organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(10H-pheno­thia­zin-10-yl)ethanone

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

(Received 16 October 2012; accepted 7 November 2012; online 17 November 2012)

In the title compound, C14H11NOS, the phenothia­zine unit has a butterfly conformation and the central six-membered ring has a boat form. The fold angle between the benzene rings is 46.39 (7)°, which is larger than found in similar compounds, probably as a result of steric repulsion between the phenothia­zine fragment and the acetyl group.

Related literature

For the structures of related N-alkyl­phenothia­zine derivatives, see: Chu & Van der Helm (1974[Chu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489-2490.], 1975[Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.]) and of related N-acetyl­phenothia­zine derivatives, see: Meester & Chu (1986[Meester, P. & Chu, S. S. C. (1986). J. Heterocycl. Chem. 23, 1249-1252.]); Wang et al. (2009[Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.]); Siddegowda et al. (2011[Siddegowda, M. S., Jasinski, J. P., Golen, J. A. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1702.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11NOS

  • Mr = 241.31

  • Monoclinic, C 2/c

  • a = 21.435 (6) Å

  • b = 8.897 (3) Å

  • c = 12.738 (4) Å

  • β = 111.753 (3)°

  • V = 2256.2 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 93 K

  • 0.17 × 0.10 × 0.10 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.969, Tmax = 0.974

  • 9030 measured reflections

  • 2584 independent reflections

  • 2337 reflections with F2 > 2σ(F2)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.03

  • 2584 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Phenothiazine derivatives have been interesting from the viewpoint of formation of charge-transfer complexes and biochemical reactivities. The title compound is an N-acetylated phenothiazine in which the orientation of the acetyl group is thought to determine the molecular structure and furthermore to affect the oxidation reactivity at 5-position.

The phenothiazine moiety has a butterfly structure, and the central six-membered ring has a boat form. The dihedral angle between the C1—C6 and C7—C12 planes is 133.61 (7)°, which is smaller than a usual angle (Chu & Van der Helm, 1974, 1975). The five atoms of N1, C1, C12, C13 and O1 lie on almost the same plane (the N1/C1/C12/Cl3/O1 plane: r.m.s. deviation = 0.0317 Å), showing efficient conjugation between the lone pair of N1 and the carbonyl group. The proximity of C11 and C14 is indicated by the intramolecular contact distance of 3.130 (3) Å, although little effective contact is observed around O1. The relatively small dihedral angle between the benzene rings is thought to reduce the steric repulsion between the phenothiazine moiety and the acetyl group. There are three reports concerning 1-(10H-phenothiazin-10-yl)ethanone derivatives (Meester & Chu, 1986; Wang et al., 2009; Siddegowda et al., 2011). Similar steric effects can also be recognized in these cases.

Related literature top

For the structures of related N-alkylphenothiazine derivatives, see: Chu & Van der Helm (1974, 1975) and of related N-acetylphenothiazine derivatives, see: Meester & Chu (1986); Wang et al. (2009); Siddegowda et al. (2011).

Experimental top

Single crystals with sufficient quality for X-ray crystallographical analysis were prepared by recrystallization from an ethanol solution.

Refinement top

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres.
1-(10H-phenothiazin-10-yl)ethanone top
Crystal data top
C14H11NOSF(000) = 1008.00
Mr = 241.31Dx = 1.421 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 3415 reflections
a = 21.435 (6) Åθ = 2.1–31.1°
b = 8.897 (3) ŵ = 0.27 mm1
c = 12.738 (4) ÅT = 93 K
β = 111.753 (3)°Block, colorless
V = 2256.2 (11) Å30.17 × 0.10 × 0.10 mm
Z = 8
Data collection top
Rigaku Saturn724+
diffractometer
2337 reflections with F2 > 2σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.025
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 2727
Tmin = 0.969, Tmax = 0.974k = 118
9030 measured reflectionsl = 1616
2584 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.042P)2 + 2.3718P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H11NOSV = 2256.2 (11) Å3
Mr = 241.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.435 (6) ŵ = 0.27 mm1
b = 8.897 (3) ÅT = 93 K
c = 12.738 (4) Å0.17 × 0.10 × 0.10 mm
β = 111.753 (3)°
Data collection top
Rigaku Saturn724+
diffractometer
2584 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
2337 reflections with F2 > 2σ(F2)
Tmin = 0.969, Tmax = 0.974Rint = 0.025
9030 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
2584 reflectionsΔρmin = 0.24 e Å3
154 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.414831 (16)0.27277 (3)0.08674 (2)0.01289 (10)
O10.39200 (5)0.21234 (10)0.18741 (8)0.0181 (2)
N10.37281 (5)0.03491 (12)0.20689 (9)0.0120 (3)
C10.32864 (6)0.04797 (14)0.09052 (10)0.0118 (3)
C20.27278 (7)0.04399 (14)0.04325 (11)0.0149 (3)
C30.23329 (7)0.02967 (15)0.07063 (11)0.0169 (3)
C40.24838 (7)0.07854 (15)0.13668 (11)0.0163 (3)
C50.30261 (7)0.17472 (15)0.08875 (11)0.0147 (3)
C60.34325 (6)0.15792 (14)0.02484 (10)0.0121 (3)
C70.41033 (6)0.29392 (14)0.22130 (10)0.0113 (3)
C80.42569 (6)0.43164 (14)0.27746 (11)0.0134 (3)
C90.42106 (6)0.44609 (15)0.38294 (11)0.0156 (3)
C100.39899 (7)0.32640 (15)0.43056 (11)0.0165 (3)
C110.38202 (7)0.19044 (15)0.37316 (11)0.0147 (3)
C120.38932 (6)0.17307 (14)0.26952 (10)0.0116 (3)
C130.40672 (6)0.09848 (14)0.24523 (11)0.0132 (3)
C140.46316 (7)0.09615 (15)0.35876 (11)0.0164 (3)
H20.26170.11610.08850.0179*
H30.19570.09410.10380.0202*
H40.22150.08660.21480.0195*
H50.31190.25120.13300.0177*
H80.43920.51460.24390.0161*
H90.43300.53840.42290.0187*
H100.39550.33760.50240.0198*
H110.36550.10980.40440.0176*
H14A0.48890.00300.36680.0197*
H14B0.49270.18260.36510.0197*
H14C0.44470.10130.41850.0197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01464 (17)0.01445 (17)0.01035 (15)0.00323 (11)0.00552 (12)0.00079 (11)
O10.0196 (5)0.0115 (5)0.0205 (5)0.0003 (4)0.0043 (4)0.0018 (4)
N10.0141 (6)0.0110 (5)0.0098 (5)0.0003 (4)0.0031 (5)0.0002 (4)
C10.0123 (6)0.0116 (6)0.0110 (6)0.0020 (5)0.0038 (5)0.0008 (5)
C20.0141 (6)0.0130 (6)0.0176 (7)0.0003 (5)0.0060 (5)0.0007 (5)
C30.0119 (7)0.0161 (6)0.0197 (7)0.0003 (5)0.0025 (6)0.0040 (5)
C40.0129 (6)0.0198 (7)0.0129 (6)0.0048 (5)0.0010 (5)0.0031 (5)
C50.0164 (7)0.0147 (6)0.0133 (6)0.0035 (5)0.0059 (5)0.0009 (5)
C60.0113 (6)0.0116 (6)0.0132 (6)0.0005 (5)0.0045 (5)0.0022 (5)
C70.0098 (6)0.0136 (6)0.0101 (6)0.0019 (5)0.0034 (5)0.0005 (5)
C80.0108 (6)0.0128 (6)0.0157 (6)0.0001 (5)0.0039 (5)0.0003 (5)
C90.0135 (7)0.0155 (6)0.0156 (6)0.0013 (5)0.0027 (5)0.0052 (5)
C100.0163 (7)0.0209 (7)0.0122 (6)0.0033 (6)0.0052 (5)0.0019 (5)
C110.0143 (6)0.0174 (7)0.0131 (6)0.0007 (5)0.0058 (5)0.0021 (5)
C120.0103 (6)0.0116 (6)0.0116 (6)0.0008 (5)0.0026 (5)0.0008 (5)
C130.0138 (6)0.0128 (6)0.0146 (6)0.0008 (5)0.0070 (5)0.0022 (5)
C140.0171 (7)0.0163 (6)0.0150 (7)0.0014 (5)0.0050 (6)0.0020 (5)
Geometric parameters (Å, º) top
S1—C61.7673 (13)C9—C101.392 (2)
S1—C71.7621 (15)C10—C111.3903 (19)
O1—C131.2231 (16)C11—C121.394 (3)
N1—C11.4376 (15)C13—C141.5028 (17)
N1—C121.4365 (17)C2—H20.950
N1—C131.3828 (16)C3—H30.950
C1—C21.3897 (18)C4—H40.950
C1—C61.396 (2)C5—H50.950
C2—C31.3881 (18)C8—H80.950
C3—C41.393 (3)C9—H90.950
C4—C51.3893 (19)C10—H100.950
C5—C61.3930 (17)C11—H110.950
C7—C81.3953 (18)C14—H14A0.980
C7—C121.393 (2)C14—H14B0.980
C8—C91.389 (3)C14—H14C0.980
S1···N12.9418 (14)C11···H14Bxiii3.4202
O1···C12.7367 (16)C12···H4v3.0777
O1···C22.9441 (16)C13···H3ii3.5525
O1···C123.5917 (18)C13···H5vii3.2746
C1···C42.7782 (18)C13···H8iii3.5131
C1···C72.9099 (17)C13···H14Ai3.1820
C1···C113.581 (2)C13···H14Bi3.0711
C2···C52.796 (3)C14···H5vii3.5612
C2···C123.5972 (18)C14···H9iii3.4709
C2···C133.1019 (17)C14···H10xiii3.5985
C3···C62.7741 (19)C14···H14Ai3.4899
C6···C122.903 (2)C14···H14Axiii3.3758
C6···C133.4792 (19)C14···H14Bi3.4086
C7···C102.780 (3)C14···H14Cxiii3.2995
C7···C133.508 (2)H2···C2ii3.4044
C8···C112.795 (2)H2···C3ii3.1645
C9···C122.7789 (19)H2···C10ix3.4004
C11···C133.191 (2)H2···H2ii3.1902
C11···C143.130 (3)H2···H3ii2.7183
C12···C142.8638 (19)H2···H4vii2.9472
S1···C8i3.5062 (15)H2···H5vii3.5148
O1···C3ii3.4254 (18)H2···H10ix3.1583
O1···C8iii3.3551 (17)H3···O1ii2.4806
O1···C10iv3.481 (2)H3···C2ii3.3218
O1···C14i3.522 (3)H3···C7v3.4668
C3···O1ii3.4254 (18)H3···C8v3.0805
C3···C8v3.5581 (18)H3···C10ix3.5790
C4···C7v3.362 (2)H3···C13ii3.5525
C4···C8v3.491 (2)H3···H2ii2.7183
C4···C12v3.5717 (19)H3···H5xiv3.5725
C7···C4v3.362 (2)H3···H8v2.8676
C8···S1i3.5062 (15)H3···H10ix2.7814
C8···O1vi3.3551 (17)H4···C7v2.9911
C8···C3v3.5581 (18)H4···C8v2.9579
C8···C4v3.491 (2)H4···C9v3.0259
C8···C8i3.506 (3)H4···C10v3.0919
C10···O1vii3.481 (2)H4···C11v3.0998
C12···C4v3.5717 (19)H4···C12v3.0777
C13···C14i3.503 (3)H4···H2iv2.9472
C14···O1i3.522 (3)H4···H5xiv3.4855
C14···C13i3.503 (3)H4···H8v3.4440
S1···H52.8571H4···H9v3.5674
S1···H82.8527H4···H11iv3.3789
O1···H22.7411H5···O1iv3.3489
O1···H14A3.0798H5···C2v3.5950
O1···H14B2.4958H5···C9viii3.5246
O1···H14C2.9067H5···C13iv3.2746
N1···H22.6627H5···C14iv3.5612
N1···H112.6624H5···H2iv3.5148
N1···H14A2.5881H5···H3xv3.5725
N1···H14B3.2510H5···H4xv3.4855
N1···H14C2.8334H5···H9viii3.0641
C1···H33.2575H5···H11iv3.3848
C1···H53.2778H5···H14Civ2.9882
C2···H43.2687H8···O1vi2.6273
C3···H53.2715H8···C3v3.5369
C4···H23.2716H8···C8i3.0975
C5···H33.2680H8···C13vi3.5131
C6···H23.2727H8···H3v2.8676
C6···H43.2601H8···H4v3.4440
C7···H93.2612H8···H8i2.5542
C7···H113.2720H8···H10viii3.1524
C7···H14A3.3070H8···H14Bvi3.1051
C8···H103.2705H8···H14Bxvi3.5810
C9···H113.2690H9···S1x2.8168
C10···H83.2734H9···O1vi3.5684
C11···H93.2663H9···C9xi3.1910
C11···H14A2.8911H9···C10xi3.5933
C11···H14C2.8813H9···C14vi3.4709
C12···H83.2774H9···H4v3.5674
C12···H103.2657H9···H5x3.0641
C12···H14A2.5664H9···H9xi2.8955
C12···H14C3.0495H9···H14Bvi3.0059
C13···H23.0122H9···H14Cvi3.2172
C13···H113.1065H10···O1vii2.6337
C14···H112.9960H10···C2xii3.5929
H2···H32.3388H10···C3xii3.3992
H3···H42.3384H10···C14xiii3.5985
H4···H52.3425H10···H2xii3.1583
H8···H92.3410H10···H3xii2.7814
H9···H102.3377H10···H8x3.1524
H10···H112.3422H10···H14Bxiii2.7382
H11···H14A3.0286H11···O1vii3.5544
H11···H14C2.4928H11···C1vii3.0992
S1···H9viii2.8168H11···C2vii3.1669
S1···H14Ai3.1180H11···C3vii3.0516
S1···H14Civ2.8892H11···C4vii2.9005
O1···H3ii2.4806H11···C5vii2.8846
O1···H5vii3.3489H11···C6vii2.9661
O1···H8iii2.6273H11···H4vii3.3789
O1···H9iii3.5684H11···H5vii3.3848
O1···H10iv2.6337H11···H14Axiii3.5203
O1···H11iv3.5544H11···H14Bxiii3.4153
O1···H14Ai3.4300H14A···S1i3.1180
O1···H14Bi2.8025H14A···O1i3.4300
N1···H14Ai3.4407H14A···N1i3.4407
C1···H11iv3.0992H14A···C13i3.1820
C2···H2ii3.4044H14A···C14i3.4899
C2···H3ii3.3218H14A···C14xiii3.3758
C2···H5v3.5950H14A···H11xiii3.5203
C2···H10ix3.5929H14A···H14Ai3.1810
C2···H11iv3.1669H14A···H14Axiii3.2490
C3···H2ii3.1645H14A···H14Bi3.5061
C3···H8v3.5369H14A···H14Cxiii2.7361
C3···H10ix3.3992H14B···O1i2.8025
C3···H11iv3.0516H14B···C10xiii3.0537
C4···H11iv2.9005H14B···C11xiii3.4202
C5···H11iv2.8846H14B···C13i3.0711
C5···H14Civ3.0826H14B···C14i3.4086
C6···H11iv2.9661H14B···H8iii3.1051
C6···H14Civ3.0002H14B···H8xvii3.5810
C7···H3v3.4668H14B···H9iii3.0059
C7···H4v2.9911H14B···H10xiii2.7382
C8···H3v3.0805H14B···H11xiii3.4153
C8···H4v2.9579H14B···H14Ai3.5061
C8···H8i3.0975H14B···H14Bi3.0623
C9···H4v3.0259H14C···S1vii2.8892
C9···H5x3.5246H14C···C5vii3.0826
C9···H9xi3.1910H14C···C6vii3.0002
C10···H2xii3.4004H14C···C14xiii3.2995
C10···H3xii3.5790H14C···H5vii2.9882
C10···H4v3.0919H14C···H9iii3.2172
C10···H9xi3.5933H14C···H14Axiii2.7361
C10···H14Bxiii3.0537H14C···H14Cxiii3.0883
C11···H4v3.0998
C6—S1—C798.29 (7)O1—C13—C14121.79 (11)
C1—N1—C12115.85 (10)N1—C13—C14117.28 (11)
C1—N1—C13119.51 (11)C1—C2—H2120.254
C12—N1—C13123.31 (10)C3—C2—H2120.238
N1—C1—C2122.11 (12)C2—C3—H3119.796
N1—C1—C6117.79 (11)C4—C3—H3119.785
C2—C1—C6120.10 (11)C3—C4—H4119.869
C1—C2—C3119.51 (14)C5—C4—H4119.868
C2—C3—C4120.42 (13)C4—C5—H5120.334
C3—C4—C5120.26 (12)C6—C5—H5120.348
C4—C5—C6119.32 (14)C7—C8—H8120.357
S1—C6—C1119.23 (9)C9—C8—H8120.357
S1—C6—C5120.44 (11)C8—C9—H9119.733
C1—C6—C5120.32 (12)C10—C9—H9119.730
S1—C7—C8120.32 (11)C9—C10—H10119.956
S1—C7—C12119.31 (10)C11—C10—H10119.958
C8—C7—C12120.34 (13)C10—C11—H11120.160
C7—C8—C9119.29 (13)C12—C11—H11120.169
C8—C9—C10120.54 (13)C13—C14—H14A109.468
C9—C10—C11120.09 (15)C13—C14—H14B109.466
C10—C11—C12119.67 (14)C13—C14—H14C109.474
N1—C12—C7117.97 (13)H14A—C14—H14B109.477
N1—C12—C11121.98 (13)H14A—C14—H14C109.471
C7—C12—C11119.99 (12)H14B—C14—H14C109.472
O1—C13—N1120.91 (11)
C6—S1—C7—C8141.08 (9)C2—C1—C6—S1179.67 (11)
C6—S1—C7—C1236.99 (9)C2—C1—C6—C51.0 (2)
C7—S1—C6—C137.65 (11)C6—C1—C2—C32.6 (2)
C7—S1—C6—C5143.66 (10)C1—C2—C3—C41.6 (3)
C1—N1—C12—C748.72 (16)C2—C3—C4—C50.9 (3)
C1—N1—C12—C11128.40 (12)C3—C4—C5—C62.5 (3)
C12—N1—C1—C2131.80 (13)C4—C5—C6—S1177.10 (12)
C12—N1—C1—C647.89 (17)C4—C5—C6—C11.6 (2)
C1—N1—C13—O111.7 (2)S1—C7—C8—C9179.29 (7)
C1—N1—C13—C14166.77 (11)S1—C7—C12—N10.64 (15)
C13—N1—C1—C260.91 (18)S1—C7—C12—C11176.54 (7)
C13—N1—C1—C6119.41 (13)C8—C7—C12—N1178.71 (10)
C12—N1—C13—O1177.96 (13)C8—C7—C12—C111.52 (17)
C12—N1—C13—C140.5 (2)C12—C7—C8—C91.24 (17)
C13—N1—C12—C7118.04 (14)C7—C8—C9—C102.34 (17)
C13—N1—C12—C1164.84 (18)C8—C9—C10—C110.68 (18)
N1—C1—C2—C3177.76 (11)C9—C10—C11—C122.10 (19)
N1—C1—C6—S10.64 (18)C10—C11—C12—N1179.74 (11)
N1—C1—C6—C5179.34 (11)C10—C11—C12—C73.19 (18)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z; (iii) x, y1, z; (iv) x, y, z1/2; (v) x+1/2, y+1/2, z; (vi) x, y+1, z; (vii) x, y, z+1/2; (viii) x, y+1, z1/2; (ix) x+1/2, y1/2, z+1/2; (x) x, y+1, z+1/2; (xi) x+1, y+1, z+1; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1, y, z+1; (xiv) x+1/2, y1/2, z1/2; (xv) x+1/2, y+1/2, z1/2; (xvi) x+1, y+1, z+1/2; (xvii) x+1, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11NOS
Mr241.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)21.435 (6), 8.897 (3), 12.738 (4)
β (°) 111.753 (3)
V3)2256.2 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.17 × 0.10 × 0.10
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionNumerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.969, 0.974
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
9030, 2584, 2337
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.03
No. of reflections2584
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

This work was supported by Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).

References

First citationChu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489–2490.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeester, P. & Chu, S. S. C. (1986). J. Heterocycl. Chem. 23, 1249–1252.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Jasinski, J. P., Golen, J. A. & Yathirajan, H. S. (2011). Acta Cryst. E67, o1702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds