Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Co(C2H3O2)2(C7H6N2S)2], contains a Co centre with a slightly distorted tetra­hedral coordination geometry, involving two acetate ligands and two N atoms from the thia­zole moiety [Co—O = 2.0025 (14) and 1.9953 (16) Å, and Co—N = 2.0524 (18) and 2.0568 (18) Å]. The inter­planar angle between the two benzothia­zole moieties is 77.86 (3)°. The amine groups, acting as donors, participate in intra- and inter­molecular N—H...O hydrogen bonds, with N...O distances in the range 2.806 (2)–2.857 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105016811/fr1521sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105016811/fr1521Isup2.hkl
Contains datablock I

CCDC reference: 278542

Comment top

Small and simple heterocyclic structures often exhibit complex biological properties. Substituted benzothiazoles show antitumour (Goldfarb et al., 1999), anti-infective and antifungal (Sener et al., 2000), and antihelmintic activities (Nadkarn et al., 2000). Bis(benzothiazole) compounds have been studied as potential mimics for metalloproteins (Thompson et al., 1982). It is well known that N and S atoms play a key role in the coordination of metals at the active sites of numerous metallobiomolecules (Karlin & Zubieta, 1983). The structures of many metal complexes of 2-amino-1,3-thiazole derivatives, where the metal is directly bound to the ligand, are known, and these complexes include most of the first-row transition metals (i.e. Mn–Zn). In all but a few cases, the thiazole moities bind to the metal via endocylic N atoms (Lynch & Duckhouse, 2001; Usman et al., 2003). We report here the X-ray crystal structure of the title compound, (I).

In the molecular structure of (I) (Fig.1), the two benzothiazole moieties form a dihedral angle of 77.86 (3)°. It is noteworthy that the two amine groups are not both located on the same side, because of the steric hindrance. Both benzothiazole moieties are nearly planar, the largest deviation from the plane being that of atom C2 [−0.026 (1) Å]. The cobalt centre, coordinated by two endocylic N atoms from the thiazole moieties and two acetate ligands, –CoNCN– and –CoOCC, adopts a syn-periplanar and an anti-periplanar conformation, respectively. This CoN2O2 coordination forms a slightly distorted tetrahedral geometry, the angles around the Co atom ranging from 100.22 (7) to 128.90 (7)°. The bond lengths and angles in (I) are shown in Table 1. The C1—N1, C1—N2, C8—N3 and C8—N4 bonds are somewhat shorter than the C2—N1 and C9—N3 bonds, as a result of pronounced delocalization in the –N—CN– fragment of the 2-aminobenzothiazole ring. The amine groups of both thiazole ligands are hydrogen bonded to the O atoms of the acetate ligands by intra- and intermolecular hydrogen bonds (Table 2). The N2—H2B···O2 hydrogen bonds interconnect the molecules into chains along the a direction, and these are further interconnected into a three-dimensional network by N4—H4B···O4 hydrogen bonds (Fig. 2).

Experimental top

An ethanol solution of 2-aminobenzothiazole (4 mmol in 10 ml of ethanol) was added dropwise to Co(CH3COO)2·6H2O (2 mmol in 5 ml of ethanol) with stirring. The colour of the solution changed immediately to violet. The mixture was refluxed for 2 h and the resulting solution was kept at room temperature. After several days, violet crystals were obtained and dried under vacuum.

Refinement top

All H atoms were placed in calculated positions, with C—H distances of 0.93 and 0.96 Å, and N—H distances of 0.86 Å. The Uiso(H) values were constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELX86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : An ORTEP-3 (Farrugia, 1997) drawing of title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : A view of the hydrogen-bonding interactions in (I). For clarity, H atoms bonded to C atoms have been omitted. Displacement ellipsoids are drawn at the 30% probability level and hydrogen bonds are shown as dashed lines.
Diacetatobis(2-aminobenzothiazole-κN)cobalt(II) top
Crystal data top
[Co(C2H3O2)2(C7H6N2S)2]F(000) = 980
Mr = 477.43Dx = 1.563 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 22768 reflections
a = 8.3049 (4) Åθ = 1.5–26.2°
b = 27.1833 (16) ŵ = 1.09 mm1
c = 8.9868 (5) ÅT = 100 K
V = 2028.81 (19) Å3Prism, violet
Z = 40.29 × 0.18 × 0.11 mm
Data collection top
Stoe IPDS-II
diffractometer
3861 independent reflections
Radiation source: fine-focus sealed tube3697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 6.67 pixels mm-1θmax = 26.1°, θmin = 1.5°
ϕ or ω? scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie 2002)
k = 3333
Tmin = 0.613, Tmax = 0.830l = 911
23485 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.046P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3861 reflectionsΔρmax = 0.22 e Å3
264 parametersΔρmin = 0.50 e Å3
1 restraintAbsolute structure: Flack (1983), 1720 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (10)
Crystal data top
[Co(C2H3O2)2(C7H6N2S)2]V = 2028.81 (19) Å3
Mr = 477.43Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.3049 (4) ŵ = 1.09 mm1
b = 27.1833 (16) ÅT = 100 K
c = 8.9868 (5) Å0.29 × 0.18 × 0.11 mm
Data collection top
Stoe IPDS-II
diffractometer
3861 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie 2002)
3697 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.830Rint = 0.054
23485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.22 e Å3
S = 1.04Δρmin = 0.50 e Å3
3861 reflectionsAbsolute structure: Flack (1983), 1720 Friedel pairs
264 parametersAbsolute structure parameter: 0.005 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.13575 (3)0.122036 (8)1.03477 (4)0.01848 (8)
S10.27466 (7)0.273666 (19)0.85372 (7)0.02730 (13)
S20.22983 (7)0.021294 (18)0.77564 (7)0.02657 (13)
O10.10194 (17)0.10978 (5)1.0401 (2)0.0224 (3)
O20.05469 (18)0.17762 (5)1.16565 (19)0.0232 (3)
O30.28953 (18)0.12872 (5)1.20415 (19)0.0211 (3)
O40.13515 (18)0.06757 (6)1.2751 (2)0.0294 (4)
N10.1939 (2)0.18368 (6)0.9143 (2)0.0196 (4)
N20.3103 (2)0.22725 (6)1.1131 (2)0.0251 (4)
H2A0.30320.20251.17250.030*
H2B0.35120.25451.14390.030*
N30.2146 (2)0.06406 (6)0.9070 (2)0.0212 (4)
N40.0177 (2)0.01509 (6)0.9285 (3)0.0286 (4)
H4A0.06660.03680.98150.034*
H4B0.06500.01210.90670.034*
C10.2585 (2)0.22337 (7)0.9743 (3)0.0210 (4)
C20.1520 (2)0.19150 (8)0.7663 (3)0.0214 (4)
C30.0762 (3)0.15796 (8)0.6729 (3)0.0255 (5)
H30.05100.12650.70660.031*
C40.0388 (3)0.17197 (8)0.5290 (3)0.0319 (5)
H40.01160.14970.46590.038*
C50.0755 (3)0.21912 (10)0.4768 (3)0.0361 (6)
H50.04960.22780.37960.043*
C60.1499 (3)0.25282 (10)0.5688 (3)0.0348 (6)
H60.17440.28420.53470.042*
C70.1874 (3)0.23885 (9)0.7131 (3)0.0272 (5)
C80.1304 (2)0.02359 (8)0.8803 (3)0.0222 (5)
C90.3672 (2)0.06120 (8)0.8395 (3)0.0220 (4)
C100.4843 (3)0.09785 (8)0.8408 (3)0.0253 (5)
H100.46550.12760.88860.030*
C110.6294 (3)0.08907 (9)0.7696 (3)0.0289 (5)
H110.70880.11320.77060.035*
C120.6585 (3)0.04482 (9)0.6967 (3)0.0313 (5)
H120.75720.03970.65020.038*
C130.5427 (3)0.00831 (9)0.6924 (3)0.0286 (5)
H130.56110.02110.64250.034*
C140.3974 (3)0.01707 (8)0.7651 (3)0.0232 (4)
C150.1500 (2)0.14469 (7)1.1248 (3)0.0200 (4)
C160.3214 (3)0.14501 (9)1.1767 (3)0.0286 (5)
H16A0.37030.17591.15140.043*
H16B0.32450.14061.28260.043*
H16C0.37930.11871.12930.043*
C170.2499 (2)0.09582 (7)1.2998 (3)0.0217 (5)
C180.3489 (3)0.09268 (10)1.4375 (3)0.0337 (6)
H18A0.44780.07581.41610.051*
H18B0.29050.07491.51250.051*
H18C0.37220.12521.47290.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02036 (13)0.01315 (12)0.02192 (15)0.00042 (9)0.00199 (12)0.00190 (12)
S10.0356 (3)0.0210 (3)0.0253 (3)0.0074 (2)0.0037 (2)0.0063 (2)
S20.0343 (3)0.0167 (2)0.0286 (3)0.0035 (2)0.0024 (3)0.0059 (2)
O10.0252 (7)0.0162 (6)0.0259 (8)0.0010 (5)0.0001 (8)0.0016 (8)
O20.0249 (8)0.0190 (7)0.0257 (9)0.0012 (6)0.0020 (6)0.0026 (6)
O30.0235 (7)0.0168 (7)0.0229 (8)0.0007 (5)0.0004 (6)0.0028 (6)
O40.0254 (8)0.0183 (7)0.0445 (11)0.0036 (6)0.0007 (7)0.0046 (8)
N10.0231 (9)0.0166 (8)0.0189 (10)0.0011 (6)0.0000 (7)0.0017 (7)
N20.0363 (10)0.0149 (8)0.0240 (11)0.0063 (7)0.0065 (9)0.0011 (8)
N30.0229 (9)0.0179 (8)0.0227 (10)0.0007 (7)0.0010 (7)0.0022 (7)
N40.0277 (9)0.0189 (8)0.0392 (13)0.0059 (7)0.0011 (9)0.0086 (8)
C10.0228 (10)0.0168 (9)0.0235 (12)0.0001 (8)0.0009 (9)0.0009 (8)
C20.0231 (10)0.0207 (10)0.0203 (12)0.0027 (8)0.0008 (8)0.0003 (9)
C30.0268 (11)0.0229 (10)0.0267 (14)0.0028 (9)0.0039 (9)0.0055 (9)
C40.0319 (11)0.0379 (11)0.0259 (13)0.0058 (9)0.0053 (12)0.0081 (12)
C50.0409 (14)0.0453 (14)0.0221 (13)0.0026 (11)0.0043 (11)0.0007 (10)
C60.0411 (14)0.0373 (13)0.0262 (18)0.0032 (11)0.0027 (10)0.0091 (9)
C70.0282 (11)0.0284 (12)0.0249 (13)0.0014 (9)0.0009 (10)0.0026 (9)
C80.0285 (11)0.0174 (10)0.0207 (13)0.0014 (8)0.0044 (9)0.0037 (8)
C90.0239 (11)0.0212 (10)0.0211 (12)0.0054 (8)0.0014 (8)0.0010 (9)
C100.0261 (10)0.0235 (10)0.0263 (12)0.0004 (9)0.0027 (9)0.0033 (9)
C110.0247 (11)0.0337 (12)0.0285 (13)0.0018 (9)0.0011 (10)0.0039 (11)
C120.0258 (11)0.0400 (14)0.0281 (14)0.0100 (10)0.0008 (10)0.0024 (11)
C130.0330 (13)0.0280 (11)0.0247 (13)0.0125 (9)0.0018 (10)0.0035 (9)
C140.0297 (11)0.0215 (10)0.0183 (12)0.0042 (8)0.0036 (9)0.0017 (9)
C150.0250 (10)0.0166 (9)0.0184 (12)0.0042 (8)0.0027 (9)0.0015 (8)
C160.0207 (10)0.0287 (12)0.0363 (15)0.0009 (9)0.0041 (10)0.0014 (10)
C170.0224 (10)0.0171 (9)0.0255 (13)0.0051 (8)0.0027 (9)0.0012 (8)
C180.0356 (13)0.0395 (13)0.0261 (14)0.0100 (10)0.0026 (10)0.0058 (11)
Geometric parameters (Å, º) top
Co1—O31.9953 (16)C3—H30.9300
Co1—O12.0025 (14)C4—C51.398 (4)
Co1—N12.0524 (18)C4—H40.9300
Co1—N32.0568 (18)C5—C61.380 (4)
S1—C71.737 (3)C5—H50.9300
S1—C11.750 (2)C6—C71.387 (4)
S2—C141.742 (2)C6—H60.9300
S2—C81.748 (2)C9—C101.392 (3)
O1—C151.280 (3)C9—C141.396 (3)
O2—C151.250 (3)C10—C111.385 (3)
O3—C171.283 (3)C10—H100.9300
O4—C171.244 (3)C11—C121.391 (4)
N1—C11.320 (3)C11—H110.9300
N1—C21.391 (3)C12—C131.383 (4)
N2—C11.324 (3)C12—H120.9300
N2—H2A0.8600C13—C141.393 (3)
N2—H2B0.8600C13—H130.9300
N3—C81.325 (3)C15—C161.498 (3)
N3—C91.408 (3)C16—H16A0.9600
N4—C81.325 (3)C16—H16B0.9600
N4—H4A0.8600C16—H16C0.9600
N4—H4B0.8600C17—C181.489 (3)
C2—C31.390 (3)C18—H18A0.9600
C2—C71.404 (3)C18—H18B0.9600
C3—C41.383 (4)C18—H18C0.9600
O3—Co1—O1128.90 (7)C6—C7—S1128.7 (2)
O3—Co1—N1100.22 (7)C2—C7—S1109.80 (18)
O1—Co1—N1112.35 (7)N4—C8—N3125.1 (2)
O3—Co1—N3106.97 (7)N4—C8—S2119.52 (16)
O1—Co1—N3101.51 (7)N3—C8—S2115.34 (16)
N1—Co1—N3104.86 (8)C10—C9—C14119.6 (2)
C7—S1—C189.59 (11)C10—C9—N3125.9 (2)
C14—S2—C889.35 (10)C14—C9—N3114.6 (2)
C15—O1—Co1101.42 (13)C11—C10—C9118.7 (2)
C17—O3—Co1106.45 (13)C11—C10—H10120.6
C1—N1—C2111.53 (19)C9—C10—H10120.6
C1—N1—Co1123.21 (16)C10—C11—C12121.2 (2)
C2—N1—Co1124.76 (14)C10—C11—H11119.4
C1—N2—H2A120.0C12—C11—H11119.4
C1—N2—H2B120.0C13—C12—C11120.8 (2)
H2A—N2—H2B120.0C13—C12—H12119.6
C8—N3—C9110.55 (19)C11—C12—H12119.6
C8—N3—Co1124.70 (15)C12—C13—C14117.8 (2)
C9—N3—Co1124.72 (14)C12—C13—H13121.1
C8—N4—H4A120.0C14—C13—H13121.1
C8—N4—H4B120.0C13—C14—C9121.8 (2)
H4A—N4—H4B120.0C13—C14—S2127.97 (18)
N1—C1—N2125.6 (2)C9—C14—S2110.19 (17)
N1—C1—S1114.64 (18)O2—C15—O1120.54 (19)
N2—C1—S1119.77 (16)O2—C15—C16120.4 (2)
C3—C2—N1126.2 (2)O1—C15—C16119.05 (19)
C3—C2—C7119.3 (2)C15—C16—H16A109.5
N1—C2—C7114.4 (2)C15—C16—H16B109.5
C4—C3—C2119.1 (2)H16A—C16—H16B109.5
C4—C3—H3120.5C15—C16—H16C109.5
C2—C3—H3120.5H16A—C16—H16C109.5
C3—C4—C5121.1 (2)H16B—C16—H16C109.5
C3—C4—H4119.4O4—C17—O3120.5 (2)
C5—C4—H4119.4O4—C17—C18122.4 (2)
C6—C5—C4120.3 (3)O3—C17—C18117.1 (2)
C6—C5—H5119.8C17—C18—H18A109.5
C4—C5—H5119.8C17—C18—H18B109.5
C5—C6—C7118.6 (2)H18A—C18—H18B109.5
C5—C6—H6120.7C17—C18—H18C109.5
C7—C6—H6120.7H18A—C18—H18C109.5
C6—C7—C2121.5 (2)H18B—C18—H18C109.5
O3—Co1—O1—C1554.22 (16)C5—C6—C7—S1177.9 (2)
N1—Co1—O1—C1571.10 (16)C3—C2—C7—C60.6 (4)
N3—Co1—O1—C15177.39 (14)N1—C2—C7—C6178.6 (2)
O1—Co1—O3—C1741.08 (15)C3—C2—C7—S1177.85 (17)
N1—Co1—O3—C17171.01 (13)N1—C2—C7—S10.1 (3)
N3—Co1—O3—C1779.88 (14)C1—S1—C7—C6178.3 (2)
O3—Co1—N1—C125.49 (18)C1—S1—C7—C20.10 (18)
O1—Co1—N1—C1114.33 (17)C9—N3—C8—N4179.9 (2)
N3—Co1—N1—C1136.26 (17)Co1—N3—C8—N41.9 (3)
O3—Co1—N1—C2163.28 (16)C9—N3—C8—S21.3 (3)
O1—Co1—N1—C256.90 (18)Co1—N3—C8—S2176.97 (11)
N3—Co1—N1—C252.51 (18)C14—S2—C8—N4179.3 (2)
O3—Co1—N3—C8119.32 (18)C14—S2—C8—N30.40 (18)
O1—Co1—N3—C817.8 (2)C8—N3—C9—C10177.8 (2)
N1—Co1—N3—C8134.85 (18)Co1—N3—C9—C104.0 (3)
O3—Co1—N3—C958.67 (19)C8—N3—C9—C141.7 (3)
O1—Co1—N3—C9164.26 (18)Co1—N3—C9—C14176.49 (16)
N1—Co1—N3—C947.16 (19)C14—C9—C10—C111.0 (4)
C2—N1—C1—N2180.0 (2)N3—C9—C10—C11179.5 (2)
Co1—N1—C1—N27.8 (3)C9—C10—C11—C120.5 (4)
C2—N1—C1—S10.4 (2)C10—C11—C12—C130.4 (4)
Co1—N1—C1—S1172.64 (10)C11—C12—C13—C140.9 (4)
C7—S1—C1—N10.28 (18)C12—C13—C14—C90.5 (4)
C7—S1—C1—N2179.89 (19)C12—C13—C14—S2178.78 (19)
C1—N1—C2—C3177.5 (2)C10—C9—C14—C130.4 (4)
Co1—N1—C2—C35.4 (3)N3—C9—C14—C13180.0 (2)
C1—N1—C2—C70.3 (3)C10—C9—C14—S2178.12 (18)
Co1—N1—C2—C7172.42 (15)N3—C9—C14—S21.4 (3)
N1—C2—C3—C4178.3 (2)C8—S2—C14—C13179.0 (2)
C7—C2—C3—C40.6 (3)C8—S2—C14—C90.59 (18)
C2—C3—C4—C50.2 (3)Co1—O1—C15—O27.5 (2)
C3—C4—C5—C60.2 (4)Co1—O1—C15—C16171.31 (17)
C4—C5—C6—C70.1 (4)Co1—O3—C17—O40.5 (2)
C5—C6—C7—C20.3 (4)Co1—O3—C17—C18179.22 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.032.806 (2)150
N2—H2B···O2i0.862.012.857 (2)167
N4—H4A···O10.862.072.850 (2)150
N4—H4B···O4ii0.862.002.811 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C2H3O2)2(C7H6N2S)2]
Mr477.43
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)8.3049 (4), 27.1833 (16), 8.9868 (5)
V3)2028.81 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.29 × 0.18 × 0.11
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie 2002)
Tmin, Tmax0.613, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
23485, 3861, 3697
Rint0.054
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.04
No. of reflections3861
No. of parameters264
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.50
Absolute structureFlack (1983), 1720 Friedel pairs
Absolute structure parameter0.005 (10)

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELX86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co1—O31.9953 (16)O4—C171.244 (3)
Co1—O12.0025 (14)N1—C11.320 (3)
Co1—N12.0524 (18)N1—C21.391 (3)
Co1—N32.0568 (18)N2—C11.324 (3)
O1—C151.280 (3)N3—C81.325 (3)
O2—C151.250 (3)N3—C91.408 (3)
O3—C171.283 (3)N4—C81.325 (3)
Co1—N1—C1—N27.8 (3)Co1—O1—C15—C16171.31 (17)
Co1—N3—C8—N41.9 (3)Co1—O3—C17—C18179.22 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.862.032.806 (2)150
N2—H2B···O2i0.862.012.857 (2)167
N4—H4A···O10.862.072.850 (2)150
N4—H4B···O4ii0.862.002.811 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds