research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Stereochemistry of the methyl­­idene-bridged quinazoline-iso­quinoline alkaloid 3-{[6,7-dimeth­­oxy-1-(4-nitro­phen­yl)-1,2,3,4-tetra­hydro­isoquinolin-2-yl]methyl­­idene}-1,2,3,9-tetra­hydro­pyrrolo­[2,1-b]quinazolin-9-one methanol monosolvate

CROSSMARK_Color_square_no_text.svg

aLaboratory of Thermophysics of Multiphase Systems, Institute of Ion-Plasm and Laser Technologies named after U.A. Arifov, Academy of Sciences of Uzbekistan,100125, Durmon yuli st. 33, Tashkent, Uzbekistan, bS.Yunusov Institute of Chemistry of Plant Substances, Academy of Science of, Uzbekistan, Mirzo Ulugbek Str. 77, 100170 Tashkent, Uzbekistan, and cInstitute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
*Correspondence e-mail: a_tojiboev@yahoo.com

Edited by L. Fabian, University of East Anglia, England (Received 5 February 2020; accepted 19 May 2020; online 22 May 2020)

Two potentially bioactive fragments, namely a tricyclic quinazoline derivative with an exocyclic alkene moiety and a substituted iso­quinoline, are coupled to give 3-{[6,7-dimeth­oxy-1-(4-nitro­phen­yl)-1,2,3,4-tetra­hydro­isoquinolin-2-yl]methyl­idene}-1,2,3,9-tetra­hydro­pyrrolo­[2,1-b]quinazolin-9-one. The target product crystallizes as a methanol solvate, C29H26N4O5·CH4O, and is E configured. The alternative Z isomer would necessarily imply either considerable twist about the central double bond or very unfavourable intra­molecular contacts between sterically more demanding substituents. The main residue and the co-crystallized solvent mol­ecule aggregate to discrete pairs via a classical O—H⋯O hydrogen bond with a distance of 2.8581 (7) Å between the methanol OH donor and the quinazolinone O=C acceptor.

1. Chemical context

The synthesis of the title compound, 3-[1′-(4′′-nitro­phen­yl)-6,7-dimeth­oxy-1,2,3,4-tetra­hydro­iso­quinoline-2-yl)]-methyl­idene-1,2,3,9-tetra­hydropyrrolo­[2,1-b]quinazolin-9-one meth­anol solvate, (III) is shown in Fig. 1[link]. It combines two well-known bioactive scaffolds, namely a tricyclic quinazoline derivative (I)[link] and a substituted iso­quinoline (II).

[Figure 1]
Figure 1
Chemical scheme showing the synthesis of the title compound

Tricyclic quinazoline alkaloids are frequently encountered in nature (Michael, 1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]; Eguchi, 2006[Eguchi, S. (2006). Topics in Heterocyclic Chemistry, Vol. 6, pp. 113-156. Berlin, Heidelberg: Springer-Verlag.]; Shakhidoyatov et al., 2014[Shakhidoyatov, K. M. & Elmuradov, B. Z. (2014). Chem. Nat. Compd. 50, 781-800.]). The reason for the wide inter­est in studying these substances lies in their multi-facetted biological activity: they have been associated with anti­bacterial (Jantova et al., 2004[Jantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratisl.), 59, 741-752.]), tumor growth-inhibiting (Aoyagi et al., 1999[Aoyagi, Y., Kobunai, T., Utsugi, T., Oh-hara, T. & Yamada, Y. (1999). Jpn. J. Cancer Res. 90, 578-587.]; Kuneš et al., 2000[Kuneš, J., Bažant, J., Pour, M., Waisser, K., Šlosárek, M. & Janota, J. (2000). Farmaco, 55, 725-729.]; Foster et al., 1999[Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. (1999). Science, 286, 2507-2510.]; Forsch et al., 2002[Forsch, R. A., Wright, J. E. & Rosowsky, A. (2002). Bioorg. Med. Chem. 10, 2067-2076.]; Abdel-Jalil et al., 2005[Abdel-Jalil, R. J., Aldoqum, H. M., Ayoub, M. T. & Voelter, W. (2005). Heterocycles, 65, 2061-2070.]), anti­fungal (Dandia et al., 2005[Dandia, A., Singh, R. & Sarawgi, P. (2005). J. Fluor. Chem. 126, 307-312.]; Nikhil et al., 2011[Nikhil, P., Kalpana, M., Pratik, P. & Manoj, R. (2011). Int. J. PharmTech Res. 3, 540-548.]), anti­hyperglycemic (Ram et al., 2003[Ram, V. J., Farhanullah, Tripathi, B. K. & Srivastava, A. K. (2003). Bioorg. Med. Chem. 11, 2439-2444.]) and anti-inflammatory (Yeh-Long et al., 2004[Chen, Y. L., Chen, I. L., Lu, C. M., Tzeng, C. C., Tsao, L. T. & Wang, J. P. (2004). Bioorg. Med. Chem. 12, 387-392.]) activity. They have been used as a bronchodilator (Jindal et al., 2002[Jindal, D. P., Bhatti, R. S., Ahlawat, S. & Gupta, R. (2002). Eur. J. Med. Chem. 37, 419-425.]), cholinesterase inhibitor (Decker, 2005[Decker, M. (2005). Eur. J. Med. Chem. 40, 305-313.]), anti­folate (Rosowsky et al., 2000[Rosowsky, A., Wright, J. E., Vaidya, C. M. & Forsch, R. A. (2000). Pharmacol. Ther. 85, 191-205.]) and as a protein kinase inhibitor (Levitzki et al., 2003[Levitzki, A. (2003). Acc. Chem. Res. 36, 462-469.]). Additional reports suggest these derivatives are used as anti-cancer (Manoj et al., 2013[Manoj, K. M., Khunza, M., Karaneh, E., Motahari, N. Z., Gundluru, P. & Matcha, B. (2013). Proteomics, 1, 1-8.]), anti-HIV (Zaigang et al., 2009[Zaigang, L., Chengchu, Z., Fang, W., Hongqiu, H., Cunxin, W. & Hongguang, D. (2009). Chem. Res. Chin. Univ. 25, 841-845.]), anti­convulsant and anti­hypertensive (Muruganantham et al., 2004[Muruganantham, N., Sivakumar, R., Anbalagan, N., Gunasekaran, V. & Leonard, J. T. (2004). Biol. Pharm. Bull. 27, 1683-1687.]) drugs and as anti­oxidants (Srinubabu et al., 2014[Srinubabu, M., Makula, A., Muralidharan, V. & Rambabu, M. (2014). Int. J. Pharm. Pharm. Sci. 6, 254-258.]). The Cambridge Structural Database (CSD, version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 118 structurally characterized substituted tricyclic quinazolines. Different methods for their efficient synthesis have been developed (Bowman et al., 2007[Bowman, W. R., Elsegood, M. R. J., Stein, T. & Weaver, G. W. (2007). Org. Biomol. Chem. 5, 103-113.]; Deetz et al., 2001[Deetz, M. J., Malerich, J. P., Beatty, A. M. & Smith, B. D. (2001). Tetrahedron Lett. 42, 1851-1854.]; Kamal et al., 2001[Kamal, A., Ramana, K. V. & Rao, M. V. (2001). J. Org. Chem. 66, 997-1001.], 2004[Kamal, A., Ramana, A. V., Reddy, K. S., Ramana, K. V., Babu, A. H. & Prasad, B. R. (2004). Tetrahedron Lett. 45, 8187-8190.]; Lee et al., 2003[Lee, E. S., Park, J. & Jahng, Y. (2003). Tetrahedron Lett. 44, 1883-1886.]; Liu et al., 2005[Liu, J., Ye, P., Sprague, K., Sargent, K., Yohannes, D., Baldino, C. M., Wilson, C. J. & Ng, S. C. (2005). Org. Lett. 7, 3363-3366.]). The reactive centres in the tricyclic quinazoline scaffold allow for further derivatization via electrophilic or nucleophiles substitution.

Iso­quinoline alkaloids represent a particularly popular and widespread group of alkaloids. Even for fairly simple iso­quinoline derivatives, biological activity has been reported. Examples include analgetic, anti-inflammatory and anti-cancer properties (Jeetah et al., 2014[Jeetah, R., Bhaw-Luximon, A. & Jhurry, D. (2014). J. Biomed. Nanotechnol. 10, 1810-1840.]), anti-AIDS (Uesawa et al., 2011[Uesawa, Y., Mohri, K., Kawase, M., Ishihara, M. & Sakagami, H. (2011). Anticancer Res. 31, 4231-4238.]), anti­fungal activity (Kashiwada et al., 2005[Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y. P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L. M., Morris-Natschke, S. L. & Lee, K. H. (2005). Bioorg. Med. Chem. 13, 443-448.]) and cardiovascular effects (Candenas et al., 1990[Candenas, M. L., Naline, E., D'Ocón, M. P., Cortes, D. & Advenier, C. (1990). J. Pharm. Pharmacol. 42, 102-107.]). Antagonists for the pathogenesis of neurological diseases, such as Parkinson's disease (Zaima et al., 2012[Zaima, K., Takeyama, Y., Koga, I., Saito, A., Tamamoto, H., Azziz, S., Mukhtar, M., Awang, K., Hadi, A. H. A. & Morita, H. (2012). J. Nat. Med. 66, 421-427.]) have also been described. A group of synthetic 1-aryl­tetra­hydro­iso­quinoline derivatives show anti­epileptic (Gitto et al., 2003[Gitto, R., Barreca, M. L., De Luca, L., De Sarro, G., Ferreri, G., Quartarone, S., Russo, E., Constanti, A. & Chimirri, A. (2003). J. Med. Chem. 46, 197-200.]), analgesic (Tursunkhodzhaeva et al., 2012[Tursunkhodzhaeva, F. M., Rakhimov, Sh. B., Jahangirov, F. N., Vinogradova, V. I., Rezhepov, Zh. & Sagdullaev, Sh. Sh. (2012). Uz IAP 04590.]) and sedative-anxiolytic activity (Mirzaev et al., 2017[Mirzaev, Yu. R., Zhurakulov, Sh. H., Sanozev, Z. I., Vinogradova, V. I. & Sagdullayev, Sh. Sh. (2017). Uz IAP 05489.]).

Over the years the synthetic inter­est in the quest for new iso­quinoline derivatives has not declined (Bentley, 2006[Bentley, K. W. (2006). Nat. Prod. Rep. 23, 444-463.]; Zhurakulov et al., 2013[Zhurakulov, Sh. N., Vinogradova, V. I. & Levkovich, M. G. (2013). Chem. Nat. Compd. 49, 70-74.], 2014[Zhurakulov, Sh. N., Vinogradova, V. I., Zhumayev, I. Z. & Usmanov, P. B. (2014). Dokl. Akad. Nauk Resp. Uz. 3, 51-53.], 2015[Zhurakulov, Sh. N., Elmuradov, B. Zh. & Vinogradova, V. I. (2015). Am. Chem. Sci. J. 9, 1-7.]), because even minor changes in the mol­ecular geometry may lead to improved therapeutic effects. Both moieties mentioned above, a quinazoline and an iso­quinoline, have been successfully connected by a methyl­idene bridge (Elmuradov et al., 1998[Elmuradov, B. Z. & Shakhidoyatov, K. M. (1998). Chem. Nat. Compd. 34, 298-299.], 2008[Elmuradov, B. Z. & Shakhidoyatov, K. M. (2008). Khim. Tekhnol. (Russian) 3, 27-31.]; Turdibayev et al., 2011[Turdibaev, Z. E., Elmuradov, B. Z., Khakimov, M. M. & Shakhidoyatov, K. M. (2011). Chem. Nat. Compd. 47, 600-603.]; Zhurakulov et al., 2015[Zhurakulov, Sh. N., Elmuradov, B. Zh. & Vinogradova, V. I. (2015). Am. Chem. Sci. J. 9, 1-7.]). This coupling reaction allows two potentially bioactive components to be combined in a single mol­ecule. In view of the high chemical and biological activity of iso­quinoline and tricyclic quinazoline alkaloids, we expect that the combination of both scaffolds as in the target compound of the present study could lead to unprecedented properties.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/n with one mol­ecule of the target heterocycle and one mol­ecule of methanol in the asymmetric unit. A displacement ellipsoid plot and the numbering scheme for both mol­ecules are provided in Fig. 2[link].

[Figure 2]
Figure 2
Displacement ellipsoid plot (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) of the asymmetric unit of 3-[1′-(4′′-nitro­phen­yl)-6,7-dimeth­oxy-1,2,3,4-tetra­hydro­isoquinol-2-yl)]methyl­idene-1,2,3,9-tetra­hydro­pyrrolo­[2,1-b]quinazolin-9-one with the methanol solvate and atom-labelling scheme. Ellipsoids are drawn at 50% probability, H atoms are shown as spheres of arbitrary radius.

The meth­oxy substituents associated with O1 and O2 are displaced slightly out of the mean plane defined by the aromatic ring in the di­hydro­iso­quinoline moiety (C4A–C8A), with out-of-plane distances of 0.082 (3) Å for C9 and 0.221 (3) Å for C10. The twist conformation of the heterocyclic ring of the di­hydro­iso­quinoline moiety and the equatorial position of the nitro­phenyl substituent observed here are similar to those in related structures (Olszak et al., 1996[Olszak, T. A., Stępień, A., Grabowski, M. J. & Brzezińska, E. (1996). Acta Cryst. C52, 1038-1040.]; Turgunov et al., 2016[Turgunov, K. K., Zhurakulov, Sh. N., Englert, U., Vinogradova, V. I. & Tashkhodjaev, B. (2016). Acta Cryst. C72, 607-611.]). C1, C4, C4A and C8A are coplanar within error, whereas C3 and N2 are on opposite sides of this plane. The nitro­phenyl substituent C11–C16 and the aromatic part of the di­hydro­iso­quinoline (C4A–C8A) form an angle of 75.70 (14)°. The main motivation for our crystallographic study was to establish the configuration about the C17=C18 double bond. Intuition suggests that the E configuration should clearly be favoured, and our experiment confirms this expectation. In order to further explore the steric congestion of an alternative Z configuration, we generated such a hypothetical mol­ecule by 180° rotation of the complete tricyclic quinazoline moiety about C17=C18. The resulting geometry is depicted in Fig. 3[link].

[Figure 3]
Figure 3
Ball and stick representation (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) of a hypothetical Z-configured mol­ecule generated by 180° rotation of all atoms of the tricyclic quinazoline moiety about the C17=C18 bond; the dashed red line emphasizes the unfavourable intra­molecular contact (see text).

The prohibitively short intra­molecular contact between N19 and C3, shown as a dashed red line, amounts to only 2.05 Å without taking the hydrogen atoms attached to C3 into account. If the two parts of the target mol­ecule are perceived as at least moderately rigid groups, such an alternative Z configuration can safely be excluded. It is important to note, however, that this construction of a hypothetical Z-configured mol­ecule relies on the experimentally established geometry of the semi-rigid iso­quinoline and quinazoline moieties. The tricyclic quinazoline system, formed by three fused rings, shows deviations from planarity for the sp3 carbon atoms, with maximum displacements of 0.126 (3) Å for C26 and 0.110 (3) Å for C25 on opposite sides of the mean plane.

3. Supra­molecular features

An O⋯H—O hydrogen bond links the co-crystallized methanol mol­ecule to the keto group of the quinazoline moiety and gives rise to a D(2) graph-set motif (Table 1[link]). Additional short contacts involve non-classical C—H⋯O inter­actions, with H⋯O distances ranging between 2.29 and 2.59 Å, forming a complex three-dimensional network (Table 1[link], Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O5 0.96 1.91 2.8581 (7) 171
C1—H1⋯O1i 1.00 2.55 3.4040 (8) 143
C1—H1⋯O2i 1.00 2.37 3.2444 (8) 146
C4—H4A⋯O5ii 0.99 2.45 3.4346 (8) 172
C15—H15⋯O1iii 0.95 2.44 3.3402 (8) 159
C16—H16⋯O2iii 0.95 2.59 3.3246 (8) 134
C25—H25A⋯O4iv 0.99 2.29 3.1224 (8) 141
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
Crystal packing in a view along the b axis. O—H⋯O bonds are shown as black, C—H⋯O contacts as blue dashed lines. The dark-blue dotted line indicates a stacking inter­action.

Stacking (Fig. 5[link]) occurs between the pyrrole rings of neighbouring mol­ecules about a centre of inversion [symmetry code: (i) 1 − x, 1 − y, 1 − z], with a distance between the centroids Cg1⋯Cg1i of 3.832 (2) Å and a ring slippage of 1.246 Å. Both short inter­molecular contacts together lead to a supra­molecular layer structure parallel to the (010) plane.

[Figure 5]
Figure 5
View approximately along the c axis, showing stacking between the pyrrole rings (dashed dark-blue lines). The O—H⋯O hydrogen bond is shown in light blue, other hydrogen atoms have been omitted.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and the associated two-dimensional (2D) fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). The Hirshfeld surface for the main mol­ecule in III, mapped with dnorm and its inter­action with the co-crystallized solvent mol­ecule is represented in Fig. 6[link]. Colours on the Hirshfeld surface encode contact distances (red - close, white - medium, blue - long) between atoms on either side of the surface. The most obvious inter­molecular inter­action, the classical O⋯H—O hydrogen bond, shows up as a prominent deep-red spot on the surface, oriented towards the co-crystallized methanol mol­ecule. The less-pronounced red features on the surface are associated with C—H⋯O contacts. Fig. 7[link] shows a 2D fingerprint plot for the contacts between O and H atoms. These contacts are responsible for the short lateral `spikes' on either side of the main diagonal of the plot.

[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of III mapped with dnorm.
[Figure 7]
Figure 7
Two-dimensional fingerprint plots for III, showing O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

5. Database survey

A search in the Cambridge Structural Database (CSD, version 5.40, update February 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave seven occurrences of mol­ecules containing the 3-methyl­idene-1,2,3,9-tetra­hydro­pyrrolo­[2,1-b]quinazolin-9-one moiety with a similar planar conformation as in the title structure. A search for the 1′-(4′′-nitro­phen­yl)-6,7-dimeth­oxy-1,2,3,4-tetra­hydro­iso­quinoline-2-yl moiety gave only three hits with similar conformations for the iso­quinoline fragment: 1-(4-nitro­phen­yl)-N-(2,3,4,6-tetra-O-pivaloyl-β-D-galacto­pyranos­yl)-6,7-di­meth­oxy-1,2,3,4-tetra­hydro­iso­quinoline (ABUTIA01; Allef et al., 2007[Allef, P. & Kunz, H. (2007). Heterocycles, 74, 421-436.]) and two additional structures with a chloro-substituted phenyl ring, namely 2-acetyl-1(R)-(4′-chloro­phen­yl)-6,7-dimeth­oxy-1,2,3,4-tetra­hydro­iso­quinoline (ADOCUS; Gitto et al., 2007[Gitto, R., Ficarra, R., Stancanelli, R., Guardo, M., De Luca, L., Barreca, M. L., Pagano, B., Rotondo, A., Bruno, G., Russo, E., De Sarro, G. & Chimirri, A. (2007). Bioorg. Med. Chem. 15, 5417-5423.]) and N-acetyl-1-(4-chloro­phen­yl)-6,7-dimeth­oxy-1,2,3,4-tetra­hydro­iso­quinoline (LEFFIM; Gao et al., 2006[Gao, M., Kong, D., Clearfield, A. & Zheng, Q.-H. (2006). Bioorg. Med. Chem. Lett. 16, 2229-2233.]).

6. Synthesis and crystallization

3-Hy­droxy­methyl­idene-1,2,3,9-tetra­hydro­pyrrolo­[2,1-b]quinazolin-9-one (I)[link] was synthesized according to the method of Oripov et al. (1979[Oripov, E., Shakhidoyatov, K. M., Kadyrov, Ch. Sh. & Abdullaev, N. D. (1979). Chem. Heterocycl. Compd. 15, 556-564.]). Compound III was obtained from reaction of 1-(4′-nitro­phen­yl)-6,7-dimeth­oxy-1,2,3,4-tetra­hydro­iso­quinoline (0.164 g, 0.522 mmol) with 3-hy­droxymethyl­idene-1,2,3,4-tetra­hydro­pyrrolo­[2,1-b]-quinazolin-9-one (0.122 g, 0.522 mmol). Yield 0.22 g, 86%; m.p. 462–465 K (after crystallization from methanol), Rf 0.81 (CHCl3/MeOH 14:1). A detailed report on the synthesis of III and its characterization by NMR, IR and mass spectrometry is available (Zhurakulov et al., 2015[Zhurakulov, Sh. N., Elmuradov, B. Zh. & Vinogradova, V. I. (2015). Am. Chem. Sci. J. 9, 1-7.]). Crystals suitable for X-ray diffraction were obtained from a solution in methanol by slow evaporation of the solvent at room temperature.

7. Refinement details

Crystal data, data collection parameters and refinement results are summarized in Table 2[link]. H atoms on C atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.95 (aromatic), 0.98 (meth­yl), 0.99 (methyl­ene) or 1.00 Å (tertiary C atom) and were refined with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The H atom in the hy­droxy group of the co-crystallized methanol was refined with a distance restraint [target distance O—H = 0.84 (2) Å] and with Uiso(H) = 1.2Ueq(O). The anisotropic displacement parameters of N1 and O3 atom were subjected to an enhanced rigid-bond restraint (Thorn et al., 2012[Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448-451.]).

Table 2
Experimental details

Crystal data
Chemical formula C29H26N4O5·CH4O
Mr 542.58
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 16.326 (4), 8.0566 (19), 20.565 (5)
β (°) 104.497 (6)
V3) 2618.9 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.55 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.665, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 25889, 4821, 2918
Rint 0.114
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.164, 1.04
No. of reflections 4821
No. of parameters 367
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.35
Computer programs: APEX2 (Bruker, 2001[Bruker (2001). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT-Plus (Bruker, 2009[Bruker (2009). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

3-{[6,7-Dimethoxy-1-(4-nitrophenyl)-1,2,3,4-tetrahydroisoquinolin-2-yl]methylidene}-1,2,3,9-tetrahydropyrrolo[2,1-b]quinazolin-9-one methanol monosolvate top
Crystal data top
C29H26N4O5·CH4OF(000) = 1144
Mr = 542.58Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.326 (4) ÅCell parameters from 1353 reflections
b = 8.0566 (19) Åθ = 3.0–19.8°
c = 20.565 (5) ŵ = 0.10 mm1
β = 104.497 (6)°T = 100 K
V = 2618.9 (11) Å3Rod, yellow
Z = 40.55 × 0.09 × 0.08 mm
Data collection top
Bruker APEX CCD
diffractometer
4821 independent reflections
Radiation source: microsource2918 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.114
ω scansθmax = 25.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1919
Tmin = 0.665, Tmax = 0.745k = 99
25889 measured reflectionsl = 2424
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.061H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.4688P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4821 reflectionsΔρmax = 0.39 e Å3
367 parametersΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08305 (12)1.1111 (2)0.65060 (10)0.0267 (5)
O20.14565 (12)1.0007 (2)0.77066 (9)0.0256 (5)
O40.71000 (15)1.2323 (3)0.94869 (12)0.0522 (7)
O30.60907 (14)1.4105 (3)0.94156 (11)0.0385 (6)
O50.70612 (13)0.3657 (3)0.50686 (10)0.0303 (5)
N10.63699 (17)1.2806 (4)0.92532 (13)0.0338 (7)
N20.46055 (15)0.8631 (3)0.66495 (12)0.0238 (6)
N190.59083 (15)0.4135 (3)0.66290 (12)0.0260 (6)
N24A0.62119 (15)0.5026 (3)0.56116 (12)0.0241 (6)
C10.42173 (18)0.8773 (4)0.72189 (14)0.0221 (7)
H10.42080.76390.74150.026*
C30.44128 (19)1.0014 (4)0.61757 (15)0.0266 (7)
H3B0.47540.99250.58410.032*
H3A0.45511.10810.64180.032*
C40.34774 (18)0.9951 (4)0.58261 (14)0.0269 (7)
H4B0.33211.09360.55340.032*
H4A0.33560.89470.55400.032*
C4A0.29609 (19)0.9915 (4)0.63407 (14)0.0236 (7)
C50.21208 (19)1.0482 (4)0.61679 (15)0.0248 (7)
H50.18791.08530.57230.030*
C60.16455 (18)1.0508 (4)0.66287 (15)0.0237 (7)
C70.19881 (18)0.9950 (3)0.72862 (14)0.0226 (7)
C80.28131 (19)0.9378 (3)0.74592 (14)0.0226 (7)
H80.30480.89820.79020.027*
C8A0.33064 (18)0.9374 (3)0.69924 (14)0.0213 (7)
C90.0470 (2)1.1711 (4)0.58366 (15)0.0331 (8)
H9B0.08041.26520.57430.050*
H9C0.01141.20710.57980.050*
H9A0.04741.08210.55130.050*
C100.1823 (2)0.9721 (4)0.84092 (15)0.0346 (9)
H10B0.20470.85880.84740.052*
H10C0.13890.98650.86590.052*
H10A0.22831.05150.85740.052*
C110.47684 (18)0.9873 (4)0.77600 (14)0.0213 (7)
C120.55019 (19)0.9188 (4)0.81757 (15)0.0279 (8)
H120.56360.80570.81230.033*
C130.6034 (2)1.0145 (4)0.86629 (15)0.0297 (8)
H130.65340.96870.89450.036*
C140.58186 (19)1.1787 (4)0.87291 (15)0.0258 (7)
C150.51115 (19)1.2512 (4)0.83252 (14)0.0262 (7)
H150.49861.36490.83750.031*
C160.45834 (19)1.1526 (4)0.78389 (14)0.0256 (7)
H160.40871.19970.75560.031*
C170.50221 (18)0.7246 (4)0.65647 (15)0.0223 (7)
H170.50610.64420.69090.027*
C180.53988 (18)0.6787 (4)0.60744 (15)0.0238 (7)
C18A0.58472 (18)0.5214 (4)0.61466 (14)0.0223 (7)
C19A0.64138 (18)0.2763 (4)0.66009 (15)0.0239 (7)
C200.6513 (2)0.1578 (4)0.71145 (16)0.0303 (8)
H200.62160.17040.74540.036*
C210.7038 (2)0.0237 (4)0.71301 (17)0.0381 (9)
H210.71000.05580.74800.046*
C220.7478 (2)0.0034 (5)0.66366 (18)0.0440 (10)
H220.78480.08860.66570.053*
C230.7382 (2)0.1152 (4)0.61231 (17)0.0343 (8)
H230.76750.09950.57830.041*
C23A0.68515 (18)0.2530 (4)0.60979 (15)0.0258 (7)
C240.67353 (18)0.3723 (4)0.55492 (15)0.0250 (7)
C250.59868 (19)0.6360 (4)0.51134 (15)0.0279 (8)
H25B0.56100.59430.46900.033*
H25A0.64990.68470.50140.033*
C260.55278 (19)0.7643 (4)0.54499 (14)0.0262 (7)
H26A0.58760.86560.55710.031*
H26B0.49780.79550.51460.031*
C270.8885 (3)0.3496 (6)0.4479 (2)0.0611 (12)
H27A0.94890.36880.45210.092*
H27B0.85990.32940.40070.092*
H27C0.88140.25270.47480.092*
O60.85271 (16)0.4911 (3)0.47115 (13)0.0523 (7)
H60.8044 (18)0.458 (5)0.4864 (18)0.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (12)0.0294 (13)0.0210 (11)0.0026 (10)0.0010 (9)0.0009 (10)
O20.0272 (12)0.0292 (13)0.0193 (11)0.0022 (10)0.0034 (9)0.0007 (10)
O40.0356 (15)0.0495 (17)0.0555 (17)0.0046 (13)0.0185 (13)0.0101 (14)
O30.0387 (14)0.0441 (16)0.0304 (13)0.0057 (12)0.0045 (11)0.0113 (12)
O50.0311 (12)0.0356 (14)0.0269 (12)0.0003 (10)0.0123 (10)0.0025 (11)
N10.0309 (17)0.0416 (19)0.0256 (16)0.0090 (14)0.0007 (13)0.0040 (14)
N20.0272 (14)0.0218 (15)0.0218 (14)0.0028 (12)0.0054 (11)0.0016 (12)
N190.0301 (15)0.0237 (15)0.0247 (15)0.0019 (12)0.0076 (12)0.0005 (12)
N24A0.0232 (14)0.0241 (15)0.0235 (14)0.0000 (12)0.0032 (11)0.0004 (12)
C10.0255 (16)0.0211 (17)0.0191 (16)0.0013 (13)0.0047 (13)0.0037 (14)
C30.0306 (18)0.0245 (19)0.0249 (17)0.0010 (15)0.0070 (14)0.0035 (15)
C40.0306 (18)0.0263 (19)0.0219 (17)0.0025 (15)0.0029 (14)0.0001 (15)
C4A0.0318 (18)0.0168 (17)0.0211 (17)0.0018 (14)0.0047 (14)0.0020 (14)
C50.0304 (18)0.0218 (18)0.0185 (16)0.0018 (14)0.0012 (14)0.0003 (14)
C60.0239 (17)0.0189 (17)0.0235 (17)0.0003 (14)0.0029 (14)0.0006 (14)
C70.0268 (18)0.0162 (16)0.0233 (17)0.0028 (14)0.0036 (14)0.0006 (14)
C80.0331 (18)0.0146 (16)0.0168 (16)0.0017 (14)0.0002 (14)0.0009 (13)
C8A0.0230 (16)0.0158 (16)0.0213 (17)0.0038 (13)0.0016 (13)0.0025 (13)
C90.0310 (18)0.039 (2)0.0235 (18)0.0068 (16)0.0032 (15)0.0002 (16)
C100.039 (2)0.043 (2)0.0218 (18)0.0109 (17)0.0081 (15)0.0058 (16)
C110.0216 (16)0.0244 (18)0.0172 (16)0.0012 (13)0.0037 (13)0.0020 (14)
C120.0292 (18)0.0254 (19)0.0283 (18)0.0042 (15)0.0061 (15)0.0049 (15)
C130.0260 (18)0.032 (2)0.0265 (18)0.0008 (15)0.0017 (14)0.0081 (16)
C140.0252 (17)0.030 (2)0.0207 (17)0.0049 (14)0.0021 (14)0.0015 (15)
C150.0281 (18)0.0268 (19)0.0236 (17)0.0010 (15)0.0063 (15)0.0001 (15)
C160.0257 (17)0.0284 (19)0.0214 (17)0.0017 (15)0.0034 (14)0.0014 (15)
C170.0230 (16)0.0179 (17)0.0235 (17)0.0009 (13)0.0011 (14)0.0011 (14)
C180.0225 (16)0.0240 (18)0.0242 (17)0.0027 (13)0.0044 (14)0.0005 (14)
C18A0.0199 (16)0.0237 (18)0.0226 (17)0.0038 (13)0.0038 (13)0.0040 (14)
C19A0.0203 (16)0.0202 (18)0.0290 (18)0.0054 (13)0.0023 (14)0.0048 (15)
C200.0304 (18)0.033 (2)0.0269 (18)0.0010 (16)0.0062 (15)0.0002 (16)
C210.043 (2)0.037 (2)0.035 (2)0.0123 (17)0.0106 (17)0.0080 (17)
C220.048 (2)0.042 (2)0.043 (2)0.0239 (19)0.0138 (19)0.0072 (19)
C230.037 (2)0.034 (2)0.034 (2)0.0098 (16)0.0120 (16)0.0017 (17)
C23A0.0213 (16)0.0265 (18)0.0282 (18)0.0010 (14)0.0036 (14)0.0012 (15)
C240.0207 (16)0.0246 (18)0.0279 (18)0.0036 (14)0.0025 (14)0.0063 (15)
C250.0280 (17)0.032 (2)0.0231 (17)0.0015 (15)0.0052 (14)0.0017 (15)
C260.0265 (17)0.0252 (18)0.0260 (18)0.0002 (14)0.0049 (14)0.0027 (15)
C270.060 (3)0.072 (3)0.048 (3)0.019 (2)0.007 (2)0.011 (2)
O60.0492 (17)0.0592 (19)0.0511 (17)0.0084 (14)0.0174 (14)0.0151 (14)
Geometric parameters (Å, º) top
O1—C61.379 (3)C10—H10C0.9800
O1—C91.439 (4)C10—H10A0.9800
O2—C71.371 (3)C11—C161.384 (4)
O2—C101.438 (3)C11—C121.399 (4)
O4—N11.232 (3)C12—C131.384 (4)
O3—N11.221 (3)C12—H120.9500
O5—C241.236 (3)C13—C141.384 (4)
N1—C141.470 (4)C13—H130.9500
N2—C171.341 (4)C14—C151.373 (4)
N2—C31.462 (4)C15—C161.394 (4)
N2—C11.469 (3)C15—H150.9500
N19—C18A1.304 (4)C16—H160.9500
N19—C19A1.389 (4)C17—C181.357 (4)
N24A—C241.379 (4)C17—H170.9500
N24A—C18A1.384 (3)C18—C18A1.452 (4)
N24A—C251.467 (4)C18—C261.518 (4)
C1—C8A1.522 (4)C19A—C201.403 (4)
C1—C111.527 (4)C19A—C23A1.409 (4)
C1—H11.0000C20—C211.374 (4)
C3—C41.517 (4)C20—H200.9500
C3—H3B0.9900C21—C221.393 (4)
C3—H3A0.9900C21—H210.9500
C4—C4A1.510 (4)C22—C231.367 (5)
C4—H4B0.9900C22—H220.9500
C4—H4A0.9900C23—C23A1.401 (4)
C4A—C8A1.388 (4)C23—H230.9500
C4A—C51.404 (4)C23A—C241.458 (4)
C5—C61.367 (4)C25—C261.539 (4)
C5—H50.9500C25—H25B0.9900
C6—C71.402 (4)C25—H25A0.9900
C7—C81.383 (4)C26—H26A0.9900
C8—C8A1.399 (4)C26—H26B0.9900
C8—H80.9500C27—O61.418 (4)
C9—H9B0.9800C27—H27A0.9800
C9—H9C0.9800C27—H27B0.9800
C9—H9A0.9800C27—H27C0.9800
C10—H10B0.9800O6—H60.957 (18)
C6—O1—C9116.0 (2)C13—C12—H12119.7
C7—O2—C10117.3 (2)C11—C12—H12119.7
O3—N1—O4123.7 (3)C14—C13—C12118.4 (3)
O3—N1—C14118.5 (3)C14—C13—H13120.8
O4—N1—C14117.7 (3)C12—C13—H13120.8
C17—N2—C3125.4 (2)C15—C14—C13122.9 (3)
C17—N2—C1120.2 (2)C15—C14—N1118.3 (3)
C3—N2—C1114.1 (2)C13—C14—N1118.8 (3)
C18A—N19—C19A115.6 (2)C14—C15—C16117.8 (3)
C24—N24A—C18A123.9 (3)C14—C15—H15121.1
C24—N24A—C25123.0 (2)C16—C15—H15121.1
C18A—N24A—C25113.1 (2)C11—C16—C15121.2 (3)
N2—C1—C8A111.4 (2)C11—C16—H16119.4
N2—C1—C11109.5 (2)C15—C16—H16119.4
C8A—C1—C11113.0 (2)N2—C17—C18131.5 (3)
N2—C1—H1107.6N2—C17—H17114.3
C8A—C1—H1107.6C18—C17—H17114.3
C11—C1—H1107.6C17—C18—C18A118.2 (3)
N2—C3—C4108.2 (2)C17—C18—C26133.6 (3)
N2—C3—H3B110.0C18A—C18—C26108.0 (2)
C4—C3—H3B110.0N19—C18A—N24A124.4 (3)
N2—C3—H3A110.0N19—C18A—C18126.9 (3)
C4—C3—H3A110.0N24A—C18A—C18108.7 (3)
H3B—C3—H3A108.4N19—C19A—C20117.9 (3)
C4A—C4—C3109.9 (2)N19—C19A—C23A123.5 (3)
C4A—C4—H4B109.7C20—C19A—C23A118.5 (3)
C3—C4—H4B109.7C21—C20—C19A120.4 (3)
C4A—C4—H4A109.7C21—C20—H20119.8
C3—C4—H4A109.7C19A—C20—H20119.8
H4B—C4—H4A108.2C20—C21—C22120.5 (3)
C8A—C4A—C5118.8 (3)C20—C21—H21119.7
C8A—C4A—C4121.3 (3)C22—C21—H21119.7
C5—C4A—C4119.9 (3)C23—C22—C21120.3 (3)
C6—C5—C4A121.2 (3)C23—C22—H22119.8
C6—C5—H5119.4C21—C22—H22119.8
C4A—C5—H5119.4C22—C23—C23A120.1 (3)
C5—C6—O1124.6 (3)C22—C23—H23120.0
C5—C6—C7120.3 (3)C23A—C23—H23120.0
O1—C6—C7115.0 (3)C23—C23A—C19A120.1 (3)
O2—C7—C8125.3 (3)C23—C23A—C24120.7 (3)
O2—C7—C6115.8 (3)C19A—C23A—C24119.2 (3)
C8—C7—C6118.9 (3)O5—C24—N24A120.5 (3)
C7—C8—C8A121.0 (3)O5—C24—C23A126.3 (3)
C7—C8—H8119.5N24A—C24—C23A113.2 (3)
C8A—C8—H8119.5N24A—C25—C26104.1 (2)
C4A—C8A—C8119.8 (3)N24A—C25—H25B110.9
C4A—C8A—C1121.7 (3)C26—C25—H25B110.9
C8—C8A—C1118.5 (3)N24A—C25—H25A110.9
O1—C9—H9B109.5C26—C25—H25A110.9
O1—C9—H9C109.5H25B—C25—H25A109.0
H9B—C9—H9C109.5C18—C26—C25105.2 (2)
O1—C9—H9A109.5C18—C26—H26A110.7
H9B—C9—H9A109.5C25—C26—H26A110.7
H9C—C9—H9A109.5C18—C26—H26B110.7
O2—C10—H10B109.5C25—C26—H26B110.7
O2—C10—H10C109.5H26A—C26—H26B108.8
H10B—C10—H10C109.5O6—C27—H27A109.5
O2—C10—H10A109.5O6—C27—H27B109.5
H10B—C10—H10A109.5H27A—C27—H27B109.5
H10C—C10—H10A109.5O6—C27—H27C109.5
C16—C11—C12119.1 (3)H27A—C27—H27C109.5
C16—C11—C1122.5 (3)H27B—C27—H27C109.5
C12—C11—C1118.3 (3)C27—O6—H6109 (2)
C13—C12—C11120.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O50.961.912.8581 (7)171
C1—H1···O1i1.002.553.4040 (8)143
C1—H1···O2i1.002.373.2444 (8)146
C4—H4A···O5ii0.992.453.4346 (8)172
C9—H9B···O6iii0.982.543.5042 (9)169
C15—H15···O1iv0.952.443.3402 (8)159
C16—H16···O2iv0.952.593.3246 (8)134
C17—H17···N190.952.472.8805 (7)106
C25—H25A···O4v0.992.293.1224 (8)141
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1/2, y+1/2, z+3/2; (v) x+3/2, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by: the Istedod Foundation of the Republic of Uzbekistan.

References

First citationAbdel-Jalil, R. J., Aldoqum, H. M., Ayoub, M. T. & Voelter, W. (2005). Heterocycles, 65, 2061–2070.  CAS Google Scholar
First citationAllef, P. & Kunz, H. (2007). Heterocycles, 74, 421–436.  CAS Google Scholar
First citationAoyagi, Y., Kobunai, T., Utsugi, T., Oh-hara, T. & Yamada, Y. (1999). Jpn. J. Cancer Res. 90, 578–587.  CrossRef PubMed CAS Google Scholar
First citationBentley, K. W. (2006). Nat. Prod. Rep. 23, 444–463.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBowman, W. R., Elsegood, M. R. J., Stein, T. & Weaver, G. W. (2007). Org. Biomol. Chem. 5, 103–113.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCandenas, M. L., Naline, E., D'Ocón, M. P., Cortes, D. & Advenier, C. (1990). J. Pharm. Pharmacol. 42, 102–107.  CrossRef PubMed CAS Google Scholar
First citationChen, Y. L., Chen, I. L., Lu, C. M., Tzeng, C. C., Tsao, L. T. & Wang, J. P. (2004). Bioorg. Med. Chem. 12, 387–392.  CrossRef PubMed CAS Google Scholar
First citationDandia, A., Singh, R. & Sarawgi, P. (2005). J. Fluor. Chem. 126, 307–312.  CrossRef CAS Google Scholar
First citationDecker, M. (2005). Eur. J. Med. Chem. 40, 305–313.  CrossRef PubMed CAS Google Scholar
First citationDeetz, M. J., Malerich, J. P., Beatty, A. M. & Smith, B. D. (2001). Tetrahedron Lett. 42, 1851–1854.  CrossRef CAS Google Scholar
First citationEguchi, S. (2006). Topics in Heterocyclic Chemistry, Vol. 6, pp. 113–156. Berlin, Heidelberg: Springer-Verlag.  Google Scholar
First citationElmuradov, B. Z. & Shakhidoyatov, K. M. (1998). Chem. Nat. Compd. 34, 298–299.  CAS Google Scholar
First citationElmuradov, B. Z. & Shakhidoyatov, K. M. (2008). Khim. Tekhnol. (Russian) 3, 27–31.  Google Scholar
First citationForsch, R. A., Wright, J. E. & Rosowsky, A. (2002). Bioorg. Med. Chem. 10, 2067–2076.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFoster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. (1999). Science, 286, 2507–2510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGao, M., Kong, D., Clearfield, A. & Zheng, Q.-H. (2006). Bioorg. Med. Chem. Lett. 16, 2229–2233.  CrossRef PubMed CAS Google Scholar
First citationGitto, R., Barreca, M. L., De Luca, L., De Sarro, G., Ferreri, G., Quartarone, S., Russo, E., Constanti, A. & Chimirri, A. (2003). J. Med. Chem. 46, 197–200.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGitto, R., Ficarra, R., Stancanelli, R., Guardo, M., De Luca, L., Barreca, M. L., Pagano, B., Rotondo, A., Bruno, G., Russo, E., De Sarro, G. & Chimirri, A. (2007). Bioorg. Med. Chem. 15, 5417–5423.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJantova, S., Stankovsky, S. & Spirkova, K. (2004). Biologia (Bratisl.), 59, 741–752.  CAS Google Scholar
First citationJeetah, R., Bhaw-Luximon, A. & Jhurry, D. (2014). J. Biomed. Nanotechnol. 10, 1810–1840.  CrossRef CAS PubMed Google Scholar
First citationJindal, D. P., Bhatti, R. S., Ahlawat, S. & Gupta, R. (2002). Eur. J. Med. Chem. 37, 419–425.  CrossRef PubMed CAS Google Scholar
First citationKamal, A., Ramana, A. V., Reddy, K. S., Ramana, K. V., Babu, A. H. & Prasad, B. R. (2004). Tetrahedron Lett. 45, 8187–8190.  CrossRef CAS Google Scholar
First citationKamal, A., Ramana, K. V. & Rao, M. V. (2001). J. Org. Chem. 66, 997–1001.  CrossRef PubMed CAS Google Scholar
First citationKashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y. P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L. M., Morris-Natschke, S. L. & Lee, K. H. (2005). Bioorg. Med. Chem. 13, 443–448.  CrossRef PubMed CAS Google Scholar
First citationKuneš, J., Bažant, J., Pour, M., Waisser, K., Šlosárek, M. & Janota, J. (2000). Farmaco, 55, 725–729.  PubMed Google Scholar
First citationLee, E. S., Park, J. & Jahng, Y. (2003). Tetrahedron Lett. 44, 1883–1886.  CrossRef CAS Google Scholar
First citationLevitzki, A. (2003). Acc. Chem. Res. 36, 462–469.  CrossRef PubMed CAS Google Scholar
First citationLiu, J., Ye, P., Sprague, K., Sargent, K., Yohannes, D., Baldino, C. M., Wilson, C. J. & Ng, S. C. (2005). Org. Lett. 7, 3363–3366.  CrossRef PubMed CAS Google Scholar
First citationManoj, K. M., Khunza, M., Karaneh, E., Motahari, N. Z., Gundluru, P. & Matcha, B. (2013). Proteomics, 1, 1–8.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMirzaev, Yu. R., Zhurakulov, Sh. H., Sanozev, Z. I., Vinogradova, V. I. & Sagdullayev, Sh. Sh. (2017). Uz IAP 05489.  Google Scholar
First citationMuruganantham, N., Sivakumar, R., Anbalagan, N., Gunasekaran, V. & Leonard, J. T. (2004). Biol. Pharm. Bull. 27, 1683–1687.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNikhil, P., Kalpana, M., Pratik, P. & Manoj, R. (2011). Int. J. PharmTech Res. 3, 540–548.  Google Scholar
First citationOlszak, T. A., Stępień, A., Grabowski, M. J. & Brzezińska, E. (1996). Acta Cryst. C52, 1038–1040.  CrossRef CAS IUCr Journals Google Scholar
First citationOripov, E., Shakhidoyatov, K. M., Kadyrov, Ch. Sh. & Abdullaev, N. D. (1979). Chem. Heterocycl. Compd. 15, 556–564.  CrossRef Google Scholar
First citationRam, V. J., Farhanullah, Tripathi, B. K. & Srivastava, A. K. (2003). Bioorg. Med. Chem. 11, 2439–2444.  CrossRef PubMed CAS Google Scholar
First citationRosowsky, A., Wright, J. E., Vaidya, C. M. & Forsch, R. A. (2000). Pharmacol. Ther. 85, 191–205.  CrossRef PubMed CAS Google Scholar
First citationShakhidoyatov, K. M. & Elmuradov, B. Z. (2014). Chem. Nat. Compd. 50, 781–800.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrinubabu, M., Makula, A., Muralidharan, V. & Rambabu, M. (2014). Int. J. Pharm. Pharm. Sci. 6, 254–258.  Google Scholar
First citationThorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurdibaev, Z. E., Elmuradov, B. Z., Khakimov, M. M. & Shakhidoyatov, K. M. (2011). Chem. Nat. Compd. 47, 600–603.  CrossRef CAS Google Scholar
First citationTurgunov, K. K., Zhurakulov, Sh. N., Englert, U., Vinogradova, V. I. & Tashkhodjaev, B. (2016). Acta Cryst. C72, 607–611.  CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationTursunkhodzhaeva, F. M., Rakhimov, Sh. B., Jahangirov, F. N., Vinogradova, V. I., Rezhepov, Zh. & Sagdullaev, Sh. Sh. (2012). Uz IAP 04590.  Google Scholar
First citationUesawa, Y., Mohri, K., Kawase, M., Ishihara, M. & Sakagami, H. (2011). Anticancer Res. 31, 4231–4238.  CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaigang, L., Chengchu, Z., Fang, W., Hongqiu, H., Cunxin, W. & Hongguang, D. (2009). Chem. Res. Chin. Univ. 25, 841–845.  Google Scholar
First citationZaima, K., Takeyama, Y., Koga, I., Saito, A., Tamamoto, H., Azziz, S., Mukhtar, M., Awang, K., Hadi, A. H. A. & Morita, H. (2012). J. Nat. Med. 66, 421–427.  CrossRef CAS PubMed Google Scholar
First citationZhurakulov, Sh. N., Elmuradov, B. Zh. & Vinogradova, V. I. (2015). Am. Chem. Sci. J. 9, 1–7.  CrossRef CAS Google Scholar
First citationZhurakulov, Sh. N., Vinogradova, V. I. & Levkovich, M. G. (2013). Chem. Nat. Compd. 49, 70–74.  CrossRef CAS Google Scholar
First citationZhurakulov, Sh. N., Vinogradova, V. I., Zhumayev, I. Z. & Usmanov, P. B. (2014). Dokl. Akad. Nauk Resp. Uz. 3, 51–53.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds