Download citation
Download citation
link to html
In the title compound, [1,4-bis(di­phenyl­phosphino)­butane-2κ2P,P′]­di-μ-thio-1:2κ4S-di­thio-1κ2S-palladium(II)­tung­sten(VI) N,N′-di­methyl­form­amide hemisolvate hemihydrate, [PdWS4­(C28H28P2)]·0.5C3H7NO·0.5H2O, the Pd atom is coordinated by two S atoms from the distorted-tetrahedral [WS4]2− anion and two P atoms from the dppb mol­ecule [dppb is 1,4-bis(di­phenyl­phos­phino)­butane] in an approximately square-planar configuration. A puckered seven-membered ring is formed by the Pd atom and the dppb ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103013507/ga1018sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103013507/ga1018Isup2.hkl
Contains datablock I

CCDC reference: 219548

Comment top

Over the past two decades, transition metal complexes with thiometalate anions, [MO4-nSn]2− (M=Mo,W;n=2–4), have been widely researched (Müller et al., 1981; Sarkar et al., 1984; Hou et al., 1996). Many of these complexes play important roles in catalysis, new materials and medical chemistry (Holm & Berg, 1986; Howard et al., 1986; Burgess,1990; Munakata et al., 1995). Heterobimetallic thiometalate complexes containing dithiolato ligands, (Et4N)2WS4Pd(S2C4N2) (Long et al., 1997), [NEt4][PdWS4(S2CNC4H8)] (Long et al., 1997), [N(C2H5)4][NiWS4(S2CNC4H8)] (Long et al., 1998), have been structurally characterized. Recently, bidentate phosphine ligands, R2P(CH2)nPR2 (R=Ph; dppm, n=1; dppe, n=2; dppp, n=3), which have versatile coordination modes with transition metals, have attracted some attention (Fenske & Langetepe, 2001; Lemaitre et al., 2002; Saravanabharathi et al., 2002). However, only a few examples containing thiometalate and bidentate phosphines have been reported, such as (dppm)PtWS4 (Potvin et al., 1987) and (dppe)PdWS4 (Wu et al., 1997, hereafter nTWO). We sought to extend our investigations by using different diphosphine ligands to confirm whether the structure of the products was similar to those already reported, anticipating the formation of new cluster frameworks. For example, (dppm)2Pd4W2S8 (Zheng et al., 2000, hereafter nONE) has a windmill-shaped structure whereas (dppp)PdWS4 (Zheng et al., 2000, hereafter nTHREE) has a so-called `linear' (binuclear) structure.

An X-ray crystallographic study of the title compound [(dppb)PdWS4]·0.5DMF·0.5H2O, (I) (nFOUR) shows that the bond lengths and angles all fall within normal ranges. The Pd atom has a cis-quasi-square-planar coordination geometry, with two P-donors from dppb and two S-donors from WS42− (Fig. 1). The average deviation from the least-squares plane through atoms Pd1, P1, P2, S1 and S2 is 0.0533 (11) Å. The W···Pd separation [2.9457 (6) Å] is shorter than that found in the heteroselenometallic compound (Zhang et al., 2002) and is longer than that found in nTWO [2.887 (2) Å] and nTHREE [2.9259 (6) Å]. The corresponding increase in the W—S—Pd angles, viz. nTWO [mean 78.0 (2)°], nTHREE [mean 79.19 (7)°] and (I) [mean 80.27 (5)°], are in accordance with the trend, suggesting that the metal–metal interactions weaken when the alkyl chain length of the diphosphine increases.

The terminal W—S bond distances in (I) [mean 2.12 Å] are comparable to those reported in nTWO (mean 2.14 Å) and nTHREE (mean 2.15 Å). The bridge W—S (mean 2.21 Å) bond distances are also simlar to those found in nTWO (mean 2.23 Å) and nTHREE (mean 2.22 Å). The Sbridge—W—Sbridge angles are 105.7 (3), 104.88 (7) and 103.87 (7)° for nTWO, nTHREE and (I) respectively. These parameters suggest that the tetrathiotungstate anion structure is not perturbed significantly in any of these complexes.

As the alkyl chain length increases, the P—Pd—P angles increase from 86.1 (2)° for n=2, to 92.00 (5)° for n=3 and to 92.87 (7)° for n=4. Concomitant with the increasing P—Pd—P angle is a decrease in the S—Pd—S angle. Thus, correspondingly, the S—Pd—S angles are 98.3 (3), 96.98 (5) and 95.57 (7)°. Some puckering of the chains occurs as the less usual seven-membered chelate ring is formed. The Pd—P (mean 2.31 Å) and Pd—S (mean 2.35 Å) bond distances in (I) are within the range reported for [Pd(S2CNEt2){Ph2P(CH2)nPPh2}]+ (Exarchos et al., 2000) and (PPh3)Pd(S2C4N2) (Long et al., 1997), and similar to those found in nTWO and nTHREE.

There are only weak intermolecular hydrogen bonds between the (partially occupied) water and dimethylformamide molecules, and the neutral complex, namely C24—H24···O1 (2.48 Å) and O2—H2B···S4 (2.32 Å) (Table 2). Other noteworthy intermolecular close contacts are C3—H3···S3 (2.71 Å), C25—H25B···S4 (2.86 Å), C5—H5···O2 (2.47 Å) and (C6—H6···O2 (2.50 Å), with one intramolecular C8—H8···S1 (2.59 Å) close contact.

Experimental top

The title compound was obtained when (dppb)PdCl2 (Steffen et al., 1976) and (NH4)2WS4 [McDonald et al., 1983] were added to a solution (20 ml) of CH2Cl2 and CH3CN (1:1, v/v) and the mixture was stirred for 20 h. After filtration, the solid product was washed with CH2Cl2, distilled water, anhydrous ethanol and ether, respectively. Single yellow crystals were obtained by diffusing ethyl ether into DMF solution·Analysis calculated for C29.50H32.50N0.50OS4P2PdW: C 39.79, H 3.68, N 0.79%; found: C 39.75, H 3.65, N 0.76%.

Refinement top

The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses. H atoms were fixed geometrically and refined as riding, with C—H distances of 0.85–0.97 Å and Uiso values of 1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1]
[Figure 2]
Fig.1: The structure of the title compound, with displacement ellipsoids shown at the 30% probability level; the DMF and water molecules have been omitted for clarity.
Cis-{[1,4-(diphenylphosphine-P,P')butane] [µ-(tetrathiotungstate-S,S')]}Pd(II)0.5 N,N'-dimethylformamide 0.5hydrate top
Crystal data top
[PdWS4(C28H28P2)]·0.5C3H7NO·0.5H2OF(000) = 1740
Mr = 890.49Dx = 1.690 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 878 reflections
a = 9.178 (1) Åθ = 2.3–18.5°
b = 19.566 (2) ŵ = 4.15 mm1
c = 19.705 (2) ÅT = 293 K
β = 98.44 (1)°Block, yellow
V = 3500.2 (6) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6153 independent reflections
Radiation source: sealed tube4371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
SADABS (Bruker, 2000)
h = 1010
Tmin = 0.385, Tmax = 0.436k = 023
17162 measured reflectionsl = 023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.06P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
6153 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[PdWS4(C28H28P2)]·0.5C3H7NO·0.5H2OV = 3500.2 (6) Å3
Mr = 890.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.178 (1) ŵ = 4.15 mm1
b = 19.566 (2) ÅT = 293 K
c = 19.705 (2) Å0.3 × 0.2 × 0.2 mm
β = 98.44 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6153 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2000)
4371 reflections with I > 2σ(I)
Tmin = 0.385, Tmax = 0.436Rint = 0.033
17162 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.68 e Å3
6153 reflectionsΔρmin = 0.68 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 7.5178 (0.0036) x + 10.6432 (0.0103) y − 5.9180 (0.0118) z = 9.8903 (0.0089) * 0.0587 (0.0010) S1 * −0.0649 (0.0010) S2 * −0.0685 (0.0011) P1 * 0.0604 (0.0011) P2 * 0.0143 (0.0009) Pd1

Rms deviation of fitted atoms = 0.0569

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.28249 (3)0.815464 (16)0.172102 (13)0.04328 (12)
Pd10.41404 (6)0.81484 (3)0.31775 (2)0.03682 (15)
P10.5635 (2)0.73783 (10)0.38316 (9)0.0439 (5)
P20.39485 (19)0.88448 (9)0.41084 (8)0.0374 (4)
S10.4477 (2)0.74341 (10)0.22455 (9)0.0528 (5)
S20.2475 (2)0.88932 (10)0.25349 (9)0.0509 (5)
S30.0860 (3)0.76349 (17)0.13437 (11)0.0858 (9)
S40.3627 (3)0.86325 (12)0.08739 (10)0.0640 (6)
C10.7310 (9)0.7126 (5)0.3490 (4)0.060 (2)
C20.7943 (10)0.7548 (6)0.3042 (4)0.079 (3)
H20.74610.79460.28760.095*
C30.9293 (10)0.7378 (6)0.2839 (5)0.082 (3)
H30.96910.76530.25290.098*
C41.0044 (12)0.6794 (6)0.3102 (5)0.087 (3)
H41.09680.66860.29930.105*
C50.9362 (10)0.6377 (6)0.3536 (5)0.084 (3)
H50.98190.59700.36900.101*
C60.7963 (10)0.6553 (6)0.3758 (5)0.079 (3)
H60.75460.62840.40670.094*
C70.4690 (9)0.6596 (4)0.3984 (4)0.055 (2)
C80.4143 (10)0.6201 (5)0.3415 (5)0.073 (3)
H80.42690.63460.29780.088*
C90.3407 (10)0.5588 (5)0.3496 (5)0.076 (3)
H90.30540.53160.31200.091*
C100.3221 (10)0.5398 (5)0.4159 (5)0.074 (3)
H100.27240.49950.42240.089*
C110.3760 (11)0.5797 (5)0.4728 (5)0.079 (3)
H110.36440.56680.51710.095*
C120.4471 (10)0.6389 (5)0.4597 (5)0.069 (2)
H120.48240.66660.49690.083*
C130.3134 (8)0.8411 (4)0.4764 (4)0.052 (2)
C140.2235 (8)0.7844 (4)0.4584 (4)0.054 (2)
H140.21050.76790.41360.064*
C150.1536 (9)0.7530 (4)0.5080 (4)0.058 (2)
H150.09670.71420.49650.070*
C160.1665 (9)0.7771 (4)0.5712 (4)0.055 (2)
H160.11290.75670.60220.067*
C170.2576 (9)0.8321 (4)0.5928 (4)0.058 (2)
H170.27200.84610.63840.069*
C180.3267 (8)0.8655 (4)0.5435 (4)0.055 (2)
H180.38230.90460.55560.066*
C190.2821 (9)0.9613 (4)0.3967 (4)0.055 (2)
C200.1463 (9)0.9654 (4)0.4197 (4)0.057 (2)
H200.10990.92900.44250.069*
C210.0665 (9)1.0259 (4)0.4074 (4)0.059 (2)
H210.02361.02910.42350.070*
C220.1123 (10)1.0800 (4)0.3736 (4)0.060 (2)
H220.05371.11870.36550.071*
C230.2452 (10)1.0766 (4)0.3518 (4)0.056 (2)
H230.28001.11400.32980.067*
C240.3303 (9)1.0174 (4)0.3620 (4)0.054 (2)
H240.42011.01520.34550.065*
C250.6404 (8)0.7653 (4)0.4697 (4)0.055 (2)
H25A0.56130.78230.49270.066*
H25B0.68330.72600.49530.066*
C260.7590 (9)0.8213 (4)0.4708 (4)0.060 (2)
H26A0.79310.83360.51820.072*
H26B0.84230.80240.45210.072*
C270.7107 (8)0.8846 (4)0.4323 (4)0.056 (2)
H27A0.69460.87340.38380.068*
H27B0.79120.91710.43960.068*
C280.5715 (8)0.9205 (4)0.4493 (4)0.056 (2)
H28A0.57480.96790.43510.068*
H28B0.57500.92020.49880.068*
C290.632 (3)0.9769 (13)0.2556 (15)0.092 (7)0.50
H290.53680.96150.24200.111*0.50
C300.748 (2)0.9269 (13)0.1660 (13)0.108 (8)0.50
H30A0.68670.88690.16400.129*0.50
H30B0.84950.91360.17430.129*0.50
H30C0.72820.95110.12320.129*0.50
C310.861 (3)0.9842 (13)0.2487 (12)0.106 (8)0.50
H31A0.86621.01130.28950.127*0.50
H31B0.90521.00870.21470.127*0.50
H31C0.91310.94200.25920.127*0.50
N10.737 (2)0.9641 (10)0.2181 (10)0.082 (5)0.50
O10.6613 (17)1.0066 (8)0.3035 (8)0.090 (5)0.50
O20.9361 (15)0.5574 (7)0.4831 (8)0.108 (5)0.50
H2A1.01250.55390.51300.161*0.50
H2B0.85970.55440.50270.161*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0514 (2)0.0510 (2)0.02597 (16)0.00122 (16)0.00078 (12)0.00632 (14)
Pd10.0458 (3)0.0396 (3)0.0239 (3)0.0009 (3)0.0009 (2)0.0045 (2)
P10.0494 (11)0.0514 (12)0.0296 (9)0.0011 (9)0.0019 (8)0.0039 (8)
P20.0430 (10)0.0398 (10)0.0291 (9)0.0039 (8)0.0041 (7)0.0050 (8)
S10.0729 (14)0.0548 (12)0.0289 (9)0.0087 (10)0.0009 (9)0.0080 (9)
S20.0619 (12)0.0569 (12)0.0312 (9)0.0128 (10)0.0020 (8)0.0067 (9)
S30.0778 (17)0.141 (3)0.0375 (12)0.0344 (17)0.0059 (11)0.0186 (14)
S40.0789 (15)0.0746 (15)0.0389 (11)0.0089 (13)0.0103 (10)0.0012 (11)
C10.058 (5)0.077 (6)0.043 (5)0.016 (5)0.000 (4)0.011 (4)
C20.071 (6)0.116 (9)0.049 (5)0.003 (6)0.007 (5)0.013 (6)
C30.056 (6)0.126 (10)0.065 (6)0.004 (6)0.016 (5)0.019 (6)
C40.066 (6)0.127 (10)0.070 (7)0.009 (7)0.015 (5)0.015 (7)
C50.063 (6)0.120 (9)0.066 (6)0.014 (6)0.003 (5)0.022 (6)
C60.059 (6)0.122 (9)0.056 (6)0.011 (6)0.012 (4)0.017 (6)
C70.067 (5)0.054 (5)0.042 (4)0.005 (4)0.001 (4)0.002 (4)
C80.087 (7)0.060 (6)0.068 (6)0.015 (5)0.006 (5)0.002 (5)
C90.089 (7)0.072 (7)0.062 (6)0.014 (6)0.001 (5)0.007 (5)
C100.080 (6)0.060 (6)0.081 (7)0.009 (5)0.005 (5)0.004 (5)
C110.102 (8)0.061 (6)0.074 (6)0.017 (6)0.010 (6)0.001 (5)
C120.090 (7)0.058 (6)0.060 (6)0.009 (5)0.011 (5)0.000 (5)
C130.049 (5)0.064 (5)0.047 (5)0.006 (4)0.013 (4)0.002 (4)
C140.052 (5)0.063 (5)0.048 (5)0.007 (4)0.017 (4)0.001 (4)
C150.055 (5)0.069 (6)0.053 (5)0.003 (4)0.014 (4)0.001 (4)
C160.055 (5)0.067 (6)0.049 (5)0.009 (4)0.021 (4)0.005 (4)
C170.058 (5)0.067 (6)0.049 (5)0.013 (4)0.010 (4)0.002 (4)
C180.053 (5)0.066 (6)0.047 (5)0.013 (4)0.013 (4)0.003 (4)
C190.073 (6)0.047 (5)0.045 (4)0.007 (4)0.011 (4)0.002 (4)
C200.068 (5)0.046 (5)0.057 (5)0.010 (4)0.007 (4)0.002 (4)
C210.069 (6)0.054 (5)0.054 (5)0.011 (4)0.010 (4)0.004 (4)
C220.077 (6)0.046 (5)0.056 (5)0.008 (4)0.012 (4)0.003 (4)
C230.078 (6)0.043 (5)0.047 (4)0.003 (4)0.007 (4)0.007 (4)
C240.068 (5)0.046 (5)0.048 (4)0.006 (4)0.006 (4)0.007 (4)
C250.050 (5)0.062 (5)0.047 (4)0.003 (4)0.009 (4)0.003 (4)
C260.054 (5)0.068 (6)0.053 (5)0.001 (4)0.004 (4)0.007 (4)
C270.055 (5)0.062 (5)0.049 (5)0.013 (4)0.000 (4)0.007 (4)
C280.057 (5)0.063 (5)0.046 (5)0.001 (4)0.001 (4)0.007 (4)
C290.063 (15)0.089 (18)0.12 (2)0.010 (13)0.002 (16)0.022 (16)
C300.094 (17)0.098 (19)0.12 (2)0.029 (14)0.004 (16)0.029 (17)
C310.101 (19)0.100 (19)0.12 (2)0.002 (15)0.026 (17)0.007 (15)
N10.089 (14)0.080 (13)0.075 (12)0.011 (11)0.010 (11)0.006 (10)
O10.088 (11)0.098 (12)0.086 (10)0.002 (9)0.025 (9)0.016 (9)
O20.094 (10)0.098 (11)0.125 (13)0.029 (9)0.004 (9)0.029 (9)
Geometric parameters (Å, º) top
W1—S12.212 (2)C15—H150.9300
W1—S22.2170 (18)C16—C171.391 (11)
W1—S32.109 (2)C16—H160.9300
W1—S42.136 (2)C17—C181.398 (10)
Pd1—P12.301 (2)C17—H170.9300
Pd1—P22.3126 (18)C18—H180.9300
Pd1—S22.344 (2)C19—C201.389 (11)
Pd1—S12.3637 (19)C19—C241.399 (10)
P1—C71.806 (9)C20—C211.394 (10)
P1—C251.828 (7)C20—H200.9300
P1—C11.834 (9)C21—C221.350 (11)
P2—C131.797 (8)C21—H210.9300
P2—C191.823 (8)C22—C231.353 (11)
P2—C281.827 (7)C22—H220.9300
C1—C61.341 (13)C23—C241.396 (10)
C1—C21.398 (12)C23—H230.9300
C2—C31.397 (12)C24—H240.9300
C2—H20.9300C25—C261.543 (11)
C3—C41.395 (13)C25—H25A0.9700
C3—H30.9300C25—H25B0.9700
C4—C51.393 (14)C26—C271.485 (10)
C4—H40.9300C26—H26A0.9700
C5—C61.457 (12)C26—H26B0.9700
C5—H50.9300C27—C281.538 (10)
C6—H60.9300C27—H27A0.9700
C7—C121.318 (11)C27—H27B0.9700
C7—C81.393 (11)C28—H28A0.9700
C8—C91.396 (12)C28—H28B0.9700
C8—H80.9300C29—O11.11 (3)
C9—C101.392 (12)C29—N11.32 (3)
C9—H90.9300C29—H290.9300
C10—C111.395 (12)C30—N11.27 (3)
C10—H100.9300C30—H30A0.9601
C11—C121.373 (11)C30—H30B0.9600
C11—H110.9300C30—H30C0.9601
C12—H120.9300C31—N11.27 (2)
C13—C181.395 (10)C31—H31A0.9600
C13—C141.396 (11)C31—H31B0.9600
C14—C151.389 (10)C31—H31C0.9601
C14—H140.9300O2—H2A0.8501
C15—C161.320 (10)O2—H2B0.8501
S3—W1—S4108.09 (9)C13—C14—H14120.3
S3—W1—S1110.46 (11)C16—C15—C14121.2 (8)
S4—W1—S1110.67 (9)C16—C15—H15119.4
S3—W1—S2111.23 (9)C14—C15—H15119.4
S4—W1—S2112.53 (9)C15—C16—C17122.1 (8)
S1—W1—S2103.87 (7)C15—C16—H16118.9
S3—W1—Pd1123.27 (7)C17—C16—H16118.9
S4—W1—Pd1128.63 (6)C16—C17—C18117.6 (8)
S1—W1—Pd152.22 (5)C16—C17—H17121.2
S2—W1—Pd151.70 (5)C18—C17—H17121.2
P1—Pd1—P292.87 (7)C13—C18—C17120.8 (8)
P1—Pd1—S2175.97 (8)C13—C18—H18119.6
P2—Pd1—S286.71 (6)C17—C18—H18119.6
P1—Pd1—S185.01 (7)C20—C19—C24118.5 (7)
P2—Pd1—S1176.87 (7)C20—C19—P2120.9 (6)
S2—Pd1—S195.57 (7)C24—C19—P2120.5 (6)
P1—Pd1—W1132.37 (5)C19—C20—C21117.8 (8)
P2—Pd1—W1134.61 (5)C19—C20—H20121.1
S2—Pd1—W147.91 (5)C21—C20—H20121.1
S1—Pd1—W147.71 (5)C22—C21—C20123.8 (8)
C7—P1—C25102.9 (4)C22—C21—H21118.1
C7—P1—C1106.3 (4)C20—C21—H21118.1
C25—P1—C1101.0 (4)C21—C22—C23118.6 (8)
C7—P1—Pd1112.7 (3)C21—C22—H22120.7
C25—P1—Pd1116.6 (3)C23—C22—H22120.7
C1—P1—Pd1115.7 (3)C22—C23—C24120.4 (8)
C13—P2—C19102.3 (4)C22—C23—H23119.8
C13—P2—C28108.7 (4)C24—C23—H23119.8
C19—P2—C28101.2 (4)C23—C24—C19120.7 (8)
C13—P2—Pd1112.3 (3)C23—C24—H24119.6
C19—P2—Pd1118.2 (2)C19—C24—H24119.6
C28—P2—Pd1113.0 (3)C26—C25—P1113.4 (6)
W1—S1—Pd180.07 (7)C26—C25—H25A108.9
W1—S2—Pd180.40 (6)P1—C25—H25A108.9
C6—C1—C2122.7 (9)C26—C25—H25B108.9
C6—C1—P1115.5 (7)P1—C25—H25B108.9
C2—C1—P1121.4 (7)H25A—C25—H25B107.7
C3—C2—C1120.5 (10)C27—C26—C25115.3 (7)
C3—C2—H2119.8C27—C26—H26A108.4
C1—C2—H2119.8C25—C26—H26A108.4
C4—C3—C2120.0 (10)C27—C26—H26B108.4
C4—C3—H3120.0C25—C26—H26B108.4
C2—C3—H3120.0H26A—C26—H26B107.5
C5—C4—C3117.7 (10)C26—C27—C28117.7 (7)
C5—C4—H4121.1C26—C27—H27A107.9
C3—C4—H4121.1C28—C27—H27A107.9
C4—C5—C6122.8 (11)C26—C27—H27B107.9
C4—C5—H5118.6C28—C27—H27B107.9
C6—C5—H5118.6H27A—C27—H27B107.2
C1—C6—C5116.2 (10)C27—C28—P2116.6 (5)
C1—C6—H6121.9C27—C28—H28A108.1
C5—C6—H6121.9P2—C28—H28A108.1
C12—C7—C8118.8 (9)C27—C28—H28B108.1
C12—C7—P1123.6 (7)P2—C28—H28B108.1
C8—C7—P1117.5 (7)H28A—C28—H28B107.3
C7—C8—C9120.5 (9)O1—C29—N1118 (2)
C7—C8—H8119.7O1—C29—H29120.8
C9—C8—H8119.7N1—C29—H29120.8
C10—C9—C8117.6 (9)N1—C30—H30A112.6
C10—C9—H9121.2N1—C30—H30B101.9
C8—C9—H9121.2H30A—C30—H30B109.5
C9—C10—C11121.8 (9)N1—C30—H30C113.6
C9—C10—H10119.1H30A—C30—H30C109.5
C11—C10—H10119.1H30B—C30—H30C109.5
C12—C11—C10116.3 (9)N1—C31—H31A119.9
C12—C11—H11121.8N1—C31—H31B105.3
C10—C11—H11121.8H31A—C31—H31B109.5
C7—C12—C11124.9 (9)N1—C31—H31C102.7
C7—C12—H12117.6H31A—C31—H31C109.5
C11—C12—H12117.6H31B—C31—H31C109.5
C18—C13—C14118.6 (7)C31—N1—C30113 (2)
C18—C13—P2122.1 (7)C31—N1—C29111 (2)
C14—C13—P2119.0 (6)C30—N1—C29135 (2)
C15—C14—C13119.3 (7)H2A—O2—H2B109.5
C15—C14—H14120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···S4i0.852.322.737 (16)111
C24—H24···O10.932.483.410 (17)179
Symmetry code: (i) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[PdWS4(C28H28P2)]·0.5C3H7NO·0.5H2O
Mr890.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.178 (1), 19.566 (2), 19.705 (2)
β (°) 98.44 (1)
V3)3500.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.15
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2000)
Tmin, Tmax0.385, 0.436
No. of measured, independent and
observed [I > 2σ(I)] reflections
17162, 6153, 4371
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.05
No. of reflections6153
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.68

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
W1—S12.212 (2)Pd1—P12.301 (2)
W1—S22.2170 (18)Pd1—P22.3126 (18)
W1—S32.109 (2)Pd1—S22.344 (2)
W1—S42.136 (2)Pd1—S12.3637 (19)
S3—W1—S4108.09 (9)S3—W1—Pd1123.27 (7)
S3—W1—S1110.46 (11)S4—W1—Pd1128.63 (6)
S4—W1—S1110.67 (9)S1—W1—Pd152.22 (5)
S3—W1—S2111.23 (9)S2—W1—Pd151.70 (5)
S4—W1—S2112.53 (9)W1—S1—Pd180.07 (7)
S1—W1—S2103.87 (7)W1—S2—Pd180.40 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···S4i0.852.322.737 (16)110.8
C24—H24···O10.932.483.410 (17)178.5
Symmetry code: (i) x+1/2, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds