Download citation
Download citation
link to html
The crystal structure of N,N′-methylenebisacrylamide was determined through the geometry optimization of the molecular unit with density functional theory and conformational analysis, and then through the calculation of the packing via a crystal structure prediction protocol, based on lattice energy minimization. All the calculated structures were ranked, comparing their powder pattern with the laboratory low-quality X-ray diffraction data. Rietveld refinement of the best three proposed structures allowed the most probable crystal arrangement of the molecules to be obtained. This approach was essential for disentangling the twinning problems affecting the single-crystal X-ray diffraction data, collected on samples obtained via recrystallization of powder, which definitely confirmed the predicted model. It was found that N,N′-methylenebisacrylamide shows a monoclinic structure in the space group C2/c, with lattice parameters a = 17.822 (12), b = 4.850 (3), c = 19.783 (14) Å, β = 102.370 (9)°, V = 1670 (2) Å3. Two strong interactions between the amide protons and the carbonyl groups of neighbouring molecules were found along the b axis, determining the crystal growth in the form of wires in this direction. This work provides a further example of how computational methods may help to investigate low-quality molecular crystals with standard diffraction techniques.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576715004161/fs5100sup1.cif
Contains datablocks global, I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576715004161/fs5100sup2.pdf
Conformational analysis of MBA molecule and Le Bail analysis of experimental powder diffraction pattern

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576715004161/fs5100Isup3.hkl
Contains datablock I

CCDC references: 1013040; 1051528

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
C7H10N2O2F(000) = 656
Mr = 154.17Dx = 1.226 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.822 (12) ÅCell parameters from 90 reflections
b = 4.850 (3) Åθ = 5–15°
c = 19.783 (14) ŵ = 0.09 mm1
β = 102.370 (9)°T = 293 K
V = 1670 (2) Å3Needle, colorless
Z = 80.20 × 0.09 × 0.06 mm
Data collection top
APEX II
diffractometer
1461 independent reflections
Radiation source: fine-focus sealed tube871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
OMEGA SCAN scansθmax = 25.0°, θmin = 2.1°
Absorption correction: empirical (using intensity measurements)
software bruker
h = 2121
Tmin = 0.552, Tmax = 0.746k = 55
8010 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0758P)2 + 6.8758P]
where P = (Fo2 + 2Fc2)/3
1461 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C7H10N2O2V = 1670 (2) Å3
Mr = 154.17Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.822 (12) ŵ = 0.09 mm1
b = 4.850 (3) ÅT = 293 K
c = 19.783 (14) Å0.20 × 0.09 × 0.06 mm
β = 102.370 (9)°
Data collection top
APEX II
diffractometer
1461 independent reflections
Absorption correction: empirical (using intensity measurements)
software bruker
871 reflections with I > 2σ(I)
Tmin = 0.552, Tmax = 0.746Rint = 0.075
8010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 0.99Δρmax = 0.24 e Å3
1461 reflectionsΔρmin = 0.19 e Å3
100 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1212 (3)0.3506 (9)0.0069 (2)0.0514 (11)
C20.1700 (2)0.1805 (8)0.1933 (2)0.0475 (11)
C30.2245 (3)0.2668 (10)0.0929 (2)0.0546 (12)
H3A0.25210.41740.07700.066*
H3B0.26060.11710.10690.066*
C40.0588 (3)0.2240 (10)0.0579 (2)0.0621 (13)
H40.05810.03300.06210.075*
C50.0052 (3)0.3612 (12)0.0967 (3)0.0781 (16)
H5A0.00440.55250.09360.094*
H5B0.03300.26990.12810.094*
C60.1402 (3)0.3040 (10)0.2498 (2)0.0596 (13)
H60.14410.49410.25580.071*
C70.1092 (4)0.1646 (12)0.2913 (3)0.101 (2)
H7A0.10450.02580.28640.121*
H7B0.09110.25330.32630.121*
N10.1650 (2)0.1751 (7)0.03660 (17)0.0550 (10)
H10.15720.00100.03060.066*
N20.1961 (2)0.3576 (7)0.15207 (17)0.0505 (10)
H20.19600.53100.16110.061*
O10.1329 (2)0.6015 (6)0.00422 (18)0.0701 (11)
O20.17040 (19)0.0707 (6)0.18383 (17)0.0639 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (3)0.040 (2)0.049 (2)0.006 (2)0.017 (2)0.001 (2)
C20.055 (3)0.037 (2)0.047 (2)0.0042 (19)0.003 (2)0.0022 (19)
C30.066 (3)0.048 (3)0.050 (3)0.004 (2)0.013 (2)0.003 (2)
C40.091 (4)0.045 (3)0.048 (3)0.002 (3)0.011 (3)0.008 (2)
C50.082 (4)0.067 (3)0.080 (4)0.007 (3)0.006 (3)0.002 (3)
C60.081 (3)0.046 (3)0.055 (3)0.006 (2)0.022 (3)0.001 (2)
C70.145 (6)0.067 (4)0.117 (5)0.016 (4)0.085 (5)0.013 (4)
N10.083 (3)0.039 (2)0.042 (2)0.0007 (19)0.0122 (19)0.0014 (16)
N20.071 (3)0.0359 (19)0.044 (2)0.0018 (17)0.0110 (18)0.0036 (16)
O10.090 (3)0.0323 (17)0.083 (2)0.0001 (16)0.0084 (19)0.0018 (16)
O20.091 (3)0.0319 (17)0.073 (2)0.0025 (15)0.0249 (19)0.0025 (15)
Geometric parameters (Å, º) top
C1—O11.234 (5)C4—C51.277 (7)
C1—N11.336 (5)C4—H40.9300
C1—C41.467 (7)C5—H5A0.9300
C2—O21.233 (5)C5—H5B0.9300
C2—N21.334 (5)C6—C71.277 (7)
C2—C61.466 (6)C6—H60.9300
C3—N11.435 (6)C7—H7A0.9300
C3—N21.439 (5)C7—H7B0.9300
C3—H3A0.9700N1—H10.8600
C3—H3B0.9700N2—H20.8600
O1—C1—N1122.0 (4)C4—C5—H5A120.0
O1—C1—C4122.6 (4)C4—C5—H5B120.0
N1—C1—C4115.4 (4)H5A—C5—H5B120.0
O2—C2—N2122.0 (4)C7—C6—C2123.5 (5)
O2—C2—C6122.3 (4)C7—C6—H6118.3
N2—C2—C6115.7 (4)C2—C6—H6118.3
N1—C3—N2113.3 (4)C6—C7—H7A120.0
N1—C3—H3A108.9C6—C7—H7B120.0
N2—C3—H3A108.9H7A—C7—H7B120.0
N1—C3—H3B108.9C1—N1—C3122.4 (4)
N2—C3—H3B108.9C1—N1—H1118.8
H3A—C3—H3B107.7C3—N1—H1118.8
C5—C4—C1123.7 (5)C2—N2—C3121.9 (4)
C5—C4—H4118.1C2—N2—H2119.0
C1—C4—H4118.1C3—N2—H2119.0

Experimental details

Crystal data
Chemical formulaC7H10N2O2
Mr154.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.822 (12), 4.850 (3), 19.783 (14)
β (°) 102.370 (9)
V3)1670 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.09 × 0.06
Data collection
DiffractometerAPEX II
diffractometer
Absorption correctionEmpirical (using intensity measurements)
software bruker
Tmin, Tmax0.552, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
8010, 1461, 871
Rint0.075
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.228, 0.99
No. of reflections1461
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds