Download citation
Download citation
link to html
The palladium(II) centre in the title compound, [PdCl2(C21H18N2OS)], is coordinated to the pyridyl N atom and to the thia­zolidinone S atom of the 5-benzyl-3-phenyl-2-(2-pyridyl)­thia­zolidin-4-one ligand, resulting in a five-membered chelate ring. Two cis-chloro ligands complete the square-planar coordination environment of the metal. Although the geometry at the Pd centre is essentially planar, the N—Pd—S bite angle of 85.20 (8)° causes deviations in the cis angles from the ideal value of 90°. Opposite enantiomers form one-dimensional chains in the cell via a short S...O intermolecular interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102019224/ga1000sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019224/ga1000Isup2.hkl
Contains datablock I

CCDC reference: 201258

Comment top

Thiazolidinones, which have been studied extensively because of their diverse biological activities, can be prepared with a variety of ring substituents in quantitative yields and with high stereoselectivities (de Vries et al., 1997; Tanabe et al., 1995; Singh et al., 1981). Accordingly, thiazolidinone derivatives are good candidates for ligands in transition metal-mediated asymmetric transformations. Pyridyl-substituted thiazolidin-4-ones, in particular, have been used as chiral ligands in the copper(I)-catalyzed asymmetric conjugate addition of diethylzinc to enones (de Vries et al., 1997). However, the hypothetical thiazolidinone metal intermediates were not isolated, and the coordination mode(s) of the ligands are unknown. In fact, few crystallographic studies of transition metal thiazolidin-4-one complexes have been carried out; a search of the Cambridge Structural Database (CSD, Version 5.23, April 2002; Allen & Kennard, 1993) revealed only eight structures, none involving Pd. Here, we investigate the metal-ligand binding in the title pyridyl-substituted thiazolidin-4-one PdII complex, (I). \sch

A view of compound (I), showing the coordination geometry at the Pd centre, is presented in Fig. 1, and selected geometric parameters are listed in Table 1. The centrosymmetric space group (P21/c) requires that both the 1R,2S,5S– (Fig. 1) and 1S,2R,5R-enantiomers are present in the crystal structure.

The thiazolidinone ligand is coordinated to the Pd in a bidentate fashion, via the pyridyl N atom [Pd1—N21 2.046 (3) Å] and the thiazolidinone S atom [Pd1—S1 2.2605 (9) Å]. Two cis-chloro ligands at Pd—Cl distances of 2.2883 (10) and 2.3046 (10) Å complete the somewhat distorted square-planar Pd coordination environment. The cis angles, which sum to 360.0 (1)°, deviate by up to 5° from the ideal 90° values. All the metal-ligand distances are consistent with literature values, for example chloro(2-{6-[2-(methoxycarbonyl)phenylthiomethyl-κS]pyridin-2-yl-κN}- 3-oxybenzothiophene-κO)palladium(II) [Teixidor et al., 1992; Pd—N 2.033 (2), Pd—S 2.261 (2) and Pd—Cl 2.301 (2) Å].

The bite angle of the bidentate N,S-ligand [N21—Pd1—S1 85.20 (8)°] is within the range observed for similar systems, including η3-allyl[2-(phenylthiomethyl-κS)pyridine-κN]palladium(II) perchlorate [Canovese et al., 1998; N—Pd—S 84.2 (2)°]. The resulting five-membered PdC2NS chelate ring has an envelope conformation, with an S1—C2—C22—N21 torsion angle of 35.3 (4)°. For comparison, the S—C—C—N torsion angle in the related uncoordinated 5-methyl-3-phenyl-2-(2-pyridyl)thiazolidin-4-one molecule, (II), is 88.5 (17)° (Spek et al., 1999). Presumably, coordination of the ligand to the metal forces the pyridyl N atom to bend toward the Pd centre to satisfy the preferred square-planar geometry.

The mean plane of the thiazolidin-4-one ring in (I) is nearly orthogonal to the Pd coordination plane [86.70 (13)°]. The pyridyl and benzyl substituents are positioned on opposite sides of the ring (trans relative to one another), directed toward and away from the metal, respectively. The thiazolidinone ring adopts a twisted conformation, and the bond distances and angles within the ring are similar to those observed in (II).

An analysis of the crystal packing in (I) reveals that opposite enantiomers are linked into one-dimensional chains by several close contacts along the c direction (Table 2). The S1···O41i [symmetry code: (i) x, 1/2 - y, 1/2 + z] contact of 3.084 (3) Å is considerably shorter than the sum of the van der Waals radii (3.3 Å; Bondi, 1964). Several studies examining similar short contacts between nucleophiles (X) and divalent sulfur (Y—S—Z) have suggested that they arise from electrostatic interactions between Sδ+ and Xδ- (Allen et al., 1997; Burling & Goldstein, 1993; Rosenfield et al. 1977). In a metal-coordinated Y—S—Z system, electron donation from S to the metal cation should enhance this Sδ+···Xδ- interaction. The geometry of the contact observed in (I) is consistent with the directional in-plane approach of Xδ-, along the extension of either the Y—S or Z—S bond, which has been reported for Y—S—Z systems (Rosenfield et al. 1977). The carbonyl atom O41i approaches S1 at a direction of 31.8 (2)° relative to the C2—S1—C5 plane, on the side opposite to the coordinated Pd; the C2—S1···O41i and C5—S1···O41i angles are 66.24 (12) and 140.16 (12)°, respectively.

The relatively short C2···O41i and H2···O41i contacts could possibly be considered as soft C—H···O hydrogen bonds (Desiraju & Steiner, 1999); however, the small C2—H2···O41i angle of 101° implies that these interactions are fortuitous consequences of the packing determined by Sδ+···Oδ-.

Table 2. Intermolecular contact distances (Å).

Experimental top

The title complex was synthesized by the addition of [Pd(CH3CN)2Cl2] to one equivalent of the 5-benzyl-3-phenyl-2-(2-pyridyl)thiazolidin-4-one ligand in CH2Cl2. Yellow needles of (I) suitable for X-ray analysis were obtained by diffusing hexane into the CH2Cl2 solution.

Refinement top

X-ray data were collected using Zr-filtered Mo Kα radiation with a collimator broad enough to accommodate the larger than usual maximum crystal dimension of 0.63 mm (Alexander & Smith, 1962). A correction for absorption was not performed, since 360° ψ scans showed only minor variations in transmission (Tmin 0.822, Tmax 0.883). All H atoms were constrained to idealized geometries and allowed to ride on their parent C atoms, with C—H distances of 0.95, 0.99 or 1.00 Å, and Uiso(H) = 1.2Ueq(C). A check for solvent accessible voids with PLATON (Spek, 2002) detected a small void (49 Å3) surrounded by hydrophobic groups at (1/2,0,0). However, no residual electron density was found in that region.

Computing details top

Data collection: Locally modified CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 (de Boer & Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A view of the 1R,2S,5S-enantiomer of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radii.
[5-Benzyl-3-phenyl-2-(2-pyridyl-κN)thiazolidin-4-one-κS]dichloropalladium(II) top
Crystal data top
[Pd(C21H18N2OS)Cl2]F(000) = 1048
Mr = 523.73Dx = 1.672 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.1270 (8) Åθ = 11.6–13.9°
b = 15.622 (1) ŵ = 1.26 mm1
c = 12.470 (1) ÅT = 198 K
β = 106.28 (1)°Needle, yellow
V = 2080.8 (3) Å30.63 × 0.17 × 0.10 mm
Z = 4
Data collection top
Enraf-Nonius CAD-4T
diffractometer
Rint = 0.053
Radiation source: rotating anodeθmax = 27.5°, θmin = 1.9°
Graphite monochromatorh = 1414
ω/2θ scansk = 200
9970 measured reflectionsl = 1616
4771 independent reflections3 standard reflections every 60 min
3403 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.023P)2]
where P = (Fo2 + 2Fc2)/3
4771 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Pd(C21H18N2OS)Cl2]V = 2080.8 (3) Å3
Mr = 523.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.1270 (8) ŵ = 1.26 mm1
b = 15.622 (1) ÅT = 198 K
c = 12.470 (1) Å0.63 × 0.17 × 0.10 mm
β = 106.28 (1)°
Data collection top
Enraf-Nonius CAD-4T
diffractometer
Rint = 0.053
9970 measured reflections3 standard reflections every 60 min
4771 independent reflections intensity decay: none
3403 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
4771 reflectionsΔρmin = 0.53 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.20425 (3)0.11547 (2)0.25146 (2)0.02197 (8)
Cl10.13183 (9)0.00762 (6)0.15559 (9)0.0356 (2)
Cl20.40956 (9)0.07525 (7)0.27647 (9)0.0386 (3)
S10.00350 (8)0.15622 (6)0.22744 (7)0.02046 (19)
O410.0296 (2)0.26460 (17)0.05610 (19)0.0282 (6)
N30.0431 (3)0.29596 (18)0.1289 (2)0.0213 (7)
N210.2495 (3)0.22848 (19)0.3361 (2)0.0224 (7)
C20.0356 (3)0.2714 (2)0.2404 (3)0.0197 (7)
H20.03430.30250.25950.024*
C40.0158 (3)0.2462 (2)0.0415 (3)0.0217 (8)
C50.0635 (3)0.1626 (2)0.0762 (3)0.0219 (8)
H50.02860.11450.04130.026*
C220.1574 (3)0.2869 (2)0.3278 (3)0.0209 (8)
C230.1754 (3)0.3595 (2)0.3940 (3)0.0272 (9)
H230.10860.39880.38770.033*
C240.2899 (4)0.3749 (3)0.4687 (3)0.0335 (9)
H240.30350.42440.51470.040*
C250.3855 (4)0.3161 (3)0.4753 (3)0.0391 (11)
H250.46630.32560.52500.047*
C260.3621 (3)0.2439 (3)0.4089 (3)0.0328 (9)
H260.42760.20370.41480.039*
C310.1164 (3)0.3697 (2)0.1163 (3)0.0220 (8)
C320.0747 (3)0.4512 (2)0.1258 (3)0.0285 (9)
H320.00490.46060.13790.034*
C330.1515 (4)0.5201 (3)0.1173 (3)0.0302 (9)
H330.12390.57690.12360.036*
C340.2668 (4)0.5064 (3)0.0999 (3)0.0313 (9)
H340.31930.55360.09590.038*
C350.3060 (4)0.4238 (3)0.0882 (4)0.0383 (11)
H350.38440.41420.07390.046*
C360.2310 (4)0.3549 (3)0.0974 (3)0.0334 (10)
H360.25830.29810.09070.040*
C510.2060 (3)0.1548 (2)0.0411 (3)0.0253 (8)
H51A0.23750.16440.04050.030*
H51B0.22900.09570.05640.030*
C520.2696 (3)0.2166 (2)0.0997 (3)0.0241 (8)
C530.2799 (3)0.3031 (2)0.0704 (3)0.0284 (9)
H530.25000.32240.01030.034*
C540.3329 (4)0.3608 (3)0.1275 (3)0.0361 (10)
H540.33820.41950.10690.043*
C550.3785 (4)0.3338 (3)0.2146 (3)0.0376 (10)
H550.41450.37360.25430.045*
C560.3705 (3)0.2482 (3)0.2425 (3)0.0369 (10)
H560.40250.22880.30130.044*
C570.3162 (3)0.1900 (3)0.1860 (3)0.0306 (9)
H570.31110.13130.20670.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01905 (13)0.02304 (14)0.02319 (14)0.00111 (13)0.00487 (10)0.00264 (14)
Cl10.0336 (5)0.0258 (5)0.0430 (6)0.0028 (4)0.0037 (5)0.0065 (5)
Cl20.0222 (5)0.0361 (6)0.0565 (7)0.0059 (4)0.0092 (5)0.0021 (5)
S10.0195 (4)0.0233 (5)0.0181 (4)0.0015 (4)0.0043 (4)0.0006 (4)
O410.0324 (14)0.0358 (17)0.0171 (13)0.0017 (12)0.0080 (11)0.0022 (12)
N30.0267 (16)0.0201 (16)0.0181 (15)0.0020 (13)0.0078 (13)0.0008 (13)
N210.0196 (14)0.0281 (18)0.0182 (15)0.0052 (13)0.0032 (12)0.0026 (13)
C20.0216 (18)0.0210 (19)0.0163 (17)0.0003 (14)0.0051 (14)0.0005 (15)
C40.0199 (17)0.026 (2)0.0203 (19)0.0014 (16)0.0078 (15)0.0003 (16)
C50.0247 (18)0.023 (2)0.0173 (18)0.0006 (15)0.0048 (15)0.0031 (15)
C220.0212 (18)0.027 (2)0.0162 (17)0.0017 (15)0.0072 (14)0.0013 (15)
C230.0260 (19)0.032 (2)0.0235 (19)0.0007 (16)0.0074 (16)0.0020 (17)
C240.035 (2)0.034 (2)0.027 (2)0.0089 (19)0.0016 (17)0.0040 (19)
C250.029 (2)0.049 (3)0.033 (2)0.011 (2)0.0012 (19)0.001 (2)
C260.0205 (18)0.044 (3)0.031 (2)0.0013 (18)0.0018 (17)0.006 (2)
C310.0243 (18)0.025 (2)0.0170 (17)0.0002 (15)0.0058 (14)0.0004 (15)
C320.0243 (19)0.032 (2)0.029 (2)0.0045 (17)0.0088 (17)0.0002 (18)
C330.036 (2)0.024 (2)0.029 (2)0.0000 (18)0.0074 (18)0.0016 (18)
C340.036 (2)0.028 (2)0.031 (2)0.0092 (18)0.0113 (19)0.0040 (18)
C350.027 (2)0.039 (3)0.054 (3)0.0016 (19)0.020 (2)0.010 (2)
C360.032 (2)0.026 (2)0.047 (3)0.0061 (18)0.020 (2)0.0055 (19)
C510.0224 (18)0.026 (2)0.0222 (19)0.0014 (16)0.0019 (15)0.0017 (17)
C520.0154 (17)0.027 (2)0.026 (2)0.0053 (15)0.0002 (15)0.0032 (17)
C530.027 (2)0.030 (2)0.026 (2)0.0035 (17)0.0051 (17)0.0017 (18)
C540.034 (2)0.033 (2)0.039 (2)0.0059 (18)0.0067 (19)0.0018 (19)
C550.031 (2)0.047 (3)0.035 (2)0.009 (2)0.0082 (19)0.006 (2)
C560.028 (2)0.057 (3)0.027 (2)0.002 (2)0.0087 (18)0.001 (2)
C570.0215 (19)0.037 (2)0.030 (2)0.0011 (17)0.0008 (17)0.0059 (19)
Geometric parameters (Å, º) top
Pd1—N212.046 (3)C31—C321.372 (5)
Pd1—S12.2605 (9)C31—C361.380 (5)
Pd1—Cl12.2883 (10)C32—C331.396 (5)
Pd1—Cl22.3046 (10)C32—H320.9500
S1—C21.833 (4)C33—C341.377 (5)
N3—C21.467 (4)C33—H330.9500
N3—C41.350 (4)C34—C351.383 (5)
C4—C51.518 (5)C34—H340.9500
S1—C51.826 (3)C35—C361.386 (5)
O41—C41.217 (4)C35—H350.9500
N3—C311.446 (4)C36—H360.9500
N21—C261.347 (4)C51—C521.503 (5)
N21—C221.354 (4)C51—H51A0.9900
C2—C221.502 (4)C51—H51B0.9900
C2—H21.0000C52—C571.382 (5)
C5—C511.527 (4)C52—C531.396 (5)
C5—H51.0000C53—C541.379 (5)
C22—C231.384 (5)C53—H530.9500
C23—C241.372 (5)C54—C551.387 (6)
C23—H230.9500C54—H540.9500
C24—C251.390 (6)C55—C561.378 (6)
C24—H240.9500C55—H550.9500
C25—C261.380 (6)C56—C571.388 (5)
C25—H250.9500C56—H560.9500
C26—H260.9500C57—H570.9500
S1···O41i3.084 (3)H2···O41i2.51
C2···O41i2.884 (4)
N21—Pd1—S185.20 (8)C25—C26—H26118.9
S1—Pd1—Cl188.70 (4)C32—C31—C36121.4 (4)
Cl1—Pd1—Cl291.84 (4)C32—C31—N3121.0 (3)
N21—Pd1—Cl294.26 (8)C36—C31—N3117.5 (3)
N21—Pd1—Cl1173.87 (8)C31—C32—C33118.6 (4)
S1—Pd1—Cl2179.44 (4)C31—C32—H32120.7
C5—S1—C292.91 (16)C33—C32—H32120.7
N3—C2—S1103.5 (2)C34—C33—C32120.7 (4)
C4—N3—C2118.2 (3)C34—C33—H33119.7
N3—C4—C5113.2 (3)C32—C33—H33119.7
C4—C5—S1105.5 (2)C33—C34—C35119.7 (4)
O41—C4—N3124.6 (3)C33—C34—H34120.1
O41—C4—C5122.2 (3)C35—C34—H34120.1
C5—S1—Pd1104.73 (12)C34—C35—C36120.1 (4)
C2—S1—Pd195.98 (11)C34—C35—H35120.0
C4—N3—C31122.1 (3)C36—C35—H35120.0
C31—N3—C2119.7 (3)C31—C36—C35119.4 (4)
C26—N21—C22118.1 (3)C31—C36—H36120.3
C26—N21—Pd1123.4 (3)C35—C36—H36120.3
C22—N21—Pd1118.1 (2)C52—C51—C5113.7 (3)
N3—C2—C22111.5 (3)C52—C51—H51A108.8
C22—C2—S1109.6 (2)C5—C51—H51A108.8
N3—C2—H2110.7C52—C51—H51B108.8
C22—C2—H2110.7C5—C51—H51B108.8
S1—C2—H2110.7H51A—C51—H51B107.7
C4—C5—C51113.9 (3)C57—C52—C53118.3 (4)
C51—C5—S1112.5 (2)C57—C52—C51121.0 (4)
C4—C5—H5108.2C53—C52—C51120.6 (3)
C51—C5—H5108.2C54—C53—C52120.8 (4)
S1—C5—H5108.2C54—C53—H53119.6
N21—C22—C23121.8 (3)C52—C53—H53119.6
N21—C22—C2117.2 (3)C53—C54—C55120.6 (4)
C23—C22—C2121.0 (3)C53—C54—H54119.7
C24—C23—C22120.0 (4)C55—C54—H54119.7
C24—C23—H23120.0C56—C55—C54118.7 (4)
C22—C23—H23120.0C56—C55—H55120.6
C23—C24—C25118.3 (4)C54—C55—H55120.6
C23—C24—H24120.8C55—C56—C57120.9 (4)
C25—C24—H24120.8C55—C56—H56119.5
C26—C25—C24119.4 (4)C57—C56—H56119.5
C26—C25—H25120.3C52—C57—C56120.6 (4)
C24—C25—H25120.3C52—C57—H57119.7
N21—C26—C25122.3 (4)C56—C57—H57119.7
N21—C26—H26118.9
Pd1—N21—C22—C211.3 (4)N3—C2—C22—C2399.0 (4)
S1—C2—C22—N2135.3 (4)S1—C2—C22—C23146.9 (3)
Pd1—S1—C2—C2237.5 (2)N21—C22—C23—C241.6 (5)
N21—Pd1—S1—C225.07 (13)C2—C22—C23—C24176.1 (3)
S1—Pd1—N21—C2212.3 (2)C22—C23—C24—C250.2 (6)
C4—N3—C2—S123.6 (4)C23—C24—C25—C261.4 (6)
C2—N3—C4—C59.8 (4)C22—N21—C26—C250.7 (6)
N3—C4—C5—S19.4 (4)Pd1—N21—C26—C25171.8 (3)
C2—S1—C5—C419.3 (2)C24—C25—C26—N211.0 (6)
C5—S1—C2—N323.6 (2)C4—N3—C31—C32108.6 (4)
N21—Pd1—S1—C5119.68 (14)C2—N3—C31—C3274.0 (4)
Cl1—Pd1—S1—C560.91 (12)C4—N3—C31—C3673.1 (4)
Cl1—Pd1—S1—C2155.52 (11)C2—N3—C31—C36104.3 (4)
S1—Pd1—N21—C26160.1 (3)C36—C31—C32—C330.8 (6)
Cl2—Pd1—N21—C2620.0 (3)N3—C31—C32—C33177.5 (3)
Cl2—Pd1—N21—C22167.5 (2)C31—C32—C33—C340.1 (6)
C4—N3—C2—C22141.4 (3)C32—C33—C34—C351.4 (6)
C31—N3—C2—C2236.2 (4)C33—C34—C35—C362.0 (6)
C31—N3—C2—S1153.9 (2)C32—C31—C36—C350.3 (6)
Pd1—S1—C2—N381.6 (2)N3—C31—C36—C35178.1 (3)
C5—S1—C2—C22142.6 (2)C34—C35—C36—C311.1 (6)
C31—N3—C4—O4111.8 (5)C4—C5—C51—C5267.0 (4)
C2—N3—C4—O41170.8 (3)S1—C5—C51—C5253.0 (4)
C31—N3—C4—C5167.7 (3)C5—C51—C52—C57103.2 (4)
O41—C4—C5—C5166.1 (4)C5—C51—C52—C5374.9 (4)
N3—C4—C5—C51114.5 (3)C57—C52—C53—C541.3 (5)
O41—C4—C5—S1170.0 (3)C51—C52—C53—C54176.9 (3)
Pd1—S1—C5—C477.6 (2)C52—C53—C54—C550.7 (6)
C2—S1—C5—C51105.4 (3)C53—C54—C55—C560.4 (6)
Pd1—S1—C5—C51157.6 (2)C54—C55—C56—C571.0 (6)
C26—N21—C22—C232.0 (5)C53—C52—C57—C560.7 (5)
Pd1—N21—C22—C23170.9 (3)C51—C52—C57—C56177.5 (3)
C26—N21—C22—C2175.8 (3)C55—C56—C57—C520.4 (6)
N3—C2—C22—N2178.7 (4)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pd(C21H18N2OS)Cl2]
Mr523.73
Crystal system, space groupMonoclinic, P21/c
Temperature (K)198
a, b, c (Å)11.1270 (8), 15.622 (1), 12.470 (1)
β (°) 106.28 (1)
V3)2080.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.63 × 0.17 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9970, 4771, 3403
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.075, 1.00
No. of reflections4771
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.53

Computer programs: Locally modified CAD-4 Software (Enraf-Nonius, 1989), SET4 (de Boer & Duisenberg, 1984), HELENA (Spek, 1997), DIRDIF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), PLATON.

Selected geometric parameters (Å, º) top
Pd1—N212.046 (3)N3—C21.467 (4)
Pd1—S12.2605 (9)N3—C41.350 (4)
Pd1—Cl12.2883 (10)C4—C51.518 (5)
Pd1—Cl22.3046 (10)S1—C51.826 (3)
S1—C21.833 (4)O41—C41.217 (4)
S1···O41i3.084 (3)H2···O41i2.51
C2···O41i2.884 (4)
N21—Pd1—S185.20 (8)C4—N3—C2118.2 (3)
S1—Pd1—Cl188.70 (4)N3—C4—C5113.2 (3)
Cl1—Pd1—Cl291.84 (4)C4—C5—S1105.5 (2)
N21—Pd1—Cl294.26 (8)O41—C4—N3124.6 (3)
N21—Pd1—Cl1173.87 (8)O41—C4—C5122.2 (3)
S1—Pd1—Cl2179.44 (4)C5—S1—Pd1104.73 (12)
C5—S1—C292.91 (16)C2—S1—Pd195.98 (11)
N3—C2—S1103.5 (2)
Pd1—N21—C22—C211.3 (4)C4—N3—C2—S123.6 (4)
S1—C2—C22—N2135.3 (4)C2—N3—C4—C59.8 (4)
Pd1—S1—C2—C2237.5 (2)N3—C4—C5—S19.4 (4)
N21—Pd1—S1—C225.07 (13)C2—S1—C5—C419.3 (2)
S1—Pd1—N21—C2212.3 (2)C5—S1—C2—N323.6 (2)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds