research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure determination, Hirshfeld surface analysis and energy frameworks of 6-phenyl­sulfonyl-6H-thieno[3,2-c]carbazole

crossmark logo

aDepartment of Physics, Bharathi Women's College (A), Chennai-108, Tamilnadu, India, bDepartment of organic Chemistry, University of Madras, Chennai-25, Tamilnadu, India, and cPG and Research Department of Physics, Queen Mary's College (A), Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by L. Fabian, University of East Anglia, England (Received 16 April 2018; accepted 30 May 2018; online 5 June 2018)

In the title compound, C20H13NO2S2, the carbazole ring system forms a dihedral angle of 89.08 (1)° with the sulfonyl-substituted phenyl ring. Intra­molecular C—H⋯O hydrogen bonds involving the sulfone O atoms and the carbazole moiety result in two S(6) rings. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds forming inversion dimers with an R22(12) graph-set motif. Analysis of the Hirshfeld surfaces and two-dimensional fingerprint plots was used to explore the distribution of weak inter­molecular inter­actions in the crystal structure.

1. Chemical context

Carbazole derivatives are among the most important and highly exploited heterocyclic compounds in the field of medicinal chemistry. They have been attractive to researchers because of their broad spectrum of biological activities, such as anti-oxidative (Tachibana et al., 2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]), anti­tumor (Itoigawa et al., 2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]), anti-inflammatory and anti­mutagenic (Ramsewak et al., 1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]), anti­biotic, anti­fungal and cytotoxic (Chakraborty et al., 1965[Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681-685.], 1978[Chakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834-835.]), pim kinase inhibitory (Giraud et al., 2014[Giraud, F., Bourhis, M., Nauton, L., Théry, V., Herfindal, L., Døskeland, S. O., Anizon, F. & Moreau, P. (2014). Bioorg. Chem. 57, 108-115.]), anti­microbial (Gu et al., 2014[Gu, W., Qiao, C., Wang, S. F., Hao, Y. & Miao, T. T. (2014). Bioorg. Med. Chem. Lett. 24, 328-331.]) and anti-Alzheimer (Thiratmatrakul et al., 2014[Thiratmatrakul, S., Yenjai, C., Waiwut, P., Vajragupta, O., Reubroycharoen, P., Tohda, M. & Boonyarat, C. (2014). Eur. J. Med. Chem. 75, 21-30.]). Carbazole derivatives are also used as precursor compounds for the synthesis of pyridocarbazole alkaloids (Karmakar et al., 1991[Karmakar, A. C., Kar, G. K. & Ray, J. K. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1997-2002.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig.1. The title compound comprises a carbazole ring system, which is attached to a phenyl sulfonyl ring and a thio­pene ring. The carbazole ring system forms a dihedral angle of 89.08 (1)° with the sulfonyl-substituted phenyl ring. The tetra­hedral configuration is distorted around the atom S2. The increase in the O2—S2—O1 angle [120.14 (9)°], with a simultaneous decrease in the N1—S2—C15 angle [104.96 (9)°] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). The N1—C6 [1.428 (2) Å] and N1—C7 [1.429 (2) Å] bond lengths in the mol­ecule are longer than the mean Nsp2—Csp2 bond length value of 1.355 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The elongation observed may be due to the electron-withdrawing character of the phenyl­sulfonyl group. The mol­ecular structure is stabilized by C1—H1⋯O2 and C9—H9⋯O1 intra­molecular inter­actions involving the sulfone oxygen atoms, which generate two S(6) ring motifs (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the intra­molecular C—H⋯O hydrogen bonds, which generate S(6) ring motifs.

3. Supra­molecular features

In the crystal packing (Fig. 2[link]), the mol­ecules are linked via pairs of C—H⋯O hydrogen bonds (Table 1[link]), forming inversion dimers with an [R_{2}^{2}](12) graph-set motif. Each molecule is involved in the formation of two dimers that propagate as a ribbon in the c-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.93 2.34 2.935 (3) 121
C1—H1⋯O2i 0.93 2.62 3.443 (3) 148
C9—H9⋯O1 0.93 2.35 2.949 (3) 122
C9—H9⋯O1ii 0.93 2.57 3.382 (2) 146
C13—H13⋯Cg5iii 0.93 2.82 3.604 (2) 143
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y, -z]; (iii) [-x, -y+1, -z].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. Dashed lines indicate inter­molecular hydrogen bonds. For clarity, only the H atoms involved in these inter­actions have been included.

4. Hirshfeld surface analysis, inter­action energies and energy frameworks

In order to investigate the weak inter­molecular inter­actions in the crystal, the Hirshfeld surfaces (dnorm, curvedness and shape index) and 2D fingerprint plots were generated using CrystalExplorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. The University of Western Australia.]). The dnorm mapping uses the normalized functions of di and de (Fig. 3[link]a), with white, red and blue coloured surfaces where di (x axis) and de (y axis) are the closest inter­nal and external distances from a given point on the Hirshfeld surface to the nearest atom. The white surface indicates those contacts with distances equal to the sum of van der Waals (vdW) radii, red indicates shorter contacts (< vdW radii) and blue longer contacts (> vdW radii). The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartee–Fock level of theory (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO -- A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]). The C—H⋯O hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative electrostatic potentials, respectively (Fig. 3[link]b). The presence of ππ stacking inter­actions is indicated by red and blue triangles on the shape-index surface (Fig. 3[link]c). Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with each neighbouring mol­ecule. The coordination number in the crystal is defined by the curvedness of the Hirshfeld surface (Fig. 3[link]d). The nearest neighbour coordination environment of a mol­ecule is identified from the colour patches on the Hirshfeld surface depending on their closeness to adjacent mol­ecules (Fig. 3[link]e).

[Figure 3]
Figure 3
Hirshfeld surfaces for visualizing the inter­molecular contacts of the title compound: (a) dnorm highlighting the regions of C—H⋯O hydrogen bonds, (b) electrostatic potential, (c) shape index, (d) curvedness and (e) fragment patches.

Two-dimensional fingerprint plots showing the occurrence of all inter­molecular contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are presented in Fig. 4[link]a. The fingerprint plot of H⋯H contacts, which represent the largest contribution to the Hirshfeld surfaces (40%), shows a distinct pattern with a minimum value of de = di ≃ 1.2 Å (Fig. 4[link]b). The C⋯H/H⋯C inter­actions appear as the next largest region of the fingerprint plot, highly concentrated at the edges, having almost the same de + di ≃ 2.7 Å (Fig. 4[link]c), with an overall Hirshfeld surface contribution of 24.1%. The O⋯H/H⋯O inter­actions on the fingerprint plot, which contribute 15.1% of the total Hirshfeld surface with de + di ≃ 2.5 Å (Fig. 4[link]d), are shown as two symmetrical narrow pointed wings. The H⋯S/S⋯H inter­actions cover only 3.5% (Fig. 4[link]e) of the surface. The C⋯C contacts, which are the measure of ππ stacking inter­actions, occupy 8.7% of the Hirshfeld surface and appear as a unique triangle at de = di ≃ 1.8 Å (Fig. 4[link]f). These are the weak inter­actions that contribute the most to the packing of the title compound.

[Figure 4]
Figure 4
Two-dimensional fingerprint plots for the title compound showing the contributions of different types of inter­actions: (a) all inter­molecular contacts, (b) H⋯H contacts, (c) C⋯H/H⋯C contacts, (d) O⋯H/H⋯O contacts, (e) H⋯S/S⋯H contacts and (f) C⋯C contacts. The outline of the the full fingerprint is shown in gray. Surfaces to the right highlight the relevant surface patches associated with the specific contact type and are coloured as dnorm.

The inter­action energy between the mol­ecules is expressed in terms of four components: electrostatic, polarization, dispersion and exchange repulsion. These energies were obtained using monomer wavefunctions calculated at the B3LYP/6-31G(d,p) level. The total inter­action energy, which is the sum of scaled components, was calculated for a 3.8 Å radius cluster of mol­ecules around the selected mol­ecule (Fig. 5[link]a). The scale factors used in the CE-B3LYP benchmarked energy model (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]) are given in Table 2[link]. The inter­action energies calculated by the energy model reveal that the inter­actions in crystal have a significant contribution from dispersion components (Table 3[link]). Using energy frameworks, the magnitudes of the inter­molecular inter­action energies are represented graphically and the supra­molecular architecture of the crystal structure is visualized. Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules, with the cylinder radius proportional to the magnitude of the inter­action energy. Frameworks were constructed for Eelec as red cylinders, Edis as green and Etot as blue (Fig. 5[link]b–5d) and these cylinders represent the relative strength of mol­ecular packing in different directions.

Table 2
Scale factors for benchmarked energy model

Energy model kelec kpol kenergy-dispersive krep
CE-B3LYP⋯B3LYP/6–31G(d,p) electron densities 1.057 0.740 0.871 0.618

Table 3
Inter­action energies (kJ mol−1) between a reference mol­ecule and its neighbours

N is the number of equivalent neighbours, R is the distance between mol­ecular centroids (mean atomic position) in Å. The colours identify mol­ecules in Fig. 5[link]a, with the reference mol­ecule shown in grey.

Colour N symmetry R Eelec Epol Eenergy-dispersive Erep Etotal
Red 1 inversion 9.29 −3.7 −1.5 −27.5 14.6 −20.0
Orange 1 inversion 8.65 0.9 −1.4 −23.3 10.3 −14.0
Yellow 1 inversion 6.18 −12.2 −2.6 −83.1 54.3 −53.7
Green 2 translation 12.53 1.7 −0.5 −7.3 2.4 −3.4
Lime 2 translation 9.88 −2.4 −0.6 −19.5 14.0 −11.3
Aqua 2 translation 7.65 −4.5 −2.1 −12.1 5.4 −13.5
Cyan 1 inversion 7.79 −17.5 −4.8 −23.5 16.7 −32.2
Blue 1 inversion 8.76 −19.3 −5.0 −26.9 22.3 −33.8
Indigo 1 inversion 5.84 −11.7 −2.7 −87.7 51.5 −58.9
Purple 2 translation 11.22 1.9 −0.4 −6.9 3.6 −2.0
Pink 1 inversion 10.79 −2.6 −0.4 −8.1 2.1 −8.8
[Figure 5]
Figure 5
(a) Inter­actions between the selected reference mol­ecule (highlighted in yellow) and the mol­ecules present in a 3.8 Å cluster around it, (b) Coulomb energy framework, (c) dispersion energy framework and (d) total energy framework.

5. Synthesis and crystallization

The first step was the alkyl­ation of 2-bromo-3-(phenyl­sulfonyl­meth­yl)thio­phene (0.7 g, 2.21 mmol) with 2-bromo­methyl-1-phenyl­sulfonyl­indol (0.85 g, 2.43 mmol) using t-BuOK (0.37 g, 3.32 mmol) in DMF (20 mL) at 278–283 K for 15 min. After completion of the reaction, the reaction mixture was poured into crushed ice. The solid obtained was filtered and dried to afford the alkyl­ated sulfone (1.16 g) as a colourless solid. To a solution of the crude alkyl­ated sulfone (1.16 g, 1.97 mmol) in DMF (15 mL), Pd(OAc)2 (0.04 g, 0.19 mmol), PPh3 (0.10 g, 0.39 mmol) and K2CO3 (0.55 g, 3.94 mmol) were added. Then the reaction mixture was heated at 353 K for 2 h. After that, the reaction mixture was filtered through a celite bed and washed with ethyl acetate (2 × 10 mL). The combined organic layer was washed with water (3 × 20 mL) and dried (Na2SO4). Removal of the solvent followed by column chromatographic purification (silica gel, 100% hexa­ne) afforded 6-(phenyl­sulfon­yl)-6H-thieno[3,2-c]carbazole (0.50 g, 70%) as a colourless solid (Fig. 6[link]). Diffraction-quality crystals were obtained from the product by slow evaporation using chloro­form as a solvent; m.p. 417–419 K.

[Figure 6]
Figure 6
Reaction scheme.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). In the final refinement, reflection (001), which was obstructed by the beam stop, was omitted.

Table 4
Experimental details

Crystal data
Chemical formula C20H13NO2S2
Mr 363.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 7.6461 (8), 9.8772 (9), 11.2191 (12)
α, β, γ (°) 72.571 (5), 88.496 (6), 86.144 (6)
V3) 806.54 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.921, 0.934
No. of measured, independent and observed [I > 2σ(I)] reflections 16616, 3174, 2458
Rint 0.036
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.03
No. of reflections 3102
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.41
Computer programs: APEX2, SAINT and XPREP (Bruker, 2012[Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 and SAINT (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

6-Phenylsulfonyl-6H-thieno[3,2-c]carbazole top
Crystal data top
C20H13NO2S2Z = 2
Mr = 363.43F(000) = 376
Triclinic, P1Dx = 1.497 Mg m3
a = 7.6461 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8772 (9) ÅCell parameters from 3175 reflections
c = 11.2191 (12) Åθ = 2.4–28.8°
α = 72.571 (5)°µ = 0.34 mm1
β = 88.496 (6)°T = 298 K
γ = 86.144 (6)°Needle, colourless
V = 806.54 (14) Å30.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2458 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
ω and φ scanθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 99
Tmin = 0.921, Tmax = 0.934k = 1212
16616 measured reflectionsl = 1313
3174 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3787P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3102 reflectionsΔρmax = 0.24 e Å3
226 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3947 (3)0.2820 (2)0.4004 (2)0.0462 (5)
H10.44800.19600.44780.055*
C20.3350 (4)0.3854 (3)0.4540 (2)0.0590 (7)
H20.34960.36850.53940.071*
C30.2541 (4)0.5137 (3)0.3848 (2)0.0614 (7)
H30.21480.58060.42420.074*
C40.2317 (3)0.5426 (2)0.2583 (2)0.0478 (6)
H40.17760.62870.21180.057*
C50.2909 (3)0.44110 (19)0.20083 (18)0.0327 (4)
C60.3716 (3)0.31203 (19)0.27287 (18)0.0331 (4)
C70.3683 (2)0.30993 (19)0.06791 (17)0.0313 (4)
C80.2892 (2)0.43910 (19)0.07345 (17)0.0300 (4)
C90.3877 (3)0.2747 (2)0.04358 (19)0.0395 (5)
H90.44170.18800.04500.047*
C100.3247 (3)0.3722 (2)0.1510 (2)0.0432 (5)
H100.33500.34990.22590.052*
C110.2454 (3)0.5042 (2)0.15089 (19)0.0378 (5)
C120.2289 (2)0.53705 (19)0.03801 (19)0.0335 (4)
C130.1126 (3)0.7312 (2)0.2176 (2)0.0526 (6)
H130.06330.81430.27280.063*
C140.1762 (3)0.6197 (2)0.2532 (2)0.0499 (6)
H140.17560.61720.33540.060*
C150.2718 (3)0.02095 (18)0.26426 (18)0.0318 (4)
C160.2018 (3)0.0612 (2)0.38416 (19)0.0392 (5)
H160.26240.04930.45080.047*
C170.0401 (3)0.1193 (2)0.4027 (2)0.0458 (5)
H170.00820.14800.48260.055*
C180.0494 (3)0.1347 (2)0.3035 (2)0.0482 (6)
H180.15890.17270.31660.058*
C190.0212 (3)0.0946 (2)0.1843 (2)0.0473 (5)
H190.04080.10520.11780.057*
C200.1835 (3)0.0388 (2)0.1641 (2)0.0405 (5)
H200.23320.01350.08450.049*
O10.55980 (19)0.02188 (14)0.13545 (14)0.0426 (4)
O20.56255 (19)0.02622 (14)0.35412 (13)0.0423 (4)
S10.13085 (7)0.70590 (5)0.05968 (6)0.04557 (17)
S20.47505 (6)0.05704 (5)0.23770 (5)0.03323 (14)
N10.4252 (2)0.23071 (16)0.19079 (14)0.0332 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0662 (15)0.0380 (12)0.0332 (12)0.0017 (10)0.0041 (11)0.0091 (9)
C20.094 (2)0.0533 (14)0.0340 (12)0.0060 (13)0.0035 (13)0.0189 (11)
C30.095 (2)0.0454 (14)0.0500 (15)0.0002 (13)0.0092 (14)0.0256 (12)
C40.0623 (15)0.0344 (11)0.0468 (13)0.0051 (10)0.0037 (11)0.0143 (10)
C50.0353 (11)0.0284 (9)0.0352 (11)0.0037 (8)0.0016 (8)0.0105 (8)
C60.0376 (11)0.0299 (10)0.0331 (10)0.0034 (8)0.0006 (8)0.0111 (8)
C70.0332 (10)0.0278 (9)0.0313 (10)0.0025 (7)0.0018 (8)0.0060 (8)
C80.0289 (10)0.0267 (9)0.0345 (10)0.0039 (7)0.0000 (8)0.0091 (8)
C90.0520 (13)0.0321 (10)0.0361 (11)0.0008 (9)0.0007 (10)0.0138 (9)
C100.0570 (14)0.0434 (12)0.0312 (11)0.0052 (10)0.0007 (10)0.0138 (9)
C110.0395 (12)0.0363 (11)0.0349 (11)0.0065 (9)0.0049 (9)0.0053 (9)
C120.0315 (10)0.0274 (9)0.0394 (11)0.0043 (8)0.0022 (8)0.0057 (8)
C130.0534 (15)0.0415 (13)0.0508 (14)0.0009 (10)0.0151 (11)0.0051 (11)
C140.0554 (15)0.0509 (14)0.0369 (12)0.0075 (11)0.0106 (11)0.0012 (10)
C150.0354 (11)0.0243 (9)0.0354 (11)0.0050 (7)0.0050 (8)0.0095 (8)
C160.0436 (12)0.0368 (11)0.0365 (11)0.0035 (9)0.0044 (9)0.0111 (9)
C170.0472 (13)0.0432 (12)0.0455 (13)0.0025 (10)0.0070 (11)0.0116 (10)
C180.0366 (12)0.0391 (12)0.0694 (16)0.0011 (9)0.0007 (11)0.0173 (11)
C190.0470 (13)0.0443 (12)0.0546 (14)0.0018 (10)0.0144 (11)0.0199 (11)
C200.0470 (13)0.0366 (11)0.0373 (11)0.0013 (9)0.0045 (10)0.0106 (9)
O10.0446 (9)0.0362 (8)0.0472 (9)0.0064 (6)0.0048 (7)0.0150 (6)
O20.0417 (8)0.0387 (8)0.0427 (9)0.0048 (6)0.0145 (7)0.0066 (6)
S10.0462 (3)0.0317 (3)0.0526 (4)0.0048 (2)0.0053 (3)0.0043 (2)
S20.0342 (3)0.0271 (2)0.0365 (3)0.00447 (18)0.0042 (2)0.0077 (2)
N10.0429 (10)0.0271 (8)0.0287 (8)0.0026 (7)0.0039 (7)0.0077 (7)
Geometric parameters (Å, º) top
C1—C21.380 (3)C11—C141.437 (3)
C1—C61.385 (3)C12—S11.7323 (19)
C1—H10.9300C13—C141.338 (3)
C2—C31.386 (4)C13—S11.722 (3)
C2—H20.9300C13—H130.9300
C3—C41.374 (3)C14—H140.9300
C3—H30.9300C15—C201.387 (3)
C4—C51.392 (3)C15—C161.387 (3)
C4—H40.9300C15—S21.760 (2)
C5—C61.401 (3)C16—C171.382 (3)
C5—C81.435 (3)C16—H160.9300
C6—N11.428 (2)C17—C181.374 (3)
C7—C81.392 (3)C17—H170.9300
C7—C91.397 (3)C18—C191.382 (3)
C7—N11.429 (2)C18—H180.9300
C8—C121.399 (3)C19—C201.378 (3)
C9—C101.373 (3)C19—H190.9300
C9—H90.9300C20—H200.9300
C10—C111.401 (3)O1—S21.4233 (15)
C10—H100.9300O2—S21.4236 (15)
C11—C121.399 (3)S2—N11.6572 (16)
C2—C1—C6117.0 (2)C8—C12—S1128.08 (16)
C2—C1—H1121.5C14—C13—S1113.43 (17)
C6—C1—H1121.5C14—C13—H13123.3
C1—C2—C3122.1 (2)S1—C13—H13123.3
C1—C2—H2118.9C13—C14—C11112.8 (2)
C3—C2—H2118.9C13—C14—H14123.6
C4—C3—C2120.5 (2)C11—C14—H14123.6
C4—C3—H3119.8C20—C15—C16121.34 (19)
C2—C3—H3119.8C20—C15—S2119.11 (16)
C3—C4—C5119.1 (2)C16—C15—S2119.55 (16)
C3—C4—H4120.5C17—C16—C15118.7 (2)
C5—C4—H4120.5C17—C16—H16120.6
C4—C5—C6119.44 (19)C15—C16—H16120.6
C4—C5—C8132.60 (19)C18—C17—C16120.2 (2)
C6—C5—C8107.96 (16)C18—C17—H17119.9
C1—C6—C5121.89 (18)C16—C17—H17119.9
C1—C6—N1130.16 (18)C17—C18—C19120.8 (2)
C5—C6—N1107.91 (17)C17—C18—H18119.6
C8—C7—C9122.62 (18)C19—C18—H18119.6
C8—C7—N1108.02 (16)C20—C19—C18120.0 (2)
C9—C7—N1129.33 (17)C20—C19—H19120.0
C7—C8—C12118.03 (17)C18—C19—H19120.0
C7—C8—C5108.38 (16)C19—C20—C15119.0 (2)
C12—C8—C5133.58 (18)C19—C20—H20120.5
C10—C9—C7117.95 (19)C15—C20—H20120.5
C10—C9—H9121.0C13—S1—C1291.09 (11)
C7—C9—H9121.0O1—S2—O2120.14 (9)
C9—C10—C11121.76 (19)O1—S2—N1106.94 (8)
C9—C10—H10119.1O2—S2—N1106.82 (8)
C11—C10—H10119.1O1—S2—C15108.46 (9)
C12—C11—C10119.05 (18)O2—S2—C15108.51 (9)
C12—C11—C14111.32 (19)N1—S2—C15104.96 (9)
C10—C11—C14129.6 (2)C6—N1—C7107.66 (15)
C11—C12—C8120.57 (18)C6—N1—S2124.02 (13)
C11—C12—S1111.34 (15)C7—N1—S2124.80 (13)
C6—C1—C2—C30.5 (4)C12—C11—C14—C130.1 (3)
C1—C2—C3—C40.5 (4)C10—C11—C14—C13178.9 (2)
C2—C3—C4—C50.2 (4)C20—C15—C16—C170.4 (3)
C3—C4—C5—C60.1 (3)S2—C15—C16—C17178.53 (15)
C3—C4—C5—C8179.2 (2)C15—C16—C17—C180.8 (3)
C2—C1—C6—C50.2 (3)C16—C17—C18—C190.9 (3)
C2—C1—C6—N1176.9 (2)C17—C18—C19—C200.2 (3)
C4—C5—C6—C10.1 (3)C18—C19—C20—C151.4 (3)
C8—C5—C6—C1179.39 (19)C16—C15—C20—C191.6 (3)
C4—C5—C6—N1177.79 (18)S2—C15—C20—C19177.40 (15)
C8—C5—C6—N11.7 (2)C14—C13—S1—C120.00 (19)
C9—C7—C8—C120.6 (3)C11—C12—S1—C130.04 (16)
N1—C7—C8—C12177.62 (16)C8—C12—S1—C13179.58 (19)
C9—C7—C8—C5179.87 (18)C20—C15—S2—O130.91 (17)
N1—C7—C8—C51.6 (2)C16—C15—S2—O1150.12 (15)
C4—C5—C8—C7179.3 (2)C20—C15—S2—O2162.97 (15)
C6—C5—C8—C70.0 (2)C16—C15—S2—O218.06 (18)
C4—C5—C8—C120.2 (4)C20—C15—S2—N183.12 (16)
C6—C5—C8—C12179.1 (2)C16—C15—S2—N195.86 (16)
C8—C7—C9—C100.4 (3)C1—C6—N1—C7179.9 (2)
N1—C7—C9—C10178.23 (19)C5—C6—N1—C72.7 (2)
C7—C9—C10—C110.9 (3)C1—C6—N1—S220.2 (3)
C9—C10—C11—C120.5 (3)C5—C6—N1—S2162.32 (14)
C9—C10—C11—C14178.4 (2)C8—C7—N1—C62.7 (2)
C10—C11—C12—C80.6 (3)C9—C7—N1—C6179.27 (19)
C14—C11—C12—C8179.65 (18)C8—C7—N1—S2162.11 (14)
C10—C11—C12—S1179.00 (16)C9—C7—N1—S219.8 (3)
C14—C11—C12—S10.1 (2)O1—S2—N1—C6166.71 (15)
C7—C8—C12—C111.1 (3)O2—S2—N1—C636.89 (18)
C5—C8—C12—C11179.87 (19)C15—S2—N1—C678.21 (17)
C7—C8—C12—S1178.41 (14)O1—S2—N1—C737.08 (18)
C5—C8—C12—S10.6 (3)O2—S2—N1—C7166.91 (15)
S1—C13—C14—C110.0 (3)C15—S2—N1—C778.00 (17)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.932.342.935 (3)121
C1—H1···O2i0.932.623.443 (3)148
C9—H9···O10.932.352.949 (3)122
C9—H9···O1ii0.932.573.382 (2)146
C13—H13···Cg5iii0.932.823.604 (2)143
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z; (iii) x, y+1, z.
Scale factors for benchmarked energy model top
Energy modelkeleckpolkdispkrep
CE-B3LYP···B3LYP/6-31G(d,p) electron densities1.0570.7400.8710.618
Interaction energies (kJ mol-1) between a reference molecule and its neighbours top
N is the number of equivalent neighbours, R is the distance between molecular centroids (mean atomic position) in Å. The colours identify molecules in Fig. 5a, with the reference molecule shown in grey.
ColourNsymmetryREelecEpolEdispErepEtotal
Red1inversion9.29-3.7-1.5-27.514.6-20.0
Orange1inversion8.650.9-1.4-23.310.3-14.0
Yellow1inversion6.18-12.2-2.6-83.154.3-53.7
Green2translation12.531.7-0.5-7.32.4-3.4
Lime2translation9.88-2.4-0.6-19.514.0-11.3
Aqua2translation7.65-4.5-2.1-12.15.4-13.5
cyan1inversion7.79-17.5-4.8-23.516.7-32.2
Blue1inversion8.76-19.3-5.0-26.922.3-33.8
Indigo1inversion5.84-11.7-2.7-87.751.5-58.9
Purple2translation11.221.9-0.4-6.93.6-2.0
Pink1inversion10.79-2.6-0.4-8.12.1-8.8
 

Acknowledgements

The authors thank the Central Instrumentation Facility (DST–FIST), Queen Mary's College (A), Chennai-4 for the computing facility and SAIF, IIT, Madras, for the X-ray data-collection facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.  CrossRef CAS Web of Science Google Scholar
First citationChakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834–835.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGiraud, F., Bourhis, M., Nauton, L., Théry, V., Herfindal, L., Døskeland, S. O., Anizon, F. & Moreau, P. (2014). Bioorg. Chem. 57, 108–115.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, W., Qiao, C., Wang, S. F., Hao, Y. & Miao, T. T. (2014). Bioorg. Med. Chem. Lett. 24, 328–331.  Web of Science CrossRef CAS PubMed Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO -- A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationKarmakar, A. C., Kar, G. K. & Ray, J. K. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1997–2002.  CrossRef Web of Science Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThiratmatrakul, S., Yenjai, C., Waiwut, P., Vajragupta, O., Reubroycharoen, P., Tohda, M. & Boonyarat, C. (2014). Eur. J. Med. Chem. 75, 21–30.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds