Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title dinuclear CuII complex, [Cu2(C7H8NO2)2(C7H9NO2)2](CH3COO)2, has been synthesized by the reaction of Cu(CH3COO)2·H2O with pdmH2 (pdmH2 is pyridine-2,6-diyldi­methanol) in the presence of tetra­butyl­ammonium hydro­xide. The title complex contains a centrosymmetric Cu2O2 core and each CuII atom has distorted octahedral geometry. Molecular [Cu2(pdmH)2(pdmH2)]2+ cations are connected by hydrogen bonds involving the CH3COO anions, forming one-dimensional chains along the a axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103009326/ga1016sup1.cif
Contains datablocks I, ga1016

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009326/ga1016Isup2.hkl
Contains datablock I

CCDC reference: 217122

Comment top

The 2,6-pyridyldimethanolate ligand functions as a bridge through its two O atoms to afford polynuclear metal complexes (Boskovic et al., 2002; Yoo et al., 2000). Our main strategy is to synthesize polynuclear copper complexes using N,O-donor hydroxyalkylpyridyl ligands, because these cluster complexes act as model complexes for active centers of many metalloenzymes (Agnus, 1988) and as supramolecular building blocks for promising magnetic materials (Del Sesto et al., 2000). Less attention has been given to copper complexes based on N,O-donor hydroxyalkylpyridyl ligands. Few mononuclear (Andac et al., 2002; Koman et al., 2000) and dinunclear complexes (Cheng et al., 2002) have been reported. Herein, we report the synthesis and X-ray structure of a new dinuclear CuII complex, [Cu2(pdmH)2(pdmH2)2](CH3COO)2, (I), from the reaction of Cu(acetate)2·H2O and pdmH2 (pdmH2 is pyridine-2.6-diyldimethanol) in the presence of tetrabutylammonium hydroxide.

The complex cation of the title compound comprises a [CuII22-O)2] core, in which the two µ2-O atoms belong to the bridging pdmH ligand. As shown in Fig. 1, each CuII atom is coordinated by neutral pdmH2 as a terminal tridentate ligand and anionic pdmH as a bridging bidentate ligand. The crystallographic inversion center is located in the middle of the [Cu2O2] rhombus. In the planar [Cu2O2] unit, the Cu—Cu separation and Cu—O—Cu angle are comparable with other known alkoxo-bridged [Cu2O2] complexes (Berti et al., 2003; Cheng et al., 2002; Graham et al., 2001). Each Cu atom has a highly distorted octahedral geometry (see Table 1), with acute µ-O—Cu—µ-O and N—Cu—O angles in the [Cu(pdmH2)] unit, which are similar to those found in other known distorted-octahedral CuO4N2 cores containing the pdmH2 ligand (Andac et al., 2002; Koman et al., 2000). The axial Cu1—O1 [2.358 (2) Å] and Cu1—O2 [2.360 (2) Å] distances are substantially longer than the equatorial Cu—O and Cu—N distances [1.909 (2)–2.094 (2) Å], which indicates severe Jahn–Teller distortion, despite the presumably restraining effects of the chelate rings. The equatorial distances are similar to the corresponding distances in the tetragonally elongated octahedral complex [Cu(C5H5NO)6](NO3)2·2H2O (Wood et al., 1984), while the axial Cu—O bond distances are shorter than the bond lengths of 2.478 (2) Å found in [Cu(C5H5NO)6](NO3)2·2H2O and 2.548 Å found in [Cu(3,2,3-tet)(ClO4)]n [3,2,3-tet is N,N'-bis(3-aminopropyl)ethylenediamine; Kwak et al., 2001], in which axial coordination ligands have no geometrical constraints. The O1—Cu1—O1' angle [147.54 (8) °] is significantly reduced from 180°.

It is hard to estimate quantitatively the elongation of the axial Cu—O bond that results from the Jahn–Teller effect and from geometrical restraints of the chelate ring. However, it is certain that there is conflict between stabilization from the Jahn–Teller effect and the chelate geometrical requirements, because the nature of the chelate ring tends to restrict the distortion of a complex (Huheey, 1983). Bond parameters of (I) are not different from those of various CuL2 compounds with the CuO4N2 chromophore (L = chelate ligand; Koman et al., 2000) and CuII compounds containing the pdmH fragment (Atkinson et al., 2000), whereas [Cu(pdmH2)2]2+ exhibits a Jahn–Teller contraction effect (Andac et al., 2002).

The adjacent dinuclear copper complex units are associated via hydrogen bonds between the hydroxide groups of the 2,6-pyridinedimethanol ligands and the acetate anions, as illustrated in Fig. 2 and Table 2. There is one carboxylate anion in the asymmetric unit. Carboxylate atom O5 interacts with two hydroxide H atoms of adjacent pdmH2 ligands, while atom O6 interacts with the H atom on the hydroxide O4 atom of pdmH, resulting in one-dimensional linear chains running parallel to the a axis.

Experimental top

To a green solution of Cu(CH3COO)2·H2O (0.3254 g, 1.63 mmol) in acetonitrile (30 ml), pdmH2 (0.56 g, 4 mmol) was added. The reaction mixture was stirred continuously, and then a solution of n-Bu4NOH (0.4 ml, 1.0 mol) in methanol was added dropwise, causing the color of the solution to change to bright blue. The solution was stirred for 4 h, then filtered and concentrated under reduced pressure. The resulting green solution was treated with hexane to afford a crystalline solid. Recrystallization from dichloromethane–hexane solution gave single crystals suitable for X-ray analysis. Analysis found: C 48.7, H 5.09, N 7.14%; C32H40Cu2N4O12 requires: C 48.1, H 5.04, N 7.00%.

Refinement top

All H atoms were introduced at calculated positions as riding atoms, with bond lengths of 0.93 (CH), 0.96 (CH3) and 0.82 Å (OH) and displacement parameters equal to 1.2 (CH and OH) or 1.5 (CH3) times that of the parent atom.

Computing details top

Data collection: MACH3 (Nonius, 1996); cell refinement: CELDIM (Nonius, 1996); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram of (I), with the atomic numbering scheme. Displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of (I), showing the linear chain structure formed by (dashed) hydrogen bonds.
(I) top
Crystal data top
[Cu2(C7H8NO2)2(C7H9NO2)2](C2H3O2)2F(000) = 828
Mr = 799.76Dx = 1.590 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 10.252 (1) Åθ = 19.9–31.3°
b = 12.1310 (7) ŵ = 1.34 mm1
c = 14.2226 (8) ÅT = 296 K
β = 109.150 (5)°Plate, green
V = 1671.0 (2) Å30.25 × 0.20 × 0.11 mm
Z = 2
Data collection top
Enraf–Nonius CAD4
diffractometer
2427 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
θ/2θ scansh = 1211
Absorption correction: ϕ-scan
(PSISCANS; North et al., 1968)
k = 014
Tmin = 0.761, Tmax = 0.883l = 016
3061 measured reflections3 standard reflections every 200 reflections
2938 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0497P)2 + 1.3695P]
where P = (Fo2 + 2Fc2)/3
2938 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu2(C7H8NO2)2(C7H9NO2)2](C2H3O2)2V = 1671.0 (2) Å3
Mr = 799.76Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.252 (1) ŵ = 1.34 mm1
b = 12.1310 (7) ÅT = 296 K
c = 14.2226 (8) Å0.25 × 0.20 × 0.11 mm
β = 109.150 (5)°
Data collection top
Enraf–Nonius CAD4
diffractometer
2427 reflections with I > 2σ(I)
Absorption correction: ϕ-scan
(PSISCANS; North et al., 1968)
Rint = 0.045
Tmin = 0.761, Tmax = 0.8833 standard reflections every 200 reflections
3061 measured reflections intensity decay: none
2938 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
2938 reflectionsΔρmin = 0.39 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.12725 (4)0.06953 (3)0.01222 (2)0.03014 (13)
N10.2848 (2)0.1092 (2)0.13593 (17)0.0301 (5)
N20.1721 (2)0.1286 (2)0.11208 (17)0.0317 (5)
O10.2989 (3)0.06113 (19)0.01535 (17)0.0479 (6)
H510.27260.12540.01030.058*
O20.0749 (2)0.2476 (2)0.05630 (16)0.0435 (6)
H520.00680.26330.04400.052*
O30.0311 (2)0.0142 (2)0.08976 (14)0.0412 (5)
O40.3993 (3)0.3664 (2)0.0467 (2)0.0552 (7)
H540.45840.35710.07330.066*
C10.3950 (3)0.0425 (3)0.1678 (2)0.0356 (7)
C20.4949 (4)0.0578 (3)0.2603 (3)0.0483 (9)
H20.57070.01090.28150.058*
C30.4809 (4)0.1428 (3)0.3202 (2)0.0498 (9)
H30.54620.15310.38270.060*
C40.3698 (3)0.2121 (3)0.2868 (2)0.0410 (8)
H40.35980.27120.32560.049*
C50.2722 (3)0.1928 (2)0.1939 (2)0.0325 (6)
C60.4126 (4)0.0490 (3)0.1018 (3)0.0485 (9)
H6A0.49410.03450.08340.058*
H6B0.42760.11760.13880.058*
C70.1464 (3)0.2655 (3)0.1581 (2)0.0410 (8)
H7A0.08560.25000.19630.049*
H7B0.17420.34210.16850.049*
C80.0922 (3)0.0758 (3)0.1937 (2)0.0379 (7)
C90.0992 (4)0.0977 (3)0.2883 (2)0.0518 (9)
H90.04330.06010.34400.062*
C100.1909 (4)0.1763 (4)0.2969 (3)0.0586 (10)
H100.19770.19270.35900.070*
C110.2719 (4)0.2304 (3)0.2145 (3)0.0489 (9)
H110.33340.28420.22040.059*
C120.2624 (3)0.2051 (3)0.1220 (2)0.0347 (7)
C130.0081 (4)0.0065 (3)0.1791 (2)0.0473 (9)
H13A0.09450.00170.23370.057*
H13B0.02850.08040.17830.057*
C140.3485 (3)0.2634 (3)0.0290 (2)0.0423 (8)
H14A0.29320.27400.01410.051*
H14B0.42600.21660.00610.051*
C150.7356 (3)0.3387 (3)0.0439 (2)0.0391 (7)
C160.7937 (4)0.4523 (3)0.0255 (3)0.0593 (10)
H16A0.78420.48730.08800.089*
H16B0.88970.44850.01370.089*
H16C0.74480.49410.00950.089*
O50.8080 (2)0.2609 (2)0.00571 (18)0.0466 (6)
O60.6187 (2)0.3253 (2)0.10525 (19)0.0561 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0313 (2)0.0350 (2)0.02149 (19)0.00561 (16)0.00519 (14)0.00086 (15)
N10.0312 (13)0.0322 (13)0.0257 (12)0.0046 (11)0.0075 (10)0.0001 (10)
N20.0329 (13)0.0358 (14)0.0274 (12)0.0047 (11)0.0110 (10)0.0024 (11)
O10.0580 (15)0.0382 (13)0.0407 (13)0.0062 (11)0.0066 (11)0.0033 (10)
O20.0386 (12)0.0558 (15)0.0341 (12)0.0096 (11)0.0093 (10)0.0002 (10)
O30.0449 (12)0.0550 (14)0.0211 (10)0.0175 (11)0.0073 (9)0.0028 (10)
O40.0607 (16)0.0444 (14)0.0710 (17)0.0090 (12)0.0360 (14)0.0033 (13)
C10.0311 (15)0.0391 (17)0.0330 (16)0.0044 (13)0.0056 (12)0.0042 (13)
C20.0373 (18)0.058 (2)0.0408 (19)0.0013 (16)0.0003 (14)0.0059 (17)
C30.0435 (19)0.064 (2)0.0312 (17)0.0178 (18)0.0024 (14)0.0030 (17)
C40.0477 (19)0.0468 (19)0.0266 (15)0.0151 (16)0.0096 (14)0.0061 (14)
C50.0359 (16)0.0333 (16)0.0296 (15)0.0099 (13)0.0128 (12)0.0002 (12)
C60.0406 (18)0.046 (2)0.050 (2)0.0051 (15)0.0029 (15)0.0026 (16)
C70.0488 (19)0.0374 (18)0.0333 (16)0.0034 (15)0.0085 (14)0.0079 (14)
C80.0461 (18)0.0413 (18)0.0279 (15)0.0023 (15)0.0144 (13)0.0007 (13)
C90.064 (2)0.068 (3)0.0259 (16)0.0087 (19)0.0174 (16)0.0037 (16)
C100.070 (3)0.078 (3)0.038 (2)0.000 (2)0.0322 (19)0.0087 (19)
C110.051 (2)0.059 (2)0.0446 (19)0.0023 (18)0.0263 (16)0.0084 (17)
C120.0338 (15)0.0385 (17)0.0346 (16)0.0053 (13)0.0150 (13)0.0050 (13)
C130.059 (2)0.055 (2)0.0287 (16)0.0155 (18)0.0148 (15)0.0080 (15)
C140.0389 (18)0.0459 (19)0.0447 (19)0.0055 (15)0.0172 (15)0.0030 (15)
C150.0348 (17)0.050 (2)0.0370 (17)0.0079 (15)0.0185 (14)0.0022 (15)
C160.063 (3)0.045 (2)0.065 (3)0.0003 (18)0.016 (2)0.0053 (18)
O50.0427 (13)0.0450 (14)0.0505 (14)0.0032 (11)0.0128 (11)0.0034 (11)
O60.0366 (13)0.0680 (18)0.0581 (16)0.0016 (12)0.0078 (12)0.0018 (13)
Geometric parameters (Å, º) top
Cu1—O31.909 (2)C4—C51.391 (4)
Cu1—O3i1.983 (2)C4—H40.9300
Cu1—N12.018 (2)C5—C71.506 (4)
Cu1—N22.094 (2)C6—H6A0.9700
Cu1—O12.358 (2)C6—H6B0.9700
Cu1—O22.360 (2)C7—H7A0.9700
Cu1—Cu1i3.0298 (7)C7—H7B0.9700
N1—C51.340 (4)C8—C91.396 (4)
N1—C11.341 (4)C8—C131.496 (5)
N2—C81.343 (4)C9—C101.372 (5)
N2—C121.351 (4)C9—H90.9300
O1—C61.397 (4)C10—C111.361 (5)
O1—O5ii2.636 (3)C10—H100.9300
O1—H510.8200C11—C121.385 (5)
O2—C71.408 (4)C11—H110.9300
O2—O5iii2.596 (3)C12—C141.504 (4)
O2—H520.8200C13—H13A0.9700
O3—C131.389 (4)C13—H13B0.9700
O3—Cu1i1.983 (2)C14—H14A0.9700
O4—C141.408 (4)C14—H14B0.9700
O4—O62.689 (4)C15—O61.240 (4)
O4—H540.8200C15—O51.264 (4)
C1—C21.390 (4)C15—C161.489 (5)
C1—C61.502 (5)C16—H16A0.9600
C2—C31.375 (5)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.369 (5)O6—H541.8839
C3—H30.9300
O3—Cu1—O3i77.79 (9)C5—C4—H4120.5
O3—Cu1—N1169.80 (9)N1—C5—C4121.8 (3)
O3i—Cu1—N192.23 (9)N1—C5—C7118.7 (3)
O3—Cu1—N281.17 (9)C4—C5—C7119.5 (3)
O3i—Cu1—N2158.71 (9)O1—C6—C1113.0 (3)
N1—Cu1—N2108.7 (1)O1—C6—H6A109.0
O3—Cu1—O1102.8 (1)C1—C6—H6A109.0
O3i—Cu1—O198.6 (1)O1—C6—H6B109.0
N1—Cu1—O176.39 (9)C1—C6—H6B109.0
N2—Cu1—O182.91 (9)H6A—C6—H6B107.8
O3—Cu1—O2108.24 (9)O2—C7—C5110.9 (3)
O3i—Cu1—O297.08 (9)O2—C7—H7A109.5
N1—Cu1—O274.75 (9)C5—C7—H7A109.5
N2—Cu1—O292.48 (9)O2—C7—H7B109.5
O1—Cu1—O2147.54 (8)C5—C7—H7B109.5
O3—Cu1—Cu1i39.77 (6)H7A—C7—H7B108.0
O3i—Cu1—Cu1i38.02 (6)N2—C8—C9122.2 (3)
N1—Cu1—Cu1i130.22 (7)N2—C8—C13116.7 (3)
N2—Cu1—Cu1i120.87 (7)C9—C8—C13121.1 (3)
O1—Cu1—Cu1i103.72 (6)C10—C9—C8118.1 (3)
O2—Cu1—Cu1i106.13 (6)C10—C9—H9121.0
C5—N1—C1119.3 (3)C8—C9—H9121.0
C5—N1—Cu1120.4 (2)C11—C10—C9120.1 (3)
C1—N1—Cu1119.7 (2)C11—C10—H10120.0
C8—N2—C12118.8 (3)C9—C10—H10120.0
C8—N2—Cu1109.1 (2)C10—C11—C12119.8 (3)
C12—N2—Cu1132.2 (2)C10—C11—H11120.1
C6—O1—Cu1110.35 (19)C12—C11—H11120.1
C6—O1—O5ii113.1 (2)N2—C12—C11121.0 (3)
Cu1—O1—O5ii109.62 (11)N2—C12—C14117.1 (3)
C6—O1—H51109.5C11—C12—C14121.9 (3)
Cu1—O1—H51114.5O3—C13—C8109.7 (3)
O5ii—O1—H515.0O3—C13—H13A109.7
C7—O2—Cu1109.09 (18)C8—C13—H13A109.7
C7—O2—O5iii114.9 (2)O3—C13—H13B109.7
Cu1—O2—O5iii107.11 (10)C8—C13—H13B109.7
C7—O2—H52109.5H13A—C13—H13B108.2
Cu1—O2—H52117.5O4—C14—C12113.8 (3)
O5iii—O2—H5210.4O4—C14—H14A108.8
C13—O3—Cu1113.64 (19)C12—C14—H14A108.8
C13—O3—Cu1i132.9 (2)O4—C14—H14B108.8
Cu1—O3—Cu1i102.21 (9)C12—C14—H14B108.8
C14—O4—O6106.7 (2)H14A—C14—H14B107.7
C14—O4—H54109.5O6—C15—O5123.4 (3)
O6—O4—H549.0O6—C15—C16118.9 (3)
N1—C1—C2121.1 (3)O5—C15—C16117.7 (3)
N1—C1—C6119.7 (3)C15—C16—H16A109.5
C2—C1—C6119.2 (3)C15—C16—H16B109.5
C3—C2—C1119.5 (3)H16A—C16—H16B109.5
C3—C2—H2120.2C15—C16—H16C109.5
C1—C2—H2120.2H16A—C16—H16C109.5
C4—C3—C2119.3 (3)H16B—C16—H16C109.5
C4—C3—H3120.3C15—O6—H54121.4
C2—C3—H3120.3C15—O6—O4118.1 (2)
C3—C4—C5118.9 (3)H54—O6—O43.9
C3—C4—H4120.5
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H51···O5ii0.821.822.636 (4)173
O2—H52···O5iii0.821.802.596 (4)165
O4—H54···O60.821.882.689 (4)167
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C7H8NO2)2(C7H9NO2)2](C2H3O2)2
Mr799.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.252 (1), 12.1310 (7), 14.2226 (8)
β (°) 109.150 (5)
V3)1671.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.25 × 0.20 × 0.11
Data collection
DiffractometerEnraf–Nonius CAD4
diffractometer
Absorption correctionϕ-scan
(PSISCANS; North et al., 1968)
Tmin, Tmax0.761, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
3061, 2938, 2427
Rint0.045
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.07
No. of reflections2938
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: MACH3 (Nonius, 1996), CELDIM (Nonius, 1996), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—O31.909 (2)Cu1—O12.358 (2)
Cu1—O3i1.983 (2)Cu1—O22.360 (2)
Cu1—N12.018 (2)Cu1—Cu1i3.0298 (7)
Cu1—N22.094 (2)
O3—Cu1—O3i77.79 (9)N1—Cu1—O176.39 (9)
O3—Cu1—N1169.80 (9)N2—Cu1—O182.91 (9)
O3i—Cu1—N192.23 (9)O3—Cu1—O2108.24 (9)
O3—Cu1—N281.17 (9)O3i—Cu1—O297.08 (9)
O3i—Cu1—N2158.71 (9)N1—Cu1—O274.75 (9)
N1—Cu1—N2108.7 (1)N2—Cu1—O292.48 (9)
O3—Cu1—O1102.8 (1)O1—Cu1—O2147.54 (8)
O3i—Cu1—O198.6 (1)Cu1—O3—Cu1i102.21 (9)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H51···O5ii0.821.8212.636 (4)173
O2—H52···O5iii0.821.7962.596 (4)165
O4—H54···O60.821.8842.689 (4)167
Symmetry codes: (ii) x+1, y, z; (iii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds