Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Prolidases are peptidases that are specific for dipeptides with proline as the second residue. The structure of recombinant prolidase from the hyperthermophilic archaeon Thermococcus sibiricus (Tsprol) was determined at 2.6 Å resolution. The homodimer of Tsprol is characterized by a complete lack of interactions between the N- and C-terminal domains of the two subunits and hence can be considered to be the most open structure when compared with previously structurally studied prolidases. This structure exists owing to intermolecular coordination bonds between cadmium ions derived from the crystallization solution and histidine residues of a His tag and aspartate and glutamate residues, which link the dimers to each other. This linking leads to the formation of a crystal with a loose packing of protein molecules and low resistance to mechanical influence and temperature increase.

Supporting information

PDB reference: Tspro, 4fkc


Subscribe to Acta Crystallographica Section F: Structural Biology Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds