Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Prodigiosin, a member of the prodiginines, is a tripyrrole red pigment synthesized by Serratia and some other microbes. A bifurcated biosynthesis pathway of prodigiosin has been proposed in Serratia in which MBC (4-methoxy-2,2′-bipyrrole-5-carbaldehyde) and MAP (2-methyl-3-N-amyl-pyrrole) are synthesized separately and then condensed by PigC to form prodigiosin. The first step for the synthesis of MBC is the activation of L-proline by PigI, but its catalytic mechanism has remained elusive. To elucidate its mechanism, recombinant PigI was purified and crystallized. Crystals obtained by the sitting-drop method belonged to space group P1 and diffracted to 2.0 Å resolution, with unit-cell parameters a = 51.2, b = 62.8, c = 91.3 Å, α = 105.1, β = 90.1, γ = 92.2°. Matthews coefficient analysis suggested two molecules in the asymmetric unit, with a VM of 2.6 Å3 Da−1 and a solvent content of 52.69%.
Keywords: Serratia; PigI.

Subscribe to Acta Crystallographica Section F: Structural Biology Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds