10)
H4V0.17720.22270.58530.090*
C5V0.12670 (11)0.3504 (4)0.56645 (15)0.0635 (9)
C6V0.11783 (10)0.6082 (4)0.51871 (16)0.0598 (8)
C7V0.07747 (12)0.6492 (5)0.5028 (2)0.0826 (11)
H7V0.0659 (11)0.581 (3)0.5176 (16)0.099*
C8V0.06044 (13)0.7846 (5)0.4723 (2)0.0994 (13)
H8V0.03360.81530.46160.119*
C9V0.08206 (13)0.8746 (5)0.4574 (2)0.0915 (12)
H9V0.07020.96560.43570.110*
C10V0.12180 (12)0.8273 (4)0.47540 (17)0.0756 (10)
H10V0.13730.88970.46640.091*
N1U0.46664 (9)0.4350 (4)0.86182 (15)0.0890 (10)
N2U0.40713 (9)0.5017 (3)0.75782 (14)0.0659 (8)
N3U0.39017 (8)0.7060 (3)0.69344 (13)0.0661 (7)
N1V0.09192 (10)0.3582 (4)0.56595 (14)0.0793 (9)
N2V0.13919 (10)0.4756 (3)0.54923 (16)0.0701 (8)
N3V0.13958 (8)0.6964 (3)0.50519 (13)0.0623 (7)
O1A0.31246 (6)0.4383 (2)0.66610 (9)0.0568 (5)
O2A0.24455 (6)0.4038 (2)0.62824 (9)0.0549 (5)
O1B0.17948 (6)0.14528 (19)0.44232 (10)0.0543 (5)
O2B0.18746 (5)0.37187 (19)0.48697 (9)0.0469 (5)
O1C0.23785 (6)0.56704 (18)0.45000 (8)0.0490 (5)
O2C0.23656 (6)0.32258 (19)0.43751 (8)0.0468 (5)
O1W0.22393 (8)0.6602 (2)0.54483 (12)0.0577 (6)
O2W0.30770 (8)0.6503 (2)0.57855 (12)0.0528 (6)
Y0.260640 (8)0.43790 (3)0.549712 (12)0.03684 (9)
H1WA0.2321 (9)0.742 (3)0.5459 (16)0.079 (12)*
H2WA0.3300 (7)0.652 (3)0.6102 (12)0.072 (13)*
H1WB0.2000 (7)0.664 (3)0.5327 (17)0.082 (13)*
H2WB0.2967 (9)0.725 (3)0.5672 (14)0.076 (13)*
H2NU0.3829 (7)0.483 (3)0.7296 (11)0.042 (9)*
H2NV0.1614 (7)0.466 (3)0.5540 (13)0.045 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.073 (2)0.0315 (16)0.0444 (19)0.0017 (14)0.0345 (18)0.0024 (13)
C2A0.073 (2)0.0570 (19)0.0414 (19)0.0070 (17)0.0310 (18)0.0023 (15)
C3A0.086 (3)0.091 (3)0.053 (2)0.005 (2)0.043 (2)0.007 (2)
C4A0.135 (4)0.107 (3)0.070 (3)0.012 (3)0.065 (3)0.013 (2)
C1B0.0409 (16)0.0409 (16)0.0472 (18)0.0013 (13)0.0254 (15)0.0045 (14)
C2B0.0487 (18)0.063 (2)0.056 (2)0.0056 (16)0.0259 (17)0.0032 (17)
C3B0.068 (2)0.094 (3)0.072 (3)0.011 (2)0.031 (2)0.007 (2)
C4B0.057 (3)0.209 (6)0.119 (4)0.034 (3)0.000 (3)0.044 (4)
C1C0.0507 (15)0.0146 (13)0.073 (2)0.0075 (11)0.0419 (15)0.0057 (14)
C2C0.097 (2)0.0354 (17)0.0362 (18)0.0013 (16)0.0330 (18)0.0029 (13)
C3C0.082 (2)0.053 (2)0.0430 (19)0.0035 (16)0.0335 (18)0.0048 (15)
C4C0.117 (3)0.099 (3)0.055 (2)0.016 (3)0.040 (2)0.024 (2)
C1U0.074 (3)0.146 (5)0.084 (3)0.007 (3)0.028 (2)0.043 (3)
C2U0.092 (4)0.131 (4)0.112 (4)0.026 (3)0.045 (3)0.064 (4)
C3U0.115 (4)0.090 (3)0.132 (4)0.005 (3)0.058 (4)0.042 (3)
C4U0.081 (3)0.076 (3)0.089 (3)0.001 (2)0.032 (2)0.013 (2)
C5U0.055 (2)0.073 (2)0.063 (2)0.0061 (18)0.033 (2)0.0098 (19)
C6U0.053 (2)0.065 (2)0.061 (2)0.0026 (17)0.0279 (19)0.0011 (19)
C7U0.066 (3)0.103 (3)0.073 (3)0.023 (2)0.012 (2)0.011 (3)
C8U0.093 (3)0.120 (4)0.116 (4)0.054 (3)0.017 (3)0.014 (3)
C9U0.100 (3)0.101 (4)0.120 (4)0.046 (3)0.028 (3)0.019 (3)
C10U0.071 (2)0.074 (3)0.085 (3)0.007 (2)0.027 (2)0.012 (2)
C1V0.082 (3)0.132 (4)0.070 (3)0.043 (3)0.041 (2)0.008 (3)
C2V0.129 (4)0.103 (4)0.074 (3)0.052 (3)0.052 (3)0.001 (3)
C3V0.127 (4)0.080 (3)0.092 (3)0.012 (3)0.062 (3)0.014 (2)
C4V0.092 (3)0.064 (2)0.070 (3)0.006 (2)0.049 (2)0.0053 (19)
C5V0.073 (2)0.066 (2)0.054 (2)0.0171 (19)0.0382 (19)0.0104 (18)
C6V0.058 (2)0.058 (2)0.066 (2)0.0054 (17)0.0385 (19)0.0125 (17)
C7V0.066 (2)0.087 (3)0.099 (3)0.001 (2)0.051 (2)0.007 (2)
C8V0.066 (3)0.114 (4)0.117 (4)0.028 (2)0.053 (3)0.026 (3)
C9V0.086 (3)0.085 (3)0.103 (3)0.025 (2)0.055 (3)0.026 (2)
C10V0.086 (3)0.066 (2)0.088 (3)0.005 (2)0.059 (2)0.006 (2)
N1U0.0594 (18)0.111 (3)0.067 (2)0.0052 (18)0.0214 (17)0.025 (2)
N2U0.0478 (17)0.0684 (18)0.0545 (19)0.0049 (15)0.0155 (16)0.0049 (16)
N3U0.0572 (17)0.0576 (17)0.0658 (19)0.0077 (13)0.0265 (15)0.0066 (15)
N1V0.079 (2)0.091 (2)0.078 (2)0.0255 (17)0.0524 (18)0.0072 (18)
N2V0.072 (2)0.0534 (18)0.107 (3)0.0033 (15)0.065 (2)0.0003 (16)
N3V0.0687 (17)0.0499 (16)0.080 (2)0.0040 (14)0.0502 (16)0.0005 (14)
O1A0.0596 (12)0.0601 (13)0.0435 (12)0.0156 (11)0.0266 (10)0.0004 (10)
O2A0.0572 (13)0.0606 (13)0.0454 (12)0.0044 (10)0.0296 (11)0.0040 (10)
O1B0.0518 (12)0.0338 (11)0.0779 (15)0.0043 (9)0.0385 (11)0.0108 (10)
O2B0.0454 (11)0.0318 (10)0.0571 (13)0.0006 (8)0.0268 (10)0.0043 (9)
O1C0.0694 (12)0.0233 (9)0.0436 (11)0.0034 (9)0.0275 (10)0.0031 (9)
O2C0.0556 (12)0.0262 (9)0.0533 (13)0.0024 (8)0.0294 (10)0.0064 (9)
O1W0.0598 (15)0.0278 (12)0.0889 (18)0.0008 (10)0.0458 (14)0.0003 (11)
O2W0.0502 (14)0.0298 (12)0.0576 (16)0.0004 (10)0.0205 (13)0.0028 (10)
Y0.04371 (15)0.02273 (12)0.04034 (16)0.00059 (12)0.02281 (12)0.00210 (12)
Geometric parameters (Å, º) top
C1A—O2A1.258 (3)C7U—C8U1.355 (5)
C1A—O1A1.266 (3)C7U—H7U0.944 (10)
C1A—C2A1.477 (4)C8U—C9U1.364 (5)
C1A—Y2.793 (3)C8U—H8U0.9300
C2A—C3A1.283 (4)C9U—C10U1.346 (5)
C2A—H2A0.9300C9U—H9U0.9300
C3A—C4A1.484 (4)C10U—N3U1.325 (4)
C3A—H3A0.9300C10U—H10U0.9300
C4A—H4A10.9600C1V—N1V1.341 (5)
C4A—H4A20.9600C1V—C2V1.355 (5)
C4A—H4A30.9600C1V—H1V0.9300
C1B—O1B1.252 (3)C2V—C3V1.370 (5)
C1B—O2B1.261 (3)C2V—H2V0.9300
C1B—C2B1.485 (4)C3V—C4V1.366 (5)
C2B—C3B1.271 (4)C3V—H3V0.9300
C2B—H2B0.9300C4V—C5V1.388 (4)
C3B—C4B1.505 (5)C4V—H4V0.9300
C3B—H3B0.9300C5V—N1V1.320 (4)
C4B—H4B10.9600C5V—N2V1.377 (4)
C4B—H4B20.9600C6V—N3V1.325 (4)
C4B—H4B30.9600C6V—N2V1.377 (4)
C1C—O2C1.237 (3)C6V—C7V1.387 (4)
C1C—O1C1.249 (3)C7V—C8V1.366 (5)
C1C—C2C1.511 (4)C7V—H7V0.948 (10)
C1C—Y2.885 (3)C8V—C9V1.352 (5)
C2C—C3C1.303 (4)C8V—H8V0.9300
C2C—H2C0.9300C9V—C10V1.363 (4)
C3C—C4C1.487 (4)C9V—H9V0.9300
C3C—H3C0.9300C10V—N3V1.330 (4)
C4C—H4C10.9600C10V—H10V0.9300
C4C—H4C20.9600N2U—H2NU0.783 (19)
C4C—H4C30.9600N2V—H2NV0.787 (19)
C1U—C2U1.328 (5)O1A—Y2.4065 (18)
C1U—N1U1.332 (4)O2A—Y2.4378 (19)
C1U—H1U0.9300O1B—Yi2.2893 (18)
C2U—C3U1.367 (6)O2B—Y2.3238 (17)
C2U—H2U0.9300O1C—Y2.4349 (17)
C3U—C4U1.389 (5)O2C—Yi2.3220 (17)
C3U—H3U0.9300O2C—Y2.6426 (18)
C4U—C5U1.367 (4)O1W—Y2.374 (2)
C4U—H4U0.9300O2W—Y2.394 (2)
C5U—N1U1.319 (4)Y—Yi3.9664 (5)
C5U—N2U1.378 (4)O1W—H1WA0.78 (2)
C6U—N3U1.331 (4)O1W—H1WB0.77 (2)
C6U—N2U1.381 (4)O2W—H2WA0.75 (2)
C6U—C7U1.382 (4)O2W—H2WB0.75 (2)
O2A—C1A—O1A119.7 (3)C6V—C7V—H7V114 (2)
O2A—C1A—C2A120.7 (3)C9V—C8V—C7V120.9 (4)
O1A—C1A—C2A119.5 (3)C9V—C8V—H8V119.5
O2A—C1A—Y60.70 (15)C7V—C8V—H8V119.5
O1A—C1A—Y59.29 (14)C8V—C9V—C10V117.7 (4)
C2A—C1A—Y171.0 (2)C8V—C9V—H9V121.1
C3A—C2A—C1A124.5 (3)C10V—C9V—H9V121.1
C3A—C2A—H2A117.8N3V—C10V—C9V123.3 (4)
C1A—C2A—H2A117.8N3V—C10V—H10V118.4
C2A—C3A—C4A127.0 (4)C9V—C10V—H10V118.4
C2A—C3A—H3A116.5C5U—N1U—C1U117.1 (4)
C4A—C3A—H3A116.5C5U—N2U—C6U130.8 (3)
C3A—C4A—H4A1109.5C5U—N2U—H2NU117 (2)
C3A—C4A—H4A2109.5C6U—N2U—H2NU112 (2)
H4A1—C4A—H4A2109.5C10U—N3U—C6U117.6 (3)
C3A—C4A—H4A3109.5C5V—N1V—C1V116.1 (4)
H4A1—C4A—H4A3109.5C6V—N2V—C5V131.8 (3)
H4A2—C4A—H4A3109.5C6V—N2V—H2NV114 (2)
O1B—C1B—O2B125.8 (2)C5V—N2V—H2NV114 (2)
O1B—C1B—C2B117.7 (3)C6V—N3V—C10V118.5 (3)
O2B—C1B—C2B116.6 (2)C1A—O1A—Y93.83 (17)
C3B—C2B—C1B122.4 (3)C1A—O2A—Y92.55 (17)
C3B—C2B—H2B118.8C1B—O1B—Yi139.99 (17)
C1B—C2B—H2B118.8C1B—O2B—Y135.69 (16)
C2B—C3B—C4B125.1 (4)C1C—O1C—Y97.86 (16)
C2B—C3B—H3B117.5C1C—O2C—Yi165.27 (18)
C4B—C3B—H3B117.5C1C—O2C—Y88.32 (16)
C3B—C4B—H4B1109.5Yi—O2C—Y105.88 (6)
C3B—C4B—H4B2109.5Y—O1W—H1WA124 (2)
H4B1—C4B—H4B2109.5Y—O1W—H1WB125 (2)
C3B—C4B—H4B3109.5H1WA—O1W—H1WB109 (2)
H4B1—C4B—H4B3109.5Y—O2W—H2WA121 (2)
H4B2—C4B—H4B3109.5Y—O2W—H2WB116 (2)
O2C—C1C—O1C122.9 (3)H2WA—O2W—H2WB115 (2)
O2C—C1C—C2C118.0 (2)O1Bi—Y—O2Ci73.00 (6)
O1C—C1C—C2C119.0 (2)O1Bi—Y—O2B134.99 (6)
O2C—C1C—Y66.31 (15)O2Ci—Y—O2B77.52 (6)
O1C—C1C—Y56.74 (14)O1Bi—Y—O1W142.80 (7)
C2C—C1C—Y170.56 (19)O2Ci—Y—O1W143.79 (8)
C3C—C2C—C1C124.4 (3)O2B—Y—O1W75.09 (7)
C3C—C2C—H2C117.8O1Bi—Y—O2W72.49 (7)
C1C—C2C—H2C117.8O2Ci—Y—O2W140.59 (7)
C2C—C3C—C4C126.7 (3)O2B—Y—O2W141.71 (7)
C2C—C3C—H3C116.7O1W—Y—O2W71.12 (8)
C4C—C3C—H3C116.7O1Bi—Y—O1A81.04 (7)
C3C—C4C—H4C1109.5O2Ci—Y—O1A83.80 (6)
C3C—C4C—H4C2109.5O2B—Y—O1A128.70 (7)
H4C1—C4C—H4C2109.5O1W—Y—O1A95.22 (8)
C3C—C4C—H4C3109.5O2W—Y—O1A72.58 (8)
H4C1—C4C—H4C3109.5O1Bi—Y—O1C87.94 (7)
H4C2—C4C—H4C3109.5O2Ci—Y—O1C124.84 (6)
C2U—C1U—N1U125.1 (4)O2B—Y—O1C81.76 (6)
C2U—C1U—H1U117.4O1W—Y—O1C73.83 (7)
N1U—C1U—H1U117.4O2W—Y—O1C72.06 (7)
C1U—C2U—C3U118.1 (4)O1A—Y—O1C144.64 (6)
C1U—C2U—H2U120.9O1Bi—Y—O2A127.55 (7)
C3U—C2U—H2U120.9O2Ci—Y—O2A76.97 (6)
C2U—C3U—C4U118.6 (4)O2B—Y—O2A75.69 (7)
C2U—C3U—H3U120.7O1W—Y—O2A73.66 (8)
C4U—C3U—H3U120.7O2W—Y—O2A110.57 (8)
C5U—C4U—C3U118.6 (4)O1A—Y—O2A53.55 (6)
C5U—C4U—H4U120.7O1C—Y—O2A144.16 (6)
C3U—C4U—H4U120.7O1Bi—Y—O2C70.17 (6)
N1U—C5U—C4U122.5 (3)O2Ci—Y—O2C74.12 (6)
N1U—C5U—N2U119.3 (3)O2B—Y—O2C69.50 (6)
C4U—C5U—N2U118.1 (3)O1W—Y—O2C116.56 (7)
N3U—C6U—N2U113.3 (3)O2W—Y—O2C110.70 (7)
N3U—C6U—C7U122.0 (3)O1A—Y—O2C147.66 (6)
N2U—C6U—C7U124.7 (3)O1C—Y—O2C50.74 (5)
C8U—C7U—C6U117.9 (4)O2A—Y—O2C138.51 (6)
C8U—C7U—H7U123 (3)O1Bi—Y—C1A104.03 (8)
C6U—C7U—H7U119 (3)O2Ci—Y—C1A77.69 (7)
C7U—C8U—C9U121.0 (4)O2B—Y—C1A101.95 (8)
C7U—C8U—H8U119.5O1W—Y—C1A85.27 (8)
C9U—C8U—H8U119.5O2W—Y—C1A92.79 (9)
C10U—C9U—C8U117.1 (4)O1A—Y—C1A26.88 (7)
C10U—C9U—H9U121.5O1C—Y—C1A157.17 (7)
C8U—C9U—H9U121.5O2A—Y—C1A26.75 (7)
N3U—C10U—C9U124.5 (4)O2C—Y—C1A151.69 (7)
N3U—C10U—H10U117.8O1Bi—Y—C1C79.03 (7)
C9U—C10U—H10U117.8O2Ci—Y—C1C99.44 (7)
N1V—C1V—C2V124.3 (4)O2B—Y—C1C73.10 (7)
N1V—C1V—H1V117.8O1W—Y—C1C94.80 (8)
C2V—C1V—H1V117.8O2W—Y—C1C92.14 (8)
C1V—C2V—C3V118.6 (4)O1A—Y—C1C157.83 (7)
C1V—C2V—H2V120.7O1C—Y—C1C25.40 (6)
C3V—C2V—H2V120.7O2A—Y—C1C148.60 (7)
C4V—C3V—C2V118.9 (4)O2C—Y—C1C25.37 (5)
C4V—C3V—H3V120.5C1A—Y—C1C174.81 (8)
C2V—C3V—H3V120.5O1Bi—Y—Yi66.60 (4)
C3V—C4V—C5V118.3 (4)O2Ci—Y—Yi39.85 (4)
C3V—C4V—H4V120.8O2B—Y—Yi68.91 (4)
C5V—C4V—H4V120.8O1W—Y—Yi140.38 (6)
N1V—C5V—N2V119.3 (3)O2W—Y—Yi133.45 (6)
N1V—C5V—C4V123.7 (3)O1A—Y—Yi119.98 (5)
N2V—C5V—C4V117.0 (3)O1C—Y—Yi85.00 (4)
N3V—C6V—N2V113.5 (3)O2A—Y—Yi111.54 (5)
N3V—C6V—C7V121.7 (3)O2C—Y—Yi34.27 (4)
N2V—C6V—C7V124.8 (3)C1A—Y—Yi117.50 (5)
C8V—C7V—C6V117.9 (4)C1C—Y—Yi59.61 (5)
C8V—C7V—H7V128 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7V—H7V···N1V0.95 (4)2.23 (3)2.913 (6)129 (4)
C7U—H7U···N1U0.94 (2)2.25 (4)2.873 (5)123 (3)
O1W—H1WB···N3V0.77 (4)1.99 (4)2.759 (3)174 (2)
O1W—H1WA···O1Cii0.78 (3)2.01 (3)2.782 (3)170 (4)
O2W—H2WB···O1Cii0.74 (3)2.15 (3)2.882 (3)167 (4)
O2W—H2WA···N3U0.75 (3)2.06 (3)2.797 (4)168 (3)
N2V—H2NV···O2B0.79 (3)2.57 (2)3.196 (3)137 (2)
N2V—H2NV···O2A0.79 (3)2.61 (2)3.318 (4)150 (3)
N2U—H2NU···O1A0.78 (3)2.20 (2)2.970 (3)168 (3)
Symmetry code: (ii) x+1/2, y+3/2, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Y2(C4H5O2)6(C12H8N2)2]·2H2O[Y2(C4H5O2)6(C13H10N2)2]·2H2O[Y2(C4H5O2)6(H2O)4]·4C10H9N3
Mr1084.741112.791445.18
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, C2/c
Temperature (K)293293293
a, b, c (Å)10.5565 (14), 10.9994 (15), 11.4194 (15)10.6924 (14), 10.9060 (15), 11.8528 (16)38.108 (4), 8.851 (1), 25.539 (3)
α, β, γ (°)78.966 (2), 71.685 (2), 77.256 (3)77.832 (2), 72.329 (2), 77.810 (2)90, 126.26 (1), 90
V3)1217.1 (3)1271.2 (3)6945.4 (14)
Z114
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.442.341.74
Crystal size (mm)0.32 × 0.24 × 0.180.22 × 0.20 × 0.140.38 × 0.20 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti scan
(SADABS in SAINT-NT; Bruker, 2000)
Multi scan
(SADABS in SAINT-NT; Bruker, 2000)
Multi scan
(SADABS in SAINT-NT; Bruker, 2000)
Tmin, Tmax0.50, 0.640.61, 0.720.62, 0.75
No. of measured, independent and
observed [I > 2σ(I)] reflections
6943, 5136, 1717 7557, 5329, 2011 23271, 7877, 4815
Rint0.0590.0300.055
(sin θ/λ)max1)0.6620.6610.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.115, 0.86 0.047, 0.084, 0.83 0.042, 0.094, 0.88
No. of reflections513653297877
No. of parameters348329459
No. of restraints1048
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.650.34, 0.241.14, 0.33

Computer programs: SMART-NT (Bruker, 2001), SMART-NT, SAINT-NT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1994), SHELXL97.

Selected bond lengths (Å) for (I) top
Y1—O2Bi2.302 (5)Y1—N22.582 (6)
Y1—O1Ci2.320 (5)Y1—O1C2.585 (4)
Y1—O1B2.323 (5)Y1—N12.586 (6)
Y1—O2C2.390 (5)Y1—C1A2.757 (8)
Y1—O2A2.442 (5)Y1—C1C2.907 (7)
Y1—O1A2.474 (6)Y1—Y1i3.8948 (16)
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) for (II) top
Y—O1Ci2.296 (3)Y—O1A2.446 (3)
Y—O2Bi2.307 (3)Y—N22.561 (4)
Y—O1B2.309 (3)Y—N12.572 (4)
Y—O2C2.390 (3)Y—O1C2.602 (3)
Y—O2A2.423 (3)Y—Yi3.9009 (10)
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) for (III) top
O1A—Y2.4065 (18)O2C—Yi2.3220 (17)
O2A—Y2.4378 (19)O2C—Y2.6426 (18)
O1B—Yi2.2893 (18)O1W—Y2.374 (2)
O2B—Y2.3238 (17)O2W—Y2.394 (2)
O1C—Y2.4349 (17)Y—Yi3.9664 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C7V—H7V···N1V0.95 (4)2.23 (3)2.913 (6)129 (4)
C7U—H7U···N1U0.94 (2)2.25 (4)2.873 (5)123 (3)
O1W—H1WB···N3V0.77 (4)1.99 (4)2.759 (3)174 (2)
O1W—H1WA···O1Cii0.78 (3)2.01 (3)2.782 (3)170 (4)
O2W—H2WB···O1Cii0.74 (3)2.15 (3)2.882 (3)167 (4)
O2W—H2WA···N3U0.75 (3)2.06 (3)2.797 (4)168 (3)
N2V—H2NV···O2B0.79 (3)2.57 (2)3.196 (3)137 (2)
N2V—H2NV···O2A0.79 (3)2.61 (2)3.318 (4)150 (3)
N2U—H2NU···O1A0.78 (3)2.20 (2)2.970 (3)168 (3)
Symmetry code: (ii) x+1/2, y+3/2, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds