Download citation
Download citation
link to html
The title compound, [Ru2(C2H3O2)4(C15H16N2O2)2], lies on a crystallographic inversion center and exhibits an Ru—Ru bond length of 2.2847 (8) Å. There are weak intramolecular hydrogen-bonding interactions between the N1,N2-di-p-anisylformamidine (HDAniF) ligands and the bridging acetate ligands. The molecule is one of the few examples of a crystallographically characterized axial bis-adduct of a {Ru2}4+ complex with two N-donor ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104032494/fr1513sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104032494/fr1513Isup2.hkl
Contains datablock I

CCDC reference: 264792

Comment top

Paddlewheel Ru2 compounds with carboxylate bridges, [Ru2(O2CR)4]n+ with n = 1 or 0, were the first types of Ru2 compounds to be discovered and still form the majority of Ru2 complexes. The typical characteristic of this type of compound is their strong tendency to react with Lewis bases, which coordinate to the axial positions of the dimetal core forming adducts or polymeric structures, depending on the type of base.

Although, in the case of the Ru25+ tetracarboxylates, a variety of Lewis bases with O–, N–, P– and S-donor atoms have been used as axial ligands, for the Ru24+ tetracarboxylates, the majority of the axially coordinated Lewis bases are O-donors (Cotton & Walton, 1993). There are only a few reports on Ru24+ tetracarboxylates with axially coordinated N-donor ligands in the literature. These involve the one-dimensional polymeric chain structures formed from the reaction of Ru2(O2CR)4 compounds with the bifunctional N-donors pyz (pyrazine), phz (phenazine) and DMDCNQI (2,5-dimethyl-N,N'-dicyanoquinonediimine) (Wesemann & Chisholm, 1997; Miyasaka et al., 2001; Huckett et al., 1991), a two-dimensional network formed by the reaction of Ru2(O2CCF3)4 with the polyfunctional donor TCNQ (7,7,8,8-tetracyanoquinodimethane) (Miyasaka et al., 2000), the tris-MeCN adducts Ru2(O2CMe)4(MeCN)2 (Lindsay et al., 1985) and Ru2(O2CC6H4-p-Me)4(MeCN)2 (Chisholm et al., 1996), and the tris-NO adducts Ru2(O2CEt)4(NO)2 and Ru2(O2CCF3)4(NO)2 (Lindsay et al., 1987). The reactions of Ru24+ compounds with mono-functional N-donors are sometimes unexpectedly complicated. When excess pyridine reacts with Ru2(O2CCR)4 compounds (R = Me or CF3), the cleavage products Ru(O2CR)2(py)4 are obtained (Lindsay et al., 1987). Similarly, Ru2(O2CCF3)4 reacts with MeCN, causing cleavage of the metal–metal bond and giving [Ru(O2CCF3)(MeCN)5]O2CCF3 (Lindsay et al., 1987).

In this report, we present the crystal structure of a tris-adduct of an Ru24+ tetracarboxylate with a different type of N-donor Lewis base than those that have been used to date, namely the title compound, Ru2(O2CMe)4(HDAniF)2, (I).

Complex (I) was synthesized from the reaction of Ru2(O2CMe)4 with HDAniF in refluxing tetrahydrofuran. The analogous reaction of Ru2(O2CMe)4Cl with HDAniF under the same experimental conditions resulted in the replacement of two equatorially coordinated acetate groups of Ru2(O2CMe)4Cl and the formation of Ru2(O2CMe)2(DAniF)2Cl (Angaridis et al., 2003).

The molecule of (I) lies on a crystallographic inversion center, at the midpoint of the Ru1–Ru1i bond [Fig. 1; symmetry code: (i) 1 − x, 1 − y, 1 − z Please check added symmetry code]. Selected bond distances and angles are listed in Table 1. The Ru24+ unit is embraced by four acetate groups, forming the well known paddlewheel structure, with eclipsed geometry and two axially coordinated HDAniF ligands. The Ru1–Ru1i distance falls in the middle of the range of the corresponding RuRu double-bond distances found in Ru24+ tetracarboxylates (2.252–2.311 Å; Cotton & Walton, 1993). The Ru—O distances have an average of 2.064(s.u.?) Å.

The HDAniF ligands are trans-oriented to each other with respect to the metal–metal bond, with Ru—N distances of 2.374 (4) Å. These are only slightly longer than the axial Ru—N distances of 2.276 (1) Å in the analogous tris-adduct Ru2(O2CC6H4-p-Me)4(MeCN)2 (Chisholm et al., 1996). The Ru—Ru—N angles are almost linear, at 178.24 (9)°.

There are intramolecular hydrogen-bonding interactions between the H atoms attached to the N atoms of the axially coordinated HDAniF ligands and the O atoms of the bridging acetate groups (Table 2). Similar hydrogen-bonding interactions between axial and bridging ligands have been observed in the Ru25+ axial tris-adduct [Ru2(O2CMe)4(quinoline-N)2][PF6], which was reported recently by Gilfoy et al., 2001).

Experimental top

To a solution of Ru2(O2CMe)4 (0.110 g, 0.25 mmol) in tetrahydrofuran (15 ml), HDAniF (0.160 g, 0.62 mmol) was added. The reaction mixture was stirred and refluxed for 48 h, resulting in a dark red–brown solution. Removal of the solvent under low pressure resulted in a dark red–brown solid, which was washed with hexanes (2 × 25 ml) and dried under vacuum. The residue was extracted with toluene (15 ml). A red-brown solution was obtained, which was layered with hexanes (35 ml). Dark-brown crystals of (I) formed over a period of one week.

Refinement top

During refinement, all H atoms were treated as riding atoms, with phenyl C—H distances of 0.94 Å, methyl C—H distances of 0.97 Å and N—H distances of 0.87 Å, and with Uiso(H) values of 1.2Ueq(parent) for phenyl and formamidine groups and 1.5Ueq(parent) for methyl groups. A p-anisyl group on one of the HDAniF ligands was found disordered over two positions, with site occupancies of 0.652 (7) and 0.348 (7), while a p-anisyl group on the other HDAniF ligand was disordered over three positions, with site occupancies of 0.323 (3), 0.350 (7) and 0.327 (7). The disordered p-anisyl groups were refined with distance constraints. The largest positive and negative peaks in the final difference map are 0.75 and 1.00 Å from the Ru atom, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: CIFTAB in SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. Only one of the disordered conformers is shown. H atoms have been omitted for clarity, except for those attached to the N atom of the HDAniF ligands, which are shown as small spheres of arbitrary radii.
Tetra-µ-acetato-κ8O:O'-bis[(N1,N2-di-p-anisylformamidine- κN2)ruthenium(II)](Ru—Ru) top
Crystal data top
[Ru2(C2H3O2)4(C15H16N2O2)2]F(000) = 968
Mr = 950.91Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5138 reflections
a = 15.2123 (14) Åθ = 2.7–27.5°
b = 14.7393 (13) ŵ = 0.85 mm1
c = 8.9550 (8) ÅT = 213 K
β = 104.649 (2)°Block, brown
V = 1942.6 (3) Å30.38 × 0.35 × 0.26 mm
Z = 2
Data collection top
Bruker SMART 1000
diffractometer
4460 independent reflections
Radiation source: fine-focus sealed tube3289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
[SADABS; Blessing (1995) and Bruker (2003)]
h = 1911
Tmin = 0.739, Tmax = 0.810k = 1919
12766 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0628P)2 + 2.231P]
where P = (Fo2 + 2Fc2)/3
4460 reflections(Δ/σ)max = 0.001
342 parametersΔρmax = 1.48 e Å3
5 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Ru2(C2H3O2)4(C15H16N2O2)2]V = 1942.6 (3) Å3
Mr = 950.91Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.2123 (14) ŵ = 0.85 mm1
b = 14.7393 (13) ÅT = 213 K
c = 8.9550 (8) Å0.38 × 0.35 × 0.26 mm
β = 104.649 (2)°
Data collection top
Bruker SMART 1000
diffractometer
4460 independent reflections
Absorption correction: multi-scan
[SADABS; Blessing (1995) and Bruker (2003)]
3289 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.810Rint = 0.043
12766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0475 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.11Δρmax = 1.48 e Å3
4460 reflectionsΔρmin = 0.85 e Å3
342 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru0.43278 (2)0.48962 (2)0.53259 (4)0.03612 (14)
O10.4494 (2)0.3518 (2)0.5194 (4)0.0495 (8)
O20.5793 (2)0.3711 (2)0.4534 (4)0.0462 (8)
O30.3662 (2)0.49159 (18)0.3001 (3)0.0412 (7)
O40.4980 (2)0.51193 (19)0.2375 (3)0.0415 (7)
N10.2956 (3)0.4665 (3)0.6079 (4)0.0469 (9)
C10.5176 (4)0.3218 (3)0.4807 (5)0.0488 (12)
C20.5274 (5)0.2210 (3)0.4711 (9)0.080 (2)
H2A0.49890.19180.54400.120*
H2B0.59140.20520.49580.120*
H2C0.49830.20060.36740.120*
C30.4130 (3)0.5014 (3)0.2035 (5)0.0397 (10)
C40.3643 (4)0.5011 (3)0.0354 (5)0.0486 (11)
H4A0.33310.44360.00910.073*
H4B0.40790.50920.02600.073*
H4C0.32050.55020.01430.073*
C50.2494 (3)0.5262 (3)0.6600 (5)0.0494 (12)
H5A0.19640.50740.68670.059*
C6A0.2616 (6)0.3678 (5)0.5976 (9)0.0282 (14)0.323 (3)
C7A0.2480 (7)0.3202 (6)0.7239 (8)0.034 (3)0.323 (3)
H7A0.26380.34670.82260.041*0.323 (3)
C8A0.2110 (7)0.2335 (6)0.7042 (10)0.037 (3)0.323 (3)
H8A0.20180.20130.78960.044*0.323 (3)
C9A0.1875 (7)0.1944 (5)0.5582 (12)0.032 (4)0.323 (3)
C10A0.2011 (7)0.2420 (6)0.4319 (9)0.041 (3)0.323 (3)
H10A0.18530.21560.33320.049*0.323 (3)
C11A0.2381 (6)0.3287 (6)0.4516 (8)0.037 (3)0.323 (3)
H11A0.24730.36090.36630.044*0.323 (3)
C6B0.2657 (5)0.3833 (3)0.5767 (8)0.0282 (14)0.350 (7)
C7B0.3175 (4)0.3109 (4)0.6502 (8)0.040 (4)0.350 (7)
H7B0.37560.32120.71500.048*0.350 (7)
C8B0.2832 (6)0.2231 (3)0.6280 (9)0.042 (4)0.350 (7)
H8B0.31820.17410.67770.050*0.350 (7)
C9B0.1971 (6)0.2078 (3)0.5322 (8)0.040 (5)0.350 (7)
C10B0.1453 (5)0.2803 (4)0.4587 (6)0.039 (3)0.350 (7)
H10B0.08710.26990.39390.047*0.350 (7)
C11B0.1796 (5)0.3680 (3)0.4810 (7)0.035 (3)0.350 (7)
H11B0.14460.41700.43120.042*0.350 (7)
C6C0.2331 (5)0.3826 (3)0.6034 (7)0.0282 (14)0.327 (7)
C7C0.2805 (5)0.3041 (3)0.6601 (6)0.040 (4)0.327 (7)
H7C0.34300.30710.70840.048*0.327 (7)
C8C0.2356 (6)0.2212 (3)0.6456 (7)0.039 (4)0.327 (7)
H8C0.26770.16810.68400.046*0.327 (7)
C9C0.1433 (6)0.2168 (4)0.5742 (9)0.041 (4)0.327 (7)
C10C0.0958 (4)0.2953 (5)0.5174 (9)0.044 (3)0.327 (7)
H10C0.03340.29230.46920.053*0.327 (7)
C11C0.1408 (4)0.3782 (4)0.5320 (9)0.039 (3)0.327 (7)
H11C0.10870.43130.49360.046*0.327 (7)
O5A0.1430 (12)0.114 (3)0.523 (5)0.044 (4)0.323 (3)
C12A0.127 (2)0.0618 (19)0.646 (3)0.057 (6)0.323 (3)
H12A0.09770.00530.60640.085*0.323 (3)
H12B0.08860.09550.69750.085*0.323 (3)
H12C0.18470.04870.71940.085*0.323 (3)
C12B0.0829 (11)0.1003 (10)0.424 (2)0.062 (4)0.350 (7)
H12D0.06950.03590.41940.093*0.350 (7)
H12E0.08150.12210.32090.093*0.350 (7)
H12F0.03790.13260.46300.093*0.350 (7)
O5B0.1735 (10)0.116 (2)0.526 (4)0.044 (4)0.350 (7)
C12C0.136 (2)0.0556 (17)0.578 (3)0.062 (6)0.327 (7)
H12G0.09250.00630.56220.093*0.327 (7)
H12H0.17430.05300.68280.093*0.327 (7)
H12I0.17360.05010.50570.093*0.327 (7)
O5C0.0899 (8)0.1384 (7)0.5552 (16)0.060 (3)0.327 (7)
N2A0.2731 (3)0.6137 (3)0.6780 (5)0.0474 (10)0.652 (7)
H21A0.32270.63060.65420.057*0.652 (7)
C13A0.2225 (4)0.6808 (3)0.7336 (8)0.0419 (13)0.652 (7)
C14A0.2591 (3)0.7677 (4)0.7466 (7)0.0403 (17)0.652 (7)
H14A0.31580.77800.72570.048*0.652 (7)
C15A0.2119 (4)0.8395 (3)0.7906 (7)0.0444 (19)0.652 (7)
H15A0.23670.89820.79940.053*0.652 (7)
C16A0.1281 (4)0.8243 (4)0.8216 (8)0.0488 (16)0.652 (7)
C17A0.0915 (4)0.7374 (5)0.8085 (10)0.066 (3)0.652 (7)
H17A0.03480.72720.82950.080*0.652 (7)
C18A0.1387 (5)0.6657 (3)0.7645 (10)0.061 (2)0.652 (7)
H18A0.11390.60690.75570.073*0.652 (7)
O6A0.0932 (5)0.9051 (5)0.8680 (19)0.0599 (19)0.652 (7)
C19A0.0040 (5)0.8966 (8)0.8602 (14)0.095 (4)0.652 (7)
H19A0.02810.95550.87760.143*0.652 (7)
H19B0.01230.85450.93870.143*0.652 (7)
H19C0.03590.87430.75910.143*0.652 (7)
N2B0.2731 (3)0.6137 (3)0.6780 (5)0.0474 (10)0.348 (7)
H21B0.32670.62650.66580.057*0.348 (7)
C13B0.2246 (9)0.6880 (7)0.7136 (14)0.0419 (13)0.348 (7)
C14B0.2443 (7)0.7760 (9)0.6769 (12)0.0403 (17)0.348 (7)
H14B0.28660.78610.61820.048*0.348 (7)
C15B0.2014 (9)0.8491 (6)0.7268 (13)0.0444 (19)0.348 (7)
H15B0.21480.90860.70200.053*0.348 (7)
C16B0.1389 (8)0.8341 (8)0.8136 (14)0.0488 (16)0.348 (7)
C17B0.1191 (7)0.7460 (10)0.8503 (15)0.066 (3)0.348 (7)
H17B0.07680.73590.90900.080*0.348 (7)
C18B0.1620 (10)0.6730 (7)0.8004 (16)0.061 (2)0.348 (7)
H18B0.14860.61350.82520.073*0.348 (7)
O6B0.0780 (13)0.8892 (12)0.850 (4)0.0599 (19)0.348 (7)
C19B0.0997 (13)0.9837 (14)0.821 (3)0.095 (4)0.348 (7)
H19D0.06501.02440.86910.143*0.348 (7)
H19E0.08440.99470.71050.143*0.348 (7)
H19F0.16410.99440.86370.143*0.348 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru0.0482 (2)0.03131 (19)0.02573 (18)0.01218 (14)0.00357 (14)0.00031 (12)
O10.064 (2)0.0315 (15)0.055 (2)0.0082 (14)0.0182 (17)0.0014 (13)
O20.059 (2)0.0340 (15)0.0462 (19)0.0142 (14)0.0151 (16)0.0025 (13)
O30.0474 (18)0.0460 (16)0.0259 (14)0.0096 (13)0.0015 (13)0.0005 (11)
O40.053 (2)0.0439 (16)0.0246 (13)0.0109 (14)0.0037 (12)0.0017 (11)
N10.055 (2)0.048 (2)0.0307 (18)0.0107 (18)0.0035 (17)0.0047 (16)
C10.072 (4)0.031 (2)0.043 (3)0.018 (2)0.014 (2)0.0009 (18)
C20.105 (5)0.030 (2)0.118 (6)0.013 (3)0.052 (4)0.003 (3)
C30.051 (3)0.035 (2)0.029 (2)0.0112 (18)0.0019 (18)0.0017 (15)
C40.055 (3)0.056 (3)0.031 (2)0.002 (2)0.0028 (19)0.0012 (18)
C50.048 (3)0.049 (2)0.040 (2)0.003 (2)0.008 (2)0.007 (2)
C6A0.021 (4)0.034 (3)0.031 (3)0.003 (2)0.008 (3)0.001 (2)
C7A0.030 (7)0.044 (7)0.025 (7)0.001 (5)0.001 (5)0.006 (5)
C8A0.045 (9)0.027 (6)0.039 (9)0.005 (6)0.015 (6)0.004 (5)
C9A0.015 (9)0.040 (9)0.043 (10)0.001 (6)0.009 (8)0.003 (7)
C10A0.053 (9)0.033 (6)0.035 (8)0.009 (6)0.007 (6)0.011 (6)
C11A0.053 (9)0.034 (6)0.025 (6)0.007 (6)0.012 (6)0.003 (5)
C6B0.021 (4)0.034 (3)0.031 (3)0.003 (2)0.008 (3)0.001 (2)
C7B0.039 (9)0.032 (6)0.054 (9)0.012 (5)0.021 (7)0.009 (5)
C8B0.030 (8)0.034 (6)0.058 (9)0.011 (6)0.005 (7)0.009 (6)
C9B0.040 (11)0.025 (6)0.055 (11)0.007 (6)0.008 (8)0.001 (7)
C10B0.036 (7)0.040 (6)0.039 (7)0.004 (5)0.005 (6)0.004 (5)
C11B0.036 (7)0.037 (6)0.030 (6)0.003 (5)0.005 (5)0.003 (5)
C6C0.021 (4)0.034 (3)0.031 (3)0.003 (2)0.008 (3)0.001 (2)
C7C0.034 (10)0.057 (10)0.025 (8)0.001 (7)0.002 (6)0.001 (6)
C8C0.039 (11)0.035 (7)0.046 (11)0.017 (7)0.016 (9)0.003 (7)
C9C0.034 (9)0.064 (10)0.030 (7)0.021 (7)0.014 (6)0.011 (6)
C10C0.043 (9)0.051 (8)0.038 (8)0.010 (6)0.011 (6)0.004 (6)
C11C0.043 (9)0.045 (7)0.031 (7)0.004 (6)0.014 (6)0.002 (5)
O5A0.021 (11)0.037 (3)0.066 (4)0.001 (10)0.001 (12)0.003 (3)
C12A0.068 (14)0.045 (10)0.052 (13)0.008 (8)0.007 (12)0.003 (11)
C12B0.064 (11)0.048 (8)0.068 (11)0.013 (7)0.007 (8)0.001 (7)
O5B0.021 (11)0.037 (3)0.066 (4)0.001 (10)0.001 (12)0.003 (3)
C12C0.075 (14)0.036 (10)0.075 (18)0.006 (8)0.018 (15)0.001 (13)
O5C0.049 (8)0.045 (6)0.082 (9)0.007 (5)0.013 (6)0.005 (6)
N2A0.038 (2)0.045 (2)0.054 (2)0.0015 (16)0.0009 (18)0.0133 (17)
C13A0.036 (3)0.050 (3)0.036 (3)0.000 (2)0.002 (2)0.013 (2)
C14A0.025 (3)0.049 (3)0.042 (5)0.001 (2)0.000 (3)0.004 (4)
C15A0.041 (3)0.046 (3)0.042 (5)0.001 (2)0.003 (4)0.009 (3)
C16A0.037 (3)0.058 (3)0.049 (3)0.002 (3)0.005 (2)0.021 (2)
C17A0.045 (5)0.081 (5)0.078 (7)0.030 (4)0.025 (5)0.054 (4)
C18A0.063 (6)0.057 (3)0.069 (6)0.025 (3)0.027 (5)0.031 (3)
O6A0.039 (4)0.062 (4)0.071 (5)0.002 (3)0.000 (4)0.042 (4)
C19A0.050 (5)0.123 (8)0.108 (8)0.017 (5)0.013 (5)0.059 (7)
N2B0.038 (2)0.045 (2)0.054 (2)0.0015 (16)0.0009 (18)0.0133 (17)
C13B0.036 (3)0.050 (3)0.036 (3)0.000 (2)0.002 (2)0.013 (2)
C14B0.025 (3)0.049 (3)0.042 (5)0.001 (2)0.000 (3)0.004 (4)
C15B0.041 (3)0.046 (3)0.042 (5)0.001 (2)0.003 (4)0.009 (3)
C16B0.037 (3)0.058 (3)0.049 (3)0.002 (3)0.005 (2)0.021 (2)
C17B0.045 (5)0.081 (5)0.078 (7)0.030 (4)0.025 (5)0.054 (4)
C18B0.063 (6)0.057 (3)0.069 (6)0.025 (3)0.027 (5)0.031 (3)
O6B0.039 (4)0.062 (4)0.071 (5)0.002 (3)0.000 (4)0.042 (4)
C19B0.050 (5)0.123 (8)0.108 (8)0.017 (5)0.013 (5)0.059 (7)
Geometric parameters (Å, º) top
Ru—Rui2.2847 (8)C8C—C9C1.3900
Ru—O12.055 (3)C8C—H8C0.9400
Ru—O2i2.067 (3)C9C—C10C1.3900
Ru—O32.072 (3)C9C—O5C1.398 (11)
Ru—O4i2.062 (3)C10C—C11C1.3900
Ru—N12.374 (4)C10C—H10C0.9400
O1—C11.254 (6)C11C—H11C0.9400
O2—C11.258 (6)O5A—C12A1.41 (5)
O2—Rui2.067 (3)C12A—H12A0.9700
O3—C31.259 (6)C12A—H12B0.9700
O4—C31.262 (6)C12A—H12C0.9700
O4—Rui2.062 (3)C12B—O5B1.47 (2)
N1—C51.284 (6)C12B—H12D0.9700
N1—C6B1.314 (6)C12B—H12E0.9700
N1—C6A1.539 (7)C12B—H12F0.9700
N1—C6C1.555 (7)C12C—O5C1.40 (3)
C1—C21.499 (6)C12C—H12G0.9700
C2—H2A0.9700C12C—H12H0.9700
C2—H2B0.9700C12C—H12I0.9700
C2—H2C0.9700N2A—C13A1.418 (5)
C3—C41.500 (6)N2A—H21A0.8700
C4—H4A0.9700C13A—C14A1.3900
C4—H4B0.9700C13A—C18A1.3900
C4—H4C0.9700C14A—C15A1.3900
C5—N2A1.339 (6)C14A—H14A0.9400
C5—H5A0.9400C15A—C16A1.3900
C6A—C7A1.3900C15A—H15A0.9400
C6A—C11A1.3900C16A—C17A1.3900
C7A—C8A1.3900C16A—O6A1.409 (3)
C7A—H7A0.9400C17A—C18A1.3900
C8A—C9A1.3900C17A—H17A0.9400
C8A—H8A0.9400C18A—H18A0.9400
C9A—O5A1.36 (3)O6A—C19A1.468 (3)
C9A—C10A1.3900C19A—H19A0.9700
C10A—C11A1.3900C19A—H19B0.9700
C10A—H10A0.9400C19A—H19C0.9700
C11A—H11A0.9400C13B—C14B1.3900
C6B—C7B1.3900C13B—C18B1.3900
C6B—C11B1.3900C14B—C15B1.3900
C7B—C8B1.3900C14B—H14B0.9400
C7B—H7B0.9400C15B—C16B1.3900
C8B—C9B1.3900C15B—H15B0.9400
C8B—H8B0.9400C16B—O6B1.334 (16)
C9B—C10B1.3900C16B—C17B1.3900
C9B—O5B1.40 (3)C17B—C18B1.3900
C10B—C11B1.3900C17B—H17B0.9400
C10B—H10B0.9400C18B—H18B0.9400
C11B—H11B0.9400O6B—C19B1.470 (3)
C6C—C7C1.3900C19B—H19D0.9700
C6C—C11C1.3900C19B—H19E0.9700
C7C—C8C1.3900C19B—H19F0.9700
C7C—H7C0.9400
O1—Ru—O2i178.04 (14)C8C—C7C—H7C120.0
O1—Ru—O4i90.42 (12)C6C—C7C—H7C120.0
O4i—Ru—O2i88.93 (12)C7C—C8C—C9C120.0
O1—Ru—O389.54 (12)C7C—C8C—H8C120.0
O4i—Ru—O3178.61 (13)C9C—C8C—H8C120.0
O2i—Ru—O391.07 (11)C10C—C9C—C8C120.0
O1—Ru—Rui89.23 (10)C10C—C9C—O5C114.3 (7)
O4i—Ru—Rui89.59 (10)C8C—C9C—O5C125.7 (7)
O2i—Ru—Rui88.92 (9)C11C—C10C—C9C120.0
O3—Ru—Rui89.02 (9)C11C—C10C—H10C120.0
O1—Ru—N190.26 (13)C9C—C10C—H10C120.0
O4i—Ru—N188.73 (13)C10C—C11C—C6C120.0
O2i—Ru—N191.57 (13)C10C—C11C—H11C120.0
O3—Ru—N192.66 (13)C6C—C11C—H11C120.0
Rui—Ru—N1178.24 (9)C9A—O5A—C12A118 (3)
C1—O1—Ru119.1 (3)O5A—C12A—H12A109.5
C1—O2—Rui118.7 (3)O5A—C12A—H12B109.5
C3—O3—Ru118.4 (3)H12A—C12A—H12B109.5
C3—O4—Rui118.2 (3)O5A—C12A—H12C109.5
C5—N1—C6B121.6 (6)H12A—C12A—H12C109.5
C5—N1—C6A117.5 (5)H12B—C12A—H12C109.5
C5—N1—C6C99.6 (5)O5B—C12B—H12D109.5
C5—N1—Ru127.3 (4)O5B—C12B—H12E109.5
C6B—N1—Ru110.9 (4)H12D—C12B—H12E109.5
C6A—N1—Ru115.2 (4)O5B—C12B—H12F109.5
C6C—N1—Ru133.0 (3)H12D—C12B—H12F109.5
O1—C1—O2124.0 (4)H12E—C12B—H12F109.5
O1—C1—C2117.8 (5)C9B—O5B—C12B112 (2)
O2—C1—C2118.2 (5)O5C—C12C—H12G109.5
C1—C2—H2A109.5O5C—C12C—H12H109.5
C1—C2—H2B109.5H12G—C12C—H12H109.5
H2A—C2—H2B109.5O5C—C12C—H12I109.5
C1—C2—H2C109.5H12G—C12C—H12I109.5
H2A—C2—H2C109.5H12H—C12C—H12I109.5
H2B—C2—H2C109.5C12C—O5C—C9C116.7 (15)
O3—C3—O4124.8 (4)C5—N2A—C13A124.1 (5)
O3—C3—C4117.9 (4)C5—N2A—H21A117.9
O4—C3—C4117.3 (4)C13A—N2A—H21A117.9
C3—C4—H4A109.5C14A—C13A—C18A120.0
C3—C4—H4B109.5C14A—C13A—N2A115.5 (5)
H4A—C4—H4B109.5C18A—C13A—N2A124.4 (5)
C3—C4—H4C109.5C15A—C14A—C13A120.0
H4A—C4—H4C109.5C15A—C14A—H14A120.0
H4B—C4—H4C109.5C13A—C14A—H14A120.0
N1—C5—N2A123.2 (5)C16A—C15A—C14A120.0
N1—C5—H5A118.4C16A—C15A—H15A120.0
N2A—C5—H5A118.4C14A—C15A—H15A120.0
C7A—C6A—C11A120.0C17A—C16A—C15A120.0
C7A—C6A—N1123.1 (5)C17A—C16A—O6A129.1 (6)
C11A—C6A—N1116.8 (5)C15A—C16A—O6A110.9 (6)
C8A—C7A—C6A120.0C16A—C17A—C18A120.0
C8A—C7A—H7A120.0C16A—C17A—H17A120.0
C6A—C7A—H7A120.0C18A—C17A—H17A120.0
C7A—C8A—C9A120.0C17A—C18A—C13A120.0
C7A—C8A—H8A120.0C17A—C18A—H18A120.0
C9A—C8A—H8A120.0C13A—C18A—H18A120.0
O5A—C9A—C10A114.8 (19)C16A—O6A—C19A111.3 (6)
O5A—C9A—C8A124.9 (19)O6A—C19A—H19A109.5
C10A—C9A—C8A120.0O6A—C19A—H19B109.5
C9A—C10A—C11A120.0H19A—C19A—H19B109.5
C9A—C10A—H10A120.0O6A—C19A—H19C109.5
C11A—C10A—H10A120.0H19A—C19A—H19C109.5
C10A—C11A—C6A120.0H19B—C19A—H19C109.5
C10A—C11A—H11A120.0C14B—C13B—C18B120.0
C6A—C11A—H11A120.0C15B—C14B—C13B120.0
N1—C6B—C7B119.5 (4)C15B—C14B—H14B120.0
N1—C6B—C11B120.3 (4)C13B—C14B—H14B120.0
C7B—C6B—C11B120.0C16B—C15B—C14B120.0
C8B—C7B—C6B120.0C16B—C15B—H15B120.0
C8B—C7B—H7B120.0C14B—C15B—H15B120.0
C6B—C7B—H7B120.0O6B—C16B—C15B131.0 (16)
C7B—C8B—C9B120.0O6B—C16B—C17B107.8 (15)
C7B—C8B—H8B120.0C15B—C16B—C17B120.0
C9B—C8B—H8B120.0C18B—C17B—C16B120.0
C10B—C9B—C8B120.0C18B—C17B—H17B120.0
C10B—C9B—O5B128.1 (11)C16B—C17B—H17B120.0
C8B—C9B—O5B111.9 (11)C17B—C18B—C13B120.0
C11B—C10B—C9B120.0C17B—C18B—H18B120.0
C11B—C10B—H10B120.0C13B—C18B—H18B120.0
C9B—C10B—H10B120.0C16B—O6B—C19B109.4 (17)
C10B—C11B—C6B120.0O6B—C19B—H19D109.5
C10B—C11B—H11B120.0O6B—C19B—H19E109.5
C6B—C11B—H11B120.0H19D—C19B—H19E109.5
C7C—C6C—C11C120.0O6B—C19B—H19F109.5
C7C—C6C—N1113.3 (4)H19D—C19B—H19F109.5
C11C—C6C—N1126.1 (3)H19E—C19B—H19F109.5
C8C—C7C—C6C120.0
O4i—Ru—O1—C191.3 (4)Ru—N1—C6B—C11B121.9 (4)
O3—Ru—O1—C187.4 (4)N1—C6B—C7B—C8B174.7 (7)
Rui—Ru—O1—C11.7 (3)C11B—C6B—C7B—C8B0.0
N1—Ru—O1—C1180.0 (4)C6B—C7B—C8B—C9B0.0
O1—Ru—O3—C388.6 (3)C7B—C8B—C9B—C10B0.0
O2i—Ru—O3—C389.6 (3)C7B—C8B—C9B—O5B178.9 (17)
Rui—Ru—O3—C30.6 (3)C8B—C9B—C10B—C11B0.0
N1—Ru—O3—C3178.8 (3)O5B—C9B—C10B—C11B179 (2)
O1—Ru—N1—C5169.3 (4)C9B—C10B—C11B—C6B0.0
O4i—Ru—N1—C578.9 (4)N1—C6B—C11B—C10B174.6 (7)
O2i—Ru—N1—C510.0 (4)C7B—C6B—C11B—C10B0.0
O3—Ru—N1—C5101.2 (4)C5—N1—C6C—C7C136.0 (4)
O1—Ru—N1—C6B16.5 (3)C6B—N1—C6C—C7C52.2 (4)
O4i—Ru—N1—C6B106.9 (3)C6A—N1—C6C—C7C29.5 (12)
O2i—Ru—N1—C6B164.2 (3)Ru—N1—C6C—C7C46.9 (5)
O3—Ru—N1—C6B73.0 (3)C5—N1—C6C—C11C52.8 (5)
O1—Ru—N1—C6A8.4 (4)C6B—N1—C6C—C11C119.0 (3)
O4i—Ru—N1—C6A98.8 (4)C6A—N1—C6C—C11C141.7 (15)
O2i—Ru—N1—C6A172.3 (4)Ru—N1—C6C—C11C124.3 (4)
O3—Ru—N1—C6A81.2 (4)C11C—C6C—C7C—C8C0.0
O1—Ru—N1—C6C14.4 (4)N1—C6C—C7C—C8C171.8 (5)
O4i—Ru—N1—C6C104.8 (4)C6C—C7C—C8C—C9C0.0
O2i—Ru—N1—C6C166.3 (4)C7C—C8C—C9C—C10C0.0
O3—Ru—N1—C6C75.2 (4)C7C—C8C—C9C—O5C178.5 (9)
Ru—O1—C1—O22.3 (6)C8C—C9C—C10C—C11C0.0
Ru—O1—C1—C2179.6 (4)O5C—C9C—C10C—C11C178.7 (8)
Rui—O2—C1—O11.5 (6)C9C—C10C—C11C—C6C0.0
Rui—O2—C1—C2179.6 (4)C7C—C6C—C11C—C10C0.0
Ru—O3—C3—O41.4 (5)N1—C6C—C11C—C10C170.6 (6)
Ru—O3—C3—C4178.9 (3)C10A—C9A—O5A—C12A179.7 (19)
Rui—O4—C3—O31.5 (5)C8A—C9A—O5A—C12A7 (3)
Rui—O4—C3—C4178.9 (3)C10B—C9B—O5B—C12B2 (3)
C6B—N1—C5—N2A172.9 (5)C8B—C9B—O5B—C12B179.5 (17)
C6A—N1—C5—N2A178.4 (5)C10C—C9C—O5C—C12C166.3 (14)
C6C—N1—C5—N2A176.5 (4)C8C—C9C—O5C—C12C15.0 (19)
Ru—N1—C5—N2A0.8 (6)N1—C5—N2A—C13A179.2 (5)
C5—N1—C6A—C7A56.6 (8)C5—N2A—C13A—C14A178.9 (4)
C6B—N1—C6A—C7A177 (4)C5—N2A—C13A—C18A5.3 (7)
C6C—N1—C6A—C7A72.7 (12)C18A—C13A—C14A—C15A0.0
Ru—N1—C6A—C7A121.3 (5)N2A—C13A—C14A—C15A175.9 (5)
C5—N1—C6A—C11A118.9 (5)C13A—C14A—C15A—C16A0.0
C6B—N1—C6A—C11A1 (3)C14A—C15A—C16A—C17A0.0
C6C—N1—C6A—C11A102.8 (15)C14A—C15A—C16A—O6A178.4 (9)
Ru—N1—C6A—C11A63.2 (6)C15A—C16A—C17A—C18A0.0
C11A—C6A—C7A—C8A0.0O6A—C16A—C17A—C18A178.1 (11)
N1—C6A—C7A—C8A175.4 (8)C16A—C17A—C18A—C13A0.0
C6A—C7A—C8A—C9A0.0C14A—C13A—C18A—C17A0.0
C7A—C8A—C9A—O5A173.4 (16)N2A—C13A—C18A—C17A175.6 (6)
C7A—C8A—C9A—C10A0.0C17A—C16A—O6A—C19A17.3 (17)
O5A—C9A—C10A—C11A174.0 (14)C15A—C16A—O6A—C19A164.5 (10)
C8A—C9A—C10A—C11A0.0C18B—C13B—C14B—C15B0.0
C9A—C10A—C11A—C6A0.0C13B—C14B—C15B—C16B0.0
C7A—C6A—C11A—C10A0.0C14B—C15B—C16B—O6B166 (2)
N1—C6A—C11A—C10A175.7 (8)C14B—C15B—C16B—C17B0.0
C5—N1—C6B—C7B122.0 (5)O6B—C16B—C17B—C18B169.1 (17)
C6A—N1—C6B—C7B58 (3)C15B—C16B—C17B—C18B0.0
C6C—N1—C6B—C7B112.5 (4)C16B—C17B—C18B—C13B0.0
Ru—N1—C6B—C7B63.4 (5)C14B—C13B—C18B—C17B0.0
C5—N1—C6B—C11B52.7 (7)C15B—C16B—O6B—C19B16 (3)
C6A—N1—C6B—C11B117 (3)C17B—C16B—O6B—C19B176.9 (17)
C6C—N1—C6B—C11B62.2 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H21A···O2i0.871.972.796 (5)158
N2B—H21B···O2i0.871.992.796 (5)154
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ru2(C2H3O2)4(C15H16N2O2)2]
Mr950.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)213
a, b, c (Å)15.2123 (14), 14.7393 (13), 8.9550 (8)
β (°) 104.649 (2)
V3)1942.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.38 × 0.35 × 0.26
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
[SADABS; Blessing (1995) and Bruker (2003)]
Tmin, Tmax0.739, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
12766, 4460, 3289
Rint0.043
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.134, 1.11
No. of reflections4460
No. of parameters342
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.48, 0.85

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2001), CIFTAB in SHELXTL.

Selected geometric parameters (Å, º) top
Ru—Rui2.2847 (8)Ru—O32.072 (3)
Ru—O12.055 (3)Ru—O4i2.062 (3)
Ru—O2i2.067 (3)Ru—N12.374 (4)
O1—Ru—O2i178.04 (14)O2i—Ru—O391.07 (11)
O1—Ru—O4i90.42 (12)O1—Ru—N190.26 (13)
O4i—Ru—O2i88.93 (12)O4i—Ru—N188.73 (13)
O1—Ru—O389.54 (12)O2i—Ru—N191.57 (13)
O4i—Ru—O3178.61 (13)O3—Ru—N192.66 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H21A···O2i0.871.972.796 (5)158
N2B—H21B···O2i0.871.992.796 (5)154
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds