Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of two new sulfate complexes are reported, namely di-μ-sulfato-κ3O,O′:O′′-bis{aqua­[2,4,6-tris(2-pyridyl)-1,3,5-triazine-κ3N1,N2,N6]­cadmium(II)} tetra­hydrate, [Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O, and di-μ-sulfato-κ2O:O′-bis­[(2,2′:6′,2′′-ter­pyridine-κ3N1,N1′,N1′′)­zinc(II)] dihydrate, [Cd2(SO4)2(C15H11N3)2]·2H2O, the former being the first report of a Cd(tpt) complex [tpt is 2,4,6-tris(2-pyridyl)-1,3,5-triazine]. Both compounds crystallize in the space group P\overline 1 and form centrosymmetric dimeric structures. In the cadmium complex, the metal center is heptacoordinated in the form of a pentagonal bipyramid, while in the zinc complex, the metal ion is in a fivefold environment, the coordination geometry being intermediate between square pyramidal and trigonal bipyramidal. Packing of the dimers leads to the formation of planar structures strongly linked by hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103006462/ga1011sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006462/ga1011Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103006462/ga1011IIsup3.hkl
Contains datablock II

CCDC references: 214142; 214143

Comment top

The study of CdII and ZnII coordination compounds with sulfur oxoanions as ligands has been ongoing for many years. A number of structures, interesting from a stereochemical point of view, have been synthesized, as many of these anions (sulfite, sulfate, thiosulfate, tetrathionate, etc.) behave as versatile ligands when coordinating to d10 metal centers. The sulfate ion, in particular, is quite attractive in this respect; it has been reported as coordinating to transition metals through one, two or three O atoms, giving rise to monomeric, dimeric or polymeric structures and, in spite of extensive studies, the full binding capability of the anion does not seem to be exhausted.

A search in the November 2002 Version of the Cambridge Structural Database (CSD; Allen, 2002) returned 33 organometallic complexes in which the sulfate group is attached either to ZnII or CdII. The 16 ZnII complexes reported in the CSD are almost equally distributed between compounds displaying monomeric monodentate (M—O—SO3) and polymeric bridging (M—O—SO2—O—M) modes, with only three exceptions, which we will refer to by their CSD refcodes, viz. a dimer (MASVUX; Harvey et al., 2000), a one-dinemsional polymeric M—O—SO2—O—M structure (LOPNIN; Plater et al., 2000), where the sulfate group binds through three O atoms, two to the same metal center in a chelate fashion, and a polynuclear monomeric structure (VABMEK; Ali et al., 1998), in which the sulfate group binds to three different ZnII ions. Complexes with CdII, in contrast, show only a few examples of monomeric structures, the preferred coordination being polymeric of the M—O—SO2—O—M type. The only two exceptions [TIRXAT (Rahmani et al., 1996) and COXQUB (Huang et al., 1999)] organize as polymers built up by three O atoms, binding to three different metal centers. Continuing our research on this type of compounds, we report herein the structures of two new sulfate complexes, namely [Cd(SO4)(tpt)(H2O)·2H2O]2, (I), and [Zn(SO4)(tpy)·H2O]2, (II) [tpt is 2,4,6-tris(2-pyridyl)-1,3,5-triazine and tpy is 2,2':6',2''-terpyridine]. The former is the first report of a Cd(tpt) complex.

Both compounds crystallize in the space group P1 and form dimeric centrosymmetric structures. Complex (I) presents a heptacoordinated environment around the metal ion, formed by three N atoms from the tridentate tpt ligand, one aqua O atom and three O atoms from two symmetry-related sulfate ions, each of which binds to two metal centers, thus generating the dimeric structure (Fig. 1). In the two other Cd complexes incorporating tridentate sulfate ligands reported previously (TIRXAT and COXQUB), the anion binds to three different metal centers, generating polymeric structures. The coordination polyhedra in (I) can be described as a distorted pentagonal bipyramid, with the equatorial plane formed by atoms N1, N2, N3, O1 and O2 [maximum deviation of 0.04 (1) Å for N2], and angles subtended at the Cd site ranging from 58.6 (3) to 83.6 (3)° (ideal 72°). The axial sites are occupied by atoms O1W and O4(-x, −y, −z), and they subtend an angle of 166.1 (3)° to the cation.

The ligand is almost planar and acts in a tridentate manner, with the central Cd—N distance [2.337 (4) Å] being considerably shorter than the lateral Cd—N distances [2.437 (4) and 2.415 (4) Å]. Comparison with similar cases in the literature becomes difficult since there are no other reports of heptacoordinated cadmium(II) complexes with tpt or related tridentate ligands. There are, however, some examples where the heptacoordinated cation binds to a similar base [2,4-bis(4-pyridyl)-1,3,5-triazine] acting in a bridging manner, which display Cd—N distances in the range 2.28–2.32 Å (XESHOS, XESHUY and XESJAG; Barnett et al., 2001). The larger values in (I) could be attributed to the steric hindrance introduced by the planar tridentate bite.

Coordination does not affect the dimensions of the sulfate moiety; moreover, no significant differences are observed among the S—O distances involving either coordinated or non-coordinated O atoms. In fact, the mean S—O distance [1.463 (3) Å] is similar to that reported for the free anion [a search in the CSD gave a mean value of 1.472 (8) Å for 118 structures with R < 0.05]. The tpt ligand does not show any abnormal characteristics, with its three bound rings being basically coplanar; the atoms deviate from an ideal plane on average by less than 0.02 (1) Å. The terminal pyridyl ring deviates from planarity by less than 0.01 (1) Å and subtends an angle of 3.6 (1)° to the ideal plane. The structure is stabilized by hydrogen bonding with the two independent hydrate molecules (see Table 2).

The structure of (II) is also dimeric. The coordination is such that three N atoms from tpy and two O atoms from two symmetry-related sulfate ions complete a distorted fivefold environment around the metal ion (Fig. 2). The geometry lies midway between square pyramidal and trigonal bipyramidal. As in the case of (I), a considerable difference is observed in the Zn—N distances, that to the central N atom of tpy being the shortest [2.074 (3) versus 2.167 (3) and 2.201 (3) Å]. Similar results have been obtained in other pentacoordinated Zn–tpy complexes, viz. 2.209, 2.115 and 2.170 Å in DOLVIJ (Harrison et al., 1986), 2.181, 2.097 and 2.155 Å in OFABOM (Finn & Zubieta, 2002), and 2.169, 2.066 and 2.164 Å, and 2.158, 2.062 and 2.172 Å in XEZZIL (Hagrman & Zubieta, 2001).

As the zinc complex is pentacoordinated, larger valence bond values (Brown & Altermatt, 1985) for the Zn—O bonds are expected compared to those in the heptacoordinated cadmium complex, and, accordingly, a larger effect on the corresponding S—Ocoord distances of the sulfate group is predicted. In fact, the regular geometry displayed by the anion in (I) is lost in (II), where a clear difference is observed between the mean S—Ocoord and S—Ouncoord distances [1.490 (6) and 1.427 (6) Å, respectively]. Since (II) is the first reported structure containing pentacoordinated Zn cations bridged by sulfate anions in a Zn—O—SO2—O—Zn mode, it was not possible to make a fair comparison with other Zn complexes displaying analogous cation environments. We could trace, however, both tetra- and hexacoordinated Zn structures with a similar sulfate coordination. These structures clearly confirm the effect of bond valence; in the only tetracoordinated case of this sort reported so far (MASVUX; Harvey et al., 2000), the difference between the two types of S—O bonds is enhanced, being even larger than in the present pentacoordinated case [1.506 (6) and 1.439 (2) Å, respectively]; in the five hexacoordinated structures reported, in contrast, there is almost no trend differentiating the two kinds of bonds, their mean values being 1.47 (2) and 1.48 (3) Å, respectively, indistinguishable from each other and from the already mentioned average for the free ligand [1.472 (8) Å]. The geometry of the tpy ligand geometry and the internal parameters are unexceptional. There is one hydrogen-bonded crystallization water molecule in the structure (Table 4).

The packing is rather similar in both structures. As the dimers build up around a symmetry center, the planar molecules [tpt in (I) and tpy in (II)] are aligned parallel to each other. Cell symmetry preserves the orientation of the dimeric units, which stack with sets of parallel planes sharing one part of the double molecular units. This distribution (illustrated in Fig. 3) consists of a set of interleaved planar arrays at a nearly graphitic distance (3.4 Å). The linking agent is the extensive hydrogen-bonding network involving all the available water molecules acting as donors and, together with some N atoms of the organic ligand and sulfate O atoms, as acceptors, in some cases. The most important of these interactions are reported in Tables 2 and 4.

Experimental top

Both compounds were obtained by direct mixing of an aqueous solution of the cation sulfate (3CdSO4·8H2O or ZnSO4·7H2O), with a methanolic solution of the corresponding organic ligand (tpt or tpy), both in a 0.025 M concentration. A crop of tiny crystals appeared readily, but they were not found adequate for X-ray diffraction and dissolved (those of compound (I) in hot water and those of compound (II) in a 1:1 mixture of hot water and dimethylformamide). On standing, small specimens suitable for the structural study were collected.

Refinement top

H atoms were located at calculated positions, riding on their host atoms. Water H atoms were found in a difference Fourier synthesis and were refined with restrained O—H (0.80 Å) and H···H (> 1.30 Å) distances, and Uiso = 1.2Ueq(O).

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: MSC/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: XP in SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. Ellipsoid plot (50% probability level) showing the dimeric unit of (I).
[Figure 2] Fig. 2. Ellipsoid plot (50% probability level) showing the dimeric unit of (II).
[Figure 3] Fig. 3. Schematic packing view of (II) along the planes, which are seen as horizontal lines. Selected dimers are drawn in heavy full lines so as to distinguish them from the background.
(I) di-µ-sulfato-κ3O,O':O''-bis{aqua[2,4,6-tris(2-pyridyl)-1,3,5-triazine- κ3N1,N2,N6]cadmium(II)} tetrahydrate top
Crystal data top
[Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2OZ = 1
Mr = 1149.68F(000) = 576
Triclinic, P1Dx = 1.810 Mg m3
a = 8.870 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.640 (2) ÅCell parameters from 28 reflections
c = 12.685 (2) Åθ = 7.5–15°
α = 103.36 (2)°µ = 1.19 mm1
β = 98.79 (2)°T = 293 K
γ = 110.45 (2)°Prism, colorless
V = 1055.0 (4) Å30.20 × 0.12 × 0.05 mm
Data collection top
Rigaku AFC-7S
diffractometer
1996 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 510
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corp, 1988)
k = 1312
Tmin = 0.83, Tmax = 0.90l = 1513
5842 measured reflections2 standard reflections every 98 reflections
4010 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2))2]
where P = (Fo2 + 2Fc2)/3
4010 reflections(Δ/σ)max = 0.003
319 parametersΔρmax = 0.44 e Å3
13 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2Oγ = 110.45 (2)°
Mr = 1149.68V = 1055.0 (4) Å3
Triclinic, P1Z = 1
a = 8.870 (2) ÅMo Kα radiation
b = 10.640 (2) ŵ = 1.19 mm1
c = 12.685 (2) ÅT = 293 K
α = 103.36 (2)°0.20 × 0.12 × 0.05 mm
β = 98.79 (2)°
Data collection top
Rigaku AFC-7S
diffractometer
1996 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corp, 1988)
Rint = 0.039
Tmin = 0.83, Tmax = 0.902 standard reflections every 98 reflections
5842 measured reflections intensity decay: <2%
4010 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03813 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.44 e Å3
4010 reflectionsΔρmin = 0.40 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.09400 (5)0.00222 (4)0.18610 (3)0.03625 (13)
S0.00314 (17)0.20524 (14)0.04017 (11)0.0375 (4)
O10.1698 (4)0.0991 (3)0.0215 (3)0.0594 (11)
O20.1051 (4)0.1890 (3)0.0335 (3)0.0545 (11)
O30.0025 (4)0.3469 (3)0.0661 (3)0.0571 (11)
O40.0531 (4)0.1834 (3)0.1466 (3)0.0507 (10)
N10.3901 (5)0.1383 (4)0.2518 (3)0.0351 (11)
N20.1686 (5)0.1413 (4)0.3715 (3)0.0326 (11)
N30.1425 (5)0.0291 (4)0.2678 (3)0.0348 (11)
N40.3769 (4)0.3160 (4)0.5268 (3)0.0364 (11)
N50.0946 (5)0.2232 (4)0.5364 (3)0.0331 (11)
N60.1894 (5)0.3838 (4)0.7523 (3)0.0396 (12)
C10.4981 (7)0.1347 (5)0.1910 (4)0.0456 (15)
H1A0.45840.07500.11760.055*
C20.6676 (7)0.2155 (6)0.2314 (4)0.0494 (16)
H2A0.73970.20950.18630.059*
C30.7262 (6)0.3036 (5)0.3381 (5)0.0487 (16)
H3A0.83950.35880.36720.058*
C40.6154 (6)0.3106 (5)0.4037 (4)0.0430 (15)
H4A0.65280.37050.47700.052*
C50.4491 (6)0.2268 (5)0.3574 (4)0.0309 (13)
C60.3253 (6)0.2276 (5)0.4227 (4)0.0308 (13)
C70.2555 (6)0.3077 (5)0.5802 (4)0.0305 (13)
C80.0597 (6)0.1433 (5)0.4310 (4)0.0285 (13)
C90.1169 (6)0.0460 (5)0.3737 (4)0.0303 (13)
C100.2433 (6)0.0343 (5)0.4278 (4)0.0373 (15)
H10A0.22110.08690.50220.045*
C110.4025 (6)0.0575 (5)0.3683 (4)0.0434 (15)
H11A0.49050.06770.40180.052*
C120.4304 (6)0.1341 (5)0.2584 (5)0.0482 (16)
H12A0.53760.19660.21710.058*
C130.2995 (7)0.1179 (5)0.2101 (4)0.0432 (15)
H13A0.31940.16950.13570.052*
C140.3090 (6)0.3974 (5)0.6976 (4)0.0315 (13)
C150.4727 (6)0.4876 (5)0.7468 (4)0.0390 (14)
H15A0.55280.49340.70650.047*
C160.5164 (6)0.5707 (5)0.8589 (4)0.0489 (16)
H16A0.62600.63260.89460.059*
C170.3939 (7)0.5585 (5)0.9145 (4)0.0476 (16)
H17A0.41840.61360.98840.057*
C180.2333 (6)0.4631 (5)0.8591 (4)0.0462 (15)
H18A0.15150.45380.89820.055*
O1W0.1327 (4)0.1701 (3)0.2716 (3)0.0444 (10)
H1WA0.056 (4)0.204 (4)0.301 (4)0.053*
H1WB0.158 (5)0.237 (3)0.237 (3)0.053*
O2W0.8622 (5)0.5577 (5)0.6671 (3)0.0977 (16)
H2WA0.898 (4)0.536 (3)0.727 (2)0.117*
H2WB0.865 (4)0.636 (3)0.684 (3)0.117*
O3W0.1977 (4)0.6324 (3)0.1193 (3)0.0541 (12)
H3WA0.142 (5)0.541 (3)0.109 (4)0.065*
H3WB0.134 (5)0.647 (4)0.065 (3)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0368 (3)0.0375 (2)0.0315 (2)0.01291 (19)0.01062 (17)0.00717 (18)
S0.0427 (10)0.0338 (9)0.0334 (9)0.0145 (8)0.0095 (7)0.0071 (7)
O10.039 (2)0.058 (3)0.056 (3)0.007 (2)0.006 (2)0.004 (2)
O20.050 (3)0.063 (3)0.037 (2)0.017 (2)0.0170 (19)0.003 (2)
O30.079 (3)0.038 (2)0.051 (3)0.030 (2)0.005 (2)0.0043 (19)
O40.077 (3)0.048 (2)0.031 (2)0.031 (2)0.0064 (19)0.0128 (18)
N10.040 (3)0.038 (3)0.034 (3)0.018 (2)0.021 (2)0.011 (2)
N20.023 (3)0.033 (3)0.034 (3)0.004 (2)0.005 (2)0.009 (2)
N30.028 (3)0.033 (3)0.032 (3)0.005 (2)0.002 (2)0.005 (2)
N40.029 (3)0.040 (3)0.034 (3)0.009 (2)0.014 (2)0.006 (2)
N50.027 (3)0.035 (3)0.029 (3)0.007 (2)0.008 (2)0.003 (2)
N60.040 (3)0.038 (3)0.027 (3)0.009 (2)0.007 (2)0.004 (2)
C10.054 (4)0.043 (4)0.040 (4)0.015 (3)0.022 (3)0.013 (3)
C20.041 (4)0.064 (4)0.055 (4)0.024 (3)0.030 (3)0.024 (3)
C30.030 (4)0.055 (4)0.061 (4)0.013 (3)0.016 (3)0.019 (3)
C40.035 (4)0.042 (4)0.052 (4)0.014 (3)0.014 (3)0.015 (3)
C50.031 (3)0.031 (3)0.032 (3)0.012 (3)0.007 (3)0.015 (3)
C60.027 (3)0.034 (3)0.040 (4)0.014 (3)0.015 (3)0.021 (3)
C70.036 (4)0.026 (3)0.031 (3)0.011 (3)0.012 (3)0.011 (3)
C80.027 (3)0.029 (3)0.035 (3)0.013 (3)0.013 (3)0.013 (3)
C90.032 (4)0.029 (3)0.028 (3)0.011 (3)0.007 (3)0.008 (3)
C100.031 (4)0.038 (4)0.033 (3)0.009 (3)0.005 (3)0.003 (3)
C110.030 (4)0.054 (4)0.043 (4)0.015 (3)0.012 (3)0.010 (3)
C120.021 (3)0.047 (4)0.064 (5)0.003 (3)0.006 (3)0.013 (3)
C130.042 (4)0.035 (4)0.037 (4)0.010 (3)0.003 (3)0.002 (3)
C140.033 (4)0.028 (3)0.028 (3)0.009 (3)0.011 (3)0.001 (3)
C150.034 (4)0.044 (4)0.039 (4)0.015 (3)0.014 (3)0.012 (3)
C160.036 (4)0.051 (4)0.041 (4)0.008 (3)0.001 (3)0.002 (3)
C170.046 (4)0.045 (4)0.034 (4)0.009 (3)0.007 (3)0.004 (3)
C180.046 (4)0.047 (4)0.041 (4)0.012 (3)0.017 (3)0.011 (3)
O1W0.047 (3)0.040 (2)0.046 (3)0.015 (2)0.0190 (18)0.013 (2)
O2W0.084 (3)0.122 (4)0.056 (3)0.016 (3)0.019 (2)0.009 (3)
O3W0.050 (3)0.041 (2)0.057 (3)0.015 (2)0.000 (2)0.004 (2)
Geometric parameters (Å, º) top
Cd—O4i2.278 (3)C3—H3A0.9300
Cd—N22.337 (4)C4—C51.374 (5)
Cd—O22.354 (3)C4—H4A0.9300
Cd—O1W2.387 (4)C5—C61.475 (6)
Cd—O12.407 (3)C7—C141.471 (6)
Cd—N12.417 (4)C8—C91.492 (6)
Cd—N32.437 (4)C9—C101.386 (6)
S—O31.465 (3)C10—C111.374 (5)
S—O21.463 (3)C10—H10A0.9300
S—O11.464 (3)C11—C121.378 (6)
S—O41.465 (3)C11—H11A0.9300
O4—Cdi2.278 (3)C12—C131.371 (7)
N1—C11.323 (6)C12—H12A0.9300
N1—C51.347 (5)C13—H13A0.9300
N2—C81.316 (5)C14—C151.375 (6)
N2—C61.324 (5)C15—C161.402 (6)
N3—C91.334 (5)C15—H15A0.9300
N3—C131.348 (5)C16—C171.369 (6)
N4—C61.334 (5)C16—H16A0.9300
N4—C71.345 (5)C17—C181.381 (6)
N5—C81.330 (5)C17—H17A0.9300
N5—C71.336 (5)C18—H18A0.9300
N6—C181.334 (5)O1W—H1WA0.84 (2)
N6—C141.339 (6)O1W—H1WB0.86 (2)
C1—C21.386 (6)O2W—H2WA0.89 (2)
C1—H1A0.9300O2W—H2WB0.80 (2)
C2—C31.356 (6)O3W—H3WA0.89 (2)
C2—H2A0.9300O3W—H3WB0.90 (2)
C3—C41.392 (6)
O4i—Cd—N283.30 (12)C5—C4—C3118.3 (5)
O4i—Cd—O2100.08 (11)C5—C4—H4A120.8
N2—Cd—O2149.95 (13)C3—C4—H4A120.8
O4i—Cd—O1W166.07 (12)N1—C5—C4122.6 (5)
N2—Cd—O1W83.48 (13)N1—C5—C6116.2 (5)
O2—Cd—O1W89.24 (12)C4—C5—C6121.1 (5)
O4i—Cd—O1101.15 (12)N2—C6—N4124.7 (5)
N2—Cd—O1150.50 (12)N2—C6—C5116.7 (5)
O2—Cd—O158.61 (11)N4—C6—C5118.6 (4)
O1W—Cd—O192.53 (12)N5—C7—N4125.5 (5)
O4i—Cd—N190.00 (12)N5—C7—C14118.6 (5)
N2—Cd—N168.18 (14)N4—C7—C14115.9 (5)
O2—Cd—N1141.05 (12)N2—C8—N5125.6 (4)
O1W—Cd—N189.15 (12)N2—C8—C9116.0 (5)
O1—Cd—N182.59 (12)N5—C8—C9118.4 (5)
O4i—Cd—N385.05 (12)N3—C9—C10123.0 (5)
N2—Cd—N366.86 (14)N3—C9—C8114.9 (5)
O2—Cd—N383.59 (12)C10—C9—C8122.0 (5)
O1W—Cd—N385.74 (12)C11—C10—C9118.0 (5)
O1—Cd—N3142.20 (11)C11—C10—H10A121.0
N1—Cd—N3135.04 (13)C9—C10—H10A121.0
O3—S—O2111.2 (2)C10—C11—C12119.3 (5)
O3—S—O1110.57 (19)C10—C11—H11A120.4
O2—S—O1105.5 (2)C12—C11—H11A120.4
O3—S—O4107.48 (19)C13—C12—C11119.7 (5)
O2—S—O4110.7 (2)C13—C12—H12A120.1
O1—S—O4111.3 (2)C11—C12—H12A120.1
S—O1—Cd96.77 (17)N3—C13—C12121.6 (5)
S—O2—Cd99.08 (17)N3—C13—H13A119.2
S—O4—Cdi131.70 (19)C12—C13—H13A119.2
C1—N1—C5117.8 (5)N6—C14—C15123.0 (5)
C1—N1—Cd124.5 (4)N6—C14—C7115.8 (5)
C5—N1—Cd117.7 (3)C15—C14—C7121.2 (5)
C8—N2—C6115.9 (5)C14—C15—C16118.7 (5)
C8—N2—Cd122.9 (3)C14—C15—H15A120.7
C6—N2—Cd121.2 (4)C16—C15—H15A120.7
C9—N3—C13118.3 (5)C17—C16—C15118.4 (5)
C9—N3—Cd119.2 (3)C17—C16—H16A120.8
C13—N3—Cd122.5 (3)C15—C16—H16A120.8
C6—N4—C7114.2 (4)C16—C17—C18118.9 (5)
C8—N5—C7114.0 (4)C16—C17—H17A120.5
C18—N6—C14117.6 (4)C18—C17—H17A120.5
N1—C1—C2123.2 (5)N6—C18—C17123.4 (5)
N1—C1—H1A118.4N6—C18—H18A118.3
C2—C1—H1A118.4C17—C18—H18A118.3
C3—C2—C1118.7 (5)Cd—O1W—H1WA113 (3)
C3—C2—H2A120.7Cd—O1W—H1WB121 (3)
C1—C2—H2A120.7H1WA—O1W—H1WB109 (2)
C2—C3—C4119.4 (5)H2WA—O2W—H2WB112 (3)
C2—C3—H3A120.3H3WA—O3W—H3WB101 (2)
C4—C3—H3A120.3
O3—S—O1—Cd120.61 (18)Cd—N1—C1—C2179.3 (4)
O2—S—O1—Cd0.2 (2)N1—C1—C2—C30.5 (8)
O4—S—O1—Cd119.97 (18)C1—C2—C3—C40.1 (8)
O4i—Cd—O1—S94.93 (17)C2—C3—C4—C50.2 (8)
N2—Cd—O1—S168.9 (2)C1—N1—C5—C40.9 (7)
O2—Cd—O1—S0.16 (15)Cd—N1—C5—C4179.4 (3)
O1W—Cd—O1—S87.72 (18)C1—N1—C5—C6179.8 (4)
N1—Cd—O1—S176.54 (19)Cd—N1—C5—C60.6 (5)
N3—Cd—O1—S1.4 (3)C3—C4—C5—N10.3 (7)
O3—S—O2—Cd120.19 (17)C3—C4—C5—C6179.1 (5)
O1—S—O2—Cd0.2 (2)C8—N2—C6—N41.7 (7)
O4—S—O2—Cd120.37 (18)Cd—N2—C6—N4177.6 (3)
O4i—Cd—O2—S96.83 (19)C8—N2—C6—C5180.0 (4)
N2—Cd—O2—S169.1 (2)Cd—N2—C6—C50.6 (6)
O1W—Cd—O2—S93.59 (18)C7—N4—C6—N22.6 (7)
O1—Cd—O2—S0.16 (15)C7—N4—C6—C5179.2 (4)
N1—Cd—O2—S5.9 (3)N1—C5—C6—N20.0 (7)
N3—Cd—O2—S179.4 (2)C4—C5—C6—N2178.8 (4)
O3—S—O4—Cdi178.8 (2)N1—C5—C6—N4178.4 (4)
O2—S—O4—Cdi57.2 (3)C4—C5—C6—N42.8 (7)
O1—S—O4—Cdi59.9 (3)C8—N5—C7—N40.1 (7)
O4i—Cd—N1—C197.5 (4)C8—N5—C7—C14178.0 (4)
N2—Cd—N1—C1179.7 (4)C6—N4—C7—N51.7 (7)
O2—Cd—N1—C18.7 (5)C6—N4—C7—C14176.4 (4)
O1W—Cd—N1—C196.4 (4)C6—N2—C8—N50.2 (7)
O1—Cd—N1—C13.7 (4)Cd—N2—C8—N5179.6 (3)
N3—Cd—N1—C1179.5 (4)C6—N2—C8—C9179.8 (4)
O4i—Cd—N1—C582.2 (3)Cd—N2—C8—C90.8 (6)
N2—Cd—N1—C50.6 (3)C7—N5—C8—N20.9 (7)
O2—Cd—N1—C5171.7 (3)C7—N5—C8—C9179.4 (4)
O1W—Cd—N1—C583.9 (3)C13—N3—C9—C101.7 (7)
O1—Cd—N1—C5176.6 (3)Cd—N3—C9—C10178.1 (4)
N3—Cd—N1—C50.8 (4)C13—N3—C9—C8179.1 (4)
O4i—Cd—N2—C887.3 (4)Cd—N3—C9—C81.2 (5)
O2—Cd—N2—C811.3 (5)N2—C8—C9—N31.3 (6)
O1W—Cd—N2—C888.3 (4)N5—C8—C9—N3179.0 (4)
O1—Cd—N2—C8171.9 (3)N2—C8—C9—C10178.0 (5)
N1—Cd—N2—C8180.0 (4)N5—C8—C9—C101.7 (7)
N3—Cd—N2—C80.2 (4)N3—C9—C10—C111.2 (8)
O4i—Cd—N2—C692.0 (4)C8—C9—C10—C11179.6 (4)
O2—Cd—N2—C6169.4 (3)C9—C10—C11—C120.3 (8)
O1W—Cd—N2—C692.4 (4)C10—C11—C12—C130.0 (8)
O1—Cd—N2—C68.8 (5)C9—N3—C13—C121.3 (7)
N1—Cd—N2—C60.7 (3)Cd—N3—C13—C12178.4 (4)
N3—Cd—N2—C6179.5 (4)C11—C12—C13—N30.5 (8)
O4i—Cd—N3—C985.4 (3)C18—N6—C14—C150.5 (8)
N2—Cd—N3—C90.6 (3)C18—N6—C14—C7179.8 (4)
O2—Cd—N3—C9173.8 (3)N5—C7—C14—N61.5 (7)
O1W—Cd—N3—C984.1 (3)N4—C7—C14—N6176.8 (4)
O1—Cd—N3—C9172.7 (3)N5—C7—C14—C15179.2 (4)
N1—Cd—N3—C90.4 (4)N4—C7—C14—C152.5 (7)
O4i—Cd—N3—C1394.8 (4)N6—C14—C15—C160.8 (8)
N2—Cd—N3—C13179.7 (4)C7—C14—C15—C16179.9 (4)
O2—Cd—N3—C135.9 (4)C14—C15—C16—C170.1 (8)
O1W—Cd—N3—C1395.6 (4)C15—C16—C17—C181.3 (8)
O1—Cd—N3—C137.0 (5)C14—N6—C18—C170.8 (8)
N1—Cd—N3—C13179.9 (3)C16—C17—C18—N61.8 (8)
C5—N1—C1—C21.0 (8)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O3i0.89 (2)1.90 (2)2.784 (5)170 (4)
O3W—H3WB···O3ii0.90 (2)1.91 (2)2.800 (4)171 (4)
O2W—H2WB···O4iii0.80 (2)2.34 (3)2.956 (5)134 (3)
O2W—H2WA···O3iii0.89 (2)2.50 (3)3.206 (5)137 (3)
O1W—H1WA···N6iv0.84 (2)2.21 (3)2.881 (5)136 (4)
O1W—H1WB···O3Wv0.86 (2)1.96 (3)2.791 (5)162 (4)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x, y1, z.
(II) di-µ-sulfato-κ2O:O'-bis[(2,2':6',2''-terpyridine- κ3N1,N1',N1'')zinc(II)] dihydrate top
Crystal data top
[Cd2(SO4)2(C15H11N3)2]·2H2OZ = 1
Mr = 825.43F(000) = 420
Triclinic, P1Dx = 1.800 Mg m3
a = 9.700 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.755 (2) ÅCell parameters from 30 reflections
c = 10.324 (2) Åθ = 7.5–15°
α = 110.34 (2)°µ = 1.79 mm1
β = 116.59 (2)°T = 293 K
γ = 98.83 (2)°Prism, colorless
V = 761.4 (4) Å30.24 × 0.16 × 0.10 mm
Data collection top
Rigaku AFC-7S
diffractometer
2008 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
ω/2θ scansh = 1111
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corp, 1988)
k = 124
Tmin = 0.79, Tmax = 0.86l = 1112
4216 measured reflections2 standard reflections every 98 reflections
2890 independent reflections intensity decay: <2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0178P)2]
where P = (Fo2 + 2Fc2)/3
2890 reflections(Δ/σ)max = 0.004
234 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Cd2(SO4)2(C15H11N3)2]·2H2Oγ = 98.83 (2)°
Mr = 825.43V = 761.4 (4) Å3
Triclinic, P1Z = 1
a = 9.700 (2) ÅMo Kα radiation
b = 9.755 (2) ŵ = 1.79 mm1
c = 10.324 (2) ÅT = 293 K
α = 110.34 (2)°0.24 × 0.16 × 0.10 mm
β = 116.59 (2)°
Data collection top
Rigaku AFC-7S
diffractometer
2008 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corp, 1988)
Rint = 0.039
Tmin = 0.79, Tmax = 0.862 standard reflections every 98 reflections
4216 measured reflections intensity decay: <2%
2890 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.41 e Å3
2890 reflectionsΔρmin = 0.35 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.76317 (5)0.85637 (5)0.90932 (5)0.03576 (15)
S1.07896 (11)1.02598 (11)1.26397 (12)0.0368 (2)
O10.9204 (3)0.8918 (3)1.1321 (3)0.0613 (8)
O21.0570 (3)1.1164 (3)1.3913 (3)0.0640 (8)
O31.2096 (3)0.9697 (3)1.3206 (4)0.0722 (9)
O41.1123 (3)1.1279 (3)1.1934 (3)0.0431 (7)
N10.7047 (3)0.6013 (3)0.8129 (4)0.0379 (8)
N20.6833 (3)1.0545 (4)0.9480 (4)0.0388 (8)
N30.5075 (3)0.7529 (3)0.7496 (3)0.0340 (7)
C10.8151 (5)0.5312 (5)0.8482 (5)0.0472 (11)
H1A0.92600.59390.92860.057*
C20.7722 (5)0.3712 (5)0.7711 (5)0.0497 (11)
H2A0.85210.32640.79780.060*
C30.6085 (5)0.2790 (5)0.6538 (5)0.0488 (11)
H3A0.57600.17020.60020.059*
C40.4921 (5)0.3477 (4)0.6155 (5)0.0437 (10)
H4A0.38040.28660.53720.052*
C50.5458 (4)0.5102 (4)0.6965 (4)0.0334 (9)
C60.4318 (4)0.5967 (4)0.6603 (4)0.0338 (9)
C70.2630 (4)0.5270 (5)0.5452 (4)0.0442 (10)
H7A0.21070.41810.48440.053*
C80.1744 (5)0.6239 (5)0.5230 (5)0.0521 (11)
H8A0.06120.58020.44400.063*
C90.2521 (4)0.7834 (5)0.6163 (5)0.0486 (11)
H9A0.19180.84830.60230.058*
C100.4199 (4)0.8476 (5)0.7310 (5)0.0394 (9)
C110.5197 (5)1.0156 (5)0.8442 (5)0.0396 (9)
C120.4499 (5)1.1292 (5)0.8477 (5)0.0520 (11)
H12A0.33711.10200.77560.062*
C130.5517 (6)1.2840 (5)0.9610 (5)0.0565 (12)
H13A0.50691.36200.96530.068*
C140.7174 (5)1.3244 (5)1.0669 (5)0.0541 (11)
H14A0.78651.42841.14400.065*
C150.7781 (5)1.2044 (5)1.0550 (5)0.0487 (11)
H15A0.89091.23001.12540.058*
O1W0.8391 (4)0.7034 (3)0.2766 (4)0.0644 (10)
H1WA0.858 (5)0.757 (4)0.367 (4)0.077*
H1WB0.879 (5)0.757 (4)0.249 (5)0.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0322 (2)0.0287 (3)0.0355 (3)0.0065 (2)0.0160 (2)0.0095 (2)
S0.0342 (5)0.0292 (6)0.0348 (5)0.0071 (5)0.0155 (4)0.0091 (5)
O10.0527 (16)0.0488 (19)0.0361 (16)0.0186 (15)0.0050 (14)0.0154 (15)
O20.081 (2)0.059 (2)0.0511 (18)0.0186 (18)0.0463 (17)0.0136 (17)
O30.0602 (19)0.062 (2)0.104 (3)0.0366 (18)0.0391 (19)0.049 (2)
O40.0459 (15)0.0377 (16)0.0613 (18)0.0169 (14)0.0375 (14)0.0267 (15)
N10.0332 (17)0.0287 (19)0.0353 (18)0.0036 (15)0.0110 (15)0.0122 (16)
N20.0385 (18)0.0292 (19)0.045 (2)0.0117 (16)0.0248 (16)0.0120 (17)
N30.0322 (17)0.0309 (18)0.0364 (18)0.0084 (15)0.0197 (15)0.0132 (16)
C10.041 (2)0.047 (3)0.044 (2)0.016 (2)0.015 (2)0.022 (2)
C20.061 (3)0.044 (3)0.051 (3)0.024 (2)0.030 (2)0.027 (2)
C30.070 (3)0.028 (2)0.049 (3)0.016 (2)0.036 (2)0.015 (2)
C40.043 (2)0.031 (2)0.042 (2)0.002 (2)0.020 (2)0.011 (2)
C50.036 (2)0.028 (2)0.030 (2)0.0047 (18)0.0186 (18)0.0085 (18)
C60.035 (2)0.032 (2)0.031 (2)0.0081 (19)0.0188 (18)0.0126 (19)
C70.034 (2)0.040 (3)0.042 (2)0.001 (2)0.016 (2)0.014 (2)
C80.030 (2)0.062 (3)0.048 (3)0.010 (2)0.015 (2)0.022 (3)
C90.037 (2)0.056 (3)0.056 (3)0.022 (2)0.025 (2)0.028 (3)
C100.039 (2)0.045 (3)0.044 (2)0.018 (2)0.027 (2)0.023 (2)
C110.047 (2)0.036 (2)0.043 (2)0.019 (2)0.030 (2)0.016 (2)
C120.058 (3)0.051 (3)0.064 (3)0.030 (3)0.040 (2)0.030 (3)
C130.090 (4)0.046 (3)0.066 (3)0.043 (3)0.055 (3)0.034 (3)
C140.073 (3)0.034 (3)0.055 (3)0.019 (3)0.039 (3)0.015 (2)
C150.054 (3)0.035 (3)0.049 (3)0.011 (2)0.031 (2)0.011 (2)
O1W0.087 (2)0.041 (2)0.061 (2)0.0178 (19)0.041 (2)0.0203 (17)
Geometric parameters (Å, º) top
Zn—O4i1.952 (2)C4—C51.385 (5)
Zn—O11.970 (3)C4—H4A0.9300
Zn—N32.074 (3)C5—C61.487 (4)
Zn—N22.166 (3)C6—C71.382 (4)
Zn—N12.201 (3)C7—C81.381 (5)
S—O31.422 (3)C7—H7A0.9300
S—O21.434 (3)C8—C91.366 (5)
S—O11.483 (3)C8—H8A0.9300
S—O41.496 (2)C9—C101.375 (5)
O4—Zni1.952 (2)C9—H9A0.9300
N1—C51.337 (4)C10—C111.469 (5)
N1—C11.340 (4)C11—C121.383 (5)
N2—C151.327 (4)C12—C131.379 (5)
N2—C111.350 (4)C12—H12A0.9300
N3—C61.336 (4)C13—C141.367 (5)
N3—C101.353 (4)C13—H13A0.9300
C1—C21.373 (5)C14—C151.381 (5)
C1—H1A0.9300C14—H14A0.9300
C2—C31.371 (5)C15—H15A0.9300
C2—H2A0.9300O1W—H1WA0.81 (3)
C3—C41.377 (5)O1W—H1WB0.81 (3)
C3—H3A0.9300
O4i—Zn—O1107.54 (10)C3—C4—H4A120.9
O4i—Zn—N3115.24 (11)C5—C4—H4A120.9
O1—Zn—N3134.66 (11)N1—C5—C4122.4 (3)
O4i—Zn—N2107.83 (10)N1—C5—C6114.9 (3)
O1—Zn—N2104.58 (12)C4—C5—C6122.7 (3)
N3—Zn—N276.52 (12)N3—C6—C7121.3 (4)
O4i—Zn—N191.75 (10)N3—C6—C5113.7 (3)
O1—Zn—N190.39 (11)C7—C6—C5124.9 (3)
N3—Zn—N174.44 (11)C8—C7—C6118.0 (4)
N2—Zn—N1149.88 (11)C8—C7—H7A121.0
O3—S—O2112.92 (19)C6—C7—H7A121.0
O3—S—O1109.95 (17)C9—C8—C7120.4 (4)
O2—S—O1108.10 (17)C9—C8—H8A119.8
O3—S—O4110.37 (16)C7—C8—H8A119.8
O2—S—O4107.69 (16)C8—C9—C10119.6 (4)
O1—S—O4107.63 (15)C8—C9—H9A120.2
S—O1—Zn128.49 (16)C10—C9—H9A120.2
S—O4—Zni135.32 (15)N3—C10—C9120.0 (4)
C5—N1—C1118.1 (3)N3—C10—C11113.9 (3)
C5—N1—Zn115.7 (2)C9—C10—C11126.1 (4)
C1—N1—Zn125.9 (2)N2—C11—C12121.1 (4)
C15—N2—C11119.1 (3)N2—C11—C10116.8 (3)
C15—N2—Zn127.0 (3)C12—C11—C10122.0 (4)
C11—N2—Zn113.8 (3)C13—C12—C11118.3 (4)
C6—N3—C10120.6 (3)C13—C12—H12A120.8
C6—N3—Zn120.9 (2)C11—C12—H12A120.8
C10—N3—Zn118.4 (2)C14—C13—C12120.9 (4)
N1—C1—C2123.0 (4)C14—C13—H13A119.5
N1—C1—H1A118.5C12—C13—H13A119.5
C2—C1—H1A118.5C13—C14—C15117.3 (4)
C3—C2—C1118.4 (4)C13—C14—H14A121.3
C3—C2—H2A120.8C15—C14—H14A121.3
C1—C2—H2A120.8N2—C15—C14123.1 (4)
C2—C3—C4119.9 (4)N2—C15—H15A118.4
C2—C3—H3A120.0C14—C15—H15A118.4
C4—C3—H3A120.0H1WA—O1W—H1WB110 (3)
C3—C4—C5118.2 (4)
O3—S—O1—Zn126.3 (2)C1—N1—C5—C41.6 (5)
O2—S—O1—Zn110.1 (2)Zn—N1—C5—C4175.1 (3)
O4—S—O1—Zn6.0 (3)C1—N1—C5—C6178.0 (3)
O4i—Zn—O1—S53.6 (2)Zn—N1—C5—C64.5 (4)
N3—Zn—O1—S146.17 (19)C3—C4—C5—N11.9 (5)
N2—Zn—O1—S60.8 (2)C3—C4—C5—C6177.7 (3)
N1—Zn—O1—S145.6 (2)C10—N3—C6—C70.8 (5)
O3—S—O4—Zni26.6 (3)Zn—N3—C6—C7175.4 (2)
O2—S—O4—Zni150.3 (2)C10—N3—C6—C5179.7 (3)
O1—S—O4—Zni93.4 (2)Zn—N3—C6—C54.1 (4)
O4i—Zn—N1—C5110.8 (2)N1—C5—C6—N30.6 (4)
O1—Zn—N1—C5141.7 (3)C4—C5—C6—N3179.1 (3)
N3—Zn—N1—C55.0 (2)N1—C5—C6—C7180.0 (3)
N2—Zn—N1—C520.8 (4)C4—C5—C6—C70.3 (5)
O4i—Zn—N1—C162.1 (3)N3—C6—C7—C81.0 (5)
O1—Zn—N1—C145.4 (3)C5—C6—C7—C8178.4 (3)
N3—Zn—N1—C1177.9 (3)C6—C7—C8—C91.9 (6)
N2—Zn—N1—C1166.3 (3)C7—C8—C9—C101.0 (6)
O4i—Zn—N2—C1570.2 (3)C6—N3—C10—C91.7 (5)
O1—Zn—N2—C1544.1 (3)Zn—N3—C10—C9174.6 (3)
N3—Zn—N2—C15177.3 (3)C6—N3—C10—C11176.9 (3)
N1—Zn—N2—C15161.6 (3)Zn—N3—C10—C116.8 (4)
O4i—Zn—N2—C11106.7 (3)C8—C9—C10—N30.7 (6)
O1—Zn—N2—C11139.0 (2)C8—C9—C10—C11177.7 (4)
N3—Zn—N2—C115.8 (2)C15—N2—C11—C120.0 (5)
N1—Zn—N2—C1121.5 (4)Zn—N2—C11—C12177.2 (3)
O4i—Zn—N3—C679.6 (3)C15—N2—C11—C10178.6 (3)
O1—Zn—N3—C679.5 (3)Zn—N2—C11—C104.2 (4)
N2—Zn—N3—C6176.8 (3)N3—C10—C11—N21.4 (5)
N1—Zn—N3—C64.9 (2)C9—C10—C11—N2179.9 (3)
O4i—Zn—N3—C1096.7 (2)N3—C10—C11—C12177.2 (3)
O1—Zn—N3—C10104.2 (3)C9—C10—C11—C121.3 (6)
N2—Zn—N3—C106.9 (2)N2—C11—C12—C130.3 (6)
N1—Zn—N3—C10178.8 (3)C10—C11—C12—C13178.2 (3)
C5—N1—C1—C20.3 (5)C11—C12—C13—C140.1 (6)
Zn—N1—C1—C2173.1 (3)C12—C13—C14—C150.4 (6)
N1—C1—C2—C30.7 (6)C11—N2—C15—C140.6 (6)
C1—C2—C3—C40.3 (6)Zn—N2—C15—C14177.3 (3)
C2—C3—C4—C50.9 (6)C13—C14—C15—N20.7 (6)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1ii0.81 (3)2.17 (3)2.957 (4)166 (4)
O1W—H1WA···O2i0.81 (3)2.04 (3)2.834 (4)169 (4)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y, z1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cd2(SO4)2(C16H12N6)2(H2O)2]·4H2O[Cd2(SO4)2(C15H11N3)2]·2H2O
Mr1149.68825.43
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)8.870 (2), 10.640 (2), 12.685 (2)9.700 (2), 9.755 (2), 10.324 (2)
α, β, γ (°)103.36 (2), 98.79 (2), 110.45 (2)110.34 (2), 116.59 (2), 98.83 (2)
V3)1055.0 (4)761.4 (4)
Z11
Radiation typeMo KαMo Kα
µ (mm1)1.191.79
Crystal size (mm)0.20 × 0.12 × 0.050.24 × 0.16 × 0.10
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Rigaku AFC-7S
diffractometer
Absorption correctionψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corp, 1988)
ψ scan
(MSC/AFC Diffractometer Control Software; Molecular Structure Corp, 1988)
Tmin, Tmax0.83, 0.900.79, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
5842, 4010, 1996 4216, 2890, 2008
Rint0.0390.039
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.056, 0.88 0.040, 0.073, 0.85
No. of reflections40102890
No. of parameters319234
No. of restraints133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.400.41, 0.35

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1994), XP in SHELXTL/PC.

Selected bond lengths (Å) for (I) top
Cd—O4i2.278 (3)Cd—N32.437 (4)
Cd—N22.337 (4)S—O31.465 (3)
Cd—O22.354 (3)S—O21.463 (3)
Cd—O1W2.387 (4)S—O11.464 (3)
Cd—O12.407 (3)S—O41.465 (3)
Cd—N12.417 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O3W—H3WA···O3i0.89 (2)1.90 (2)2.784 (5)170 (4)
O3W—H3WB···O3ii0.90 (2)1.91 (2)2.800 (4)171 (4)
O2W—H2WB···O4iii0.80 (2)2.34 (3)2.956 (5)134 (3)
O2W—H2WA···O3iii0.89 (2)2.50 (3)3.206 (5)137 (3)
O1W—H1WA···N6iv0.84 (2)2.21 (3)2.881 (5)136 (4)
O1W—H1WB···O3Wv0.86 (2)1.96 (3)2.791 (5)162 (4)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x, y1, z.
Selected bond lengths (Å) for (II) top
Zn—O4i1.952 (2)S—O31.422 (3)
Zn—O11.970 (3)S—O21.434 (3)
Zn—N32.074 (3)S—O11.483 (3)
Zn—N22.166 (3)S—O41.496 (2)
Zn—N12.201 (3)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1ii0.81 (3)2.17 (3)2.957 (4)166 (4)
O1W—H1WA···O2i0.81 (3)2.04 (3)2.834 (4)169 (4)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x, y, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds