Download citation
Download citation
link to html
The title compound, [Ru2(C13H11N2)3(C2H3O2)(C2H3N)]BF4·0.5CH2Cl2 or [Ru2(μ-DPhF)3(μ-O2CMe)(MeCN)]BF4·0.5CH2Cl2, where DPhF is N,N′-diphenyl­formamidinate, crystallized as dark-blue block-shaped crystals. In the unit cell, the diruthenium cation lies on a general position, and the BF4 anions reside on two independent special positions with crystallographic twofold symmetry. Disorder was observed for one of the phenyl groups in the formamidinate ligand, the axial aceto­nitrile mol­ecule and the interstitial di­chloro­methane mol­ecule. The compound, which exhibits a long Ru—Ru bond of 2.4131 (5) Å, is the first {Ru2}5+ formamidin­ate species that is both equatorially and axially functionalized so that it can be used as a precursor for polymeric paramagnetic supramolecular assemblies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104032408/fr1512sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104032408/fr1512Isup2.hkl
Contains datablock I

CCDC reference: 264780

Comment top

In our efforts to synthesize paramagnetic diruthenium complexes with a mixed set of labile and non-labile bridging ligands that can be used as building block precursors for the construction of paramagnetic supramolecular assemblies, we have prepared complexes of the Ru25+ core of the general type Ru2(O2CMe)4-n(DArF)nCl [n = 1, 2, 3 and 4, and DArF is N,N'-di(aryl)formamidinate], which are paramagnetic with three unpaired electrons. In these compounds, the equatorial formamidinate groups are non-labile, while the acetate groups are easily exchanged by various linkers. We have reported the syntheses and magnetic properties of the mono- formamidinate complex Ru2(O2CMe)3(D2,6XylF)Cl, where D2,6XylF is N,N'-di(2,6-xylyl)formamidinato (Angaridis, Cotton et al., 2004), the bis-formamidinate complexes trans-Ru2(O2CMe)2(D2,6XylF)2Cl and cis-Ru2(O2CMe)2(DAniF)2Cl, where DAniF is N,N'-di(p-anisyl)formamidinato (Angaridis et al., 2003), and the tris-formamidinate complex Ru2(O2CMe)(DAniF)3Cl (Angaridis, Cotton et al., 2004). The last two complexes have been used for the construction of the first paramagnetic molecular squares and molecular pairs, respectively, by replacing the labile acetate groups with dicarboxylate linkers. The monoformamidinate and both cis and trans bisformamidinate Ru25+ complexes have been characterized, while all attempts to obtain suitable diffracting crystals of the trisformamidinate complex have been unsuccessful.

In this report, we present the crystal structure of a new trisformamidinate complex, [Ru2(O2CMe)(DPhF)3(MeCN)](BF4), (I) (scheme 1), in which the axial chloride anion is replaced by a very labile acetonitrile molecule. At first glance this compound appears similar to Ru2(O2CMe)(DPhF)3Cl [DPhF is N,N'-di(phenyl)formamidinato; Barral et al., 2004] and Ru2(O2CMe)(DAnioF)2(O-DAnioF), where DAnioF is N,N'-di(o-methoxyphenyl)formamidinato and O-DAnioF is the o-methoxyphenyl(o-oxyphenyl)formamidinate dianion derived from the previous formamidinate monoanion by removal of a methyl group of one of the methoxy groups (Ren et al., 1999). However, there is an important difference in that compound (I) is further functionalized as a precursor for supramolecular arrays, because the axial positions are readily available for coordination to suitable linkers, which could allow the construction of higher-order architectures.

Complex (I) was synthesized from the reaction of Ru2(O2CMe)4Cl with three equivalents of HDPhF in MeCN in the presence of LiCl and Et3N, followed by the addition of one equivalent of HBF4 in Et2O. Complex (I) was crystallized together with one-half of an equivalent of CH2Cl2 from a mixture of MeCN, CH2Cl2 and Et2O at 270 K. As shown in Fig. 1, the Ru25+ unit, which lies on general position in the unit cell, is coordinated by three DPhF ligands and one acetate group, forming the well known paddlewheel structure with eclipsed geometry. The BF4 anions lie on two independent twofold axes. The Ru1—Ru2 bond length [2.4131 (5) Å; Table 1] is significantly longer than the Ru—Ru distances in the trisformamidinate complexes Ru2(O2CMe)(DPhF)3Cl [2.325 (2) Å] (Barral et al., 2004) and [Ru2(DAniF)3Cl](µ-O2CC6H4CO2)[Ru2(DAniF)3Cl], in which the average of the Ru—Ru distances is 2.329 (2)] Å (Angaridis, Berry et al., 2004). It is also longer than the metal–metal distances observed in the Ru25+ tetraformamidinate complexes with a chloride anion as axial ligand (2.34–2.40 Å; Cotton & Ren, 1995; Bear et al., 1996). This difference can be attributed to the axially coordinated MeCN molecule in (I). It appears that the σ-bonding interaction with the dimetalic core increases the anti-bonding σ* electron density between the two metals, resulting in the lengthening of the Ru—Ru bond because of the ability of the MeCN ligand to act as σ donor. A π back-bonding interaction is possibly present to a small degree, as evidenced by the short Ru1—N10 distance of 2.166 (4) Å. The Ru1—O2 and Ru2—O1 distances are longer than the Ru—O distances in the Ru25+ tetracarboxylate complexes (Bino et al., 1979). This difference can be ascribed to the strong trans influence of the formamidinate ligands, which has been shown to affect metal–metal bonded systems (Cotton et al., 2004). The Ru—N distances are slightly shorter than those in the Ru25+ tetraformamidinate complexes (1.997–2.057 Å). The equatorial N atoms coordinated to atom Ru1, which is axially coordinated to the MeCN molecule, have slightly longer distances than the N atoms coordinated to atom Ru2 [2.041 (4)–2.057 (4) versus 1.997 (3)–2.017 (4) Å]. This difference can be attributed to steric repulsion between the DPhF ligands and the MeCN molecule.

Experimental top

To a mixture of Ru2(O2CMe)4Cl (237 mg, 0.500 mmol), HDPhF (294 mg, 1.50 mmol), Et3N (202 mg, 2.00 mmol) and LiCl (500 mg) was added MeCN (30 ml). The mixture was stirred and heated at 323 K for 18 h and HBF4 (54 wt%) solution in Et2O was then added (0.09 ml). The resulting dark-blue solution was stirred at room temperature for 2 h. After the solution had been concentrated to half of its original volume, CH2Cl2 (5 ml) was added and the resulting solution was layered with Et2O (60 ml). Dark-blue crystals of (I) grew at about 270 K over a period of one week.

Refinement top

During refinement, all H atoms were treated as riding atoms, with phenyl C—H distances of 0.94 Å and methyl C—H distances of 0.97 Å, and with Uiso(H) values of 1.2Ueq(C) for phenyl and formamidine groups and 1.5Ueq(C) for methyl groups. One of the phenyl groups in the DPhF ligands and the axially coordinated MeCN molecule are both disordered over two positions. The dichloromethane molecule is disordered about a twofold axis. The disordered moieties were modeled with distance constraints. Non-H atoms, except the disordered dichloromethane molecule, were refined anisotropically. The largest difference map peak is 0.85 Å from atom Ru1, and the largest negative peak is 0.68 Å from atom Cl1.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001); software used to prepare material for publication: CIFTAB in SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation in [Ru2(DPhF)3(O2CMe)(MeCN)] (BF4), with ellipsoids at the 35% probability level. Only one orientation for the disordered phenyl group and the axially coordinated MeCN molecule is shown. H atoms have been omitted for clarity.
(µ-acetato)acetonitriletris(µ-N,N'-diphenylformamidinato)diruthenium tetrafluoroborate dichloromethane hemisolvate top
Crystal data top
[Ru2(C13H11N2)3(C2H3O2)(C2H3N)]BF4·0.5CH2Cl2F(000) = 4096
Mr = 1017.23Dx = 1.536 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 6767 reflections
a = 18.0977 (12) Åθ = 2.4–27.5°
b = 37.603 (3) ŵ = 0.81 mm1
c = 12.9239 (9) ÅT = 213 K
V = 8795.2 (10) Å3Block, dark blue
Z = 80.30 × 0.24 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
10087 independent reflections
Radiation source: normal-focus sealed tube8029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Bruker, 2003)
h = 2123
Tmin = 0.793, Tmax = 0.855k = 3648
54752 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.81 w = 1/[σ2(Fo2) + (0.0405P)2 + 4P]
where P = (Fo2 + 2Fc2)/3
10087 reflections(Δ/σ)max = 0.001
565 parametersΔρmax = 1.18 e Å3
7 restraintsΔρmin = 1.25 e Å3
Crystal data top
[Ru2(C13H11N2)3(C2H3O2)(C2H3N)]BF4·0.5CH2Cl2V = 8795.2 (10) Å3
Mr = 1017.23Z = 8
Orthorhombic, PnnaMo Kα radiation
a = 18.0977 (12) ŵ = 0.81 mm1
b = 37.603 (3) ÅT = 213 K
c = 12.9239 (9) Å0.30 × 0.24 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
10087 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995; Bruker, 2003)
8029 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.855Rint = 0.030
54752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0567 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.81Δρmax = 1.18 e Å3
10087 reflectionsΔρmin = 1.25 e Å3
565 parameters
Special details top

Experimental. The disordered dichloromethane molecule was refined isotropically.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.623280 (18)0.355318 (9)0.48021 (2)0.03100 (10)
Ru20.620260 (18)0.346295 (9)0.29539 (2)0.02949 (10)
B10.7012 (6)0.25000.75000.074 (3)
B20.75000.50000.2714 (11)0.080 (3)
F10.6568 (3)0.23527 (16)0.6759 (4)0.1171 (17)
F20.7441 (2)0.27493 (13)0.7025 (4)0.1033 (16)
F30.7293 (4)0.47127 (12)0.3278 (4)0.131 (2)
F40.6930 (3)0.50900 (12)0.2047 (4)0.1155 (16)
O10.67920 (17)0.30039 (8)0.3120 (2)0.0370 (7)
O20.68009 (19)0.30819 (10)0.4885 (3)0.0515 (9)
N100.6302 (2)0.36205 (12)0.6464 (3)0.0445 (10)
N10.7214 (2)0.38191 (9)0.4592 (3)0.0334 (8)
N20.71513 (19)0.37321 (9)0.2822 (3)0.0308 (7)
N30.5656 (2)0.40138 (10)0.4588 (3)0.0352 (8)
N40.56483 (19)0.39196 (9)0.2815 (3)0.0315 (7)
N50.5262 (2)0.32696 (10)0.4875 (3)0.0368 (8)
N60.5270 (2)0.31735 (9)0.3103 (3)0.0353 (8)
C90.7391 (3)0.25531 (15)0.4105 (4)0.0563 (14)
H9A0.74580.24570.34150.084*
H9B0.71200.23840.45260.084*
H9C0.78700.25980.44160.084*
C100.7487 (2)0.38622 (11)0.3652 (3)0.0337 (9)
H10A0.79310.39890.35690.040*
C110.7666 (3)0.39604 (13)0.5410 (3)0.0399 (11)
C120.7992 (3)0.37358 (15)0.6124 (4)0.0499 (13)
H12A0.79100.34890.60830.060*
C130.8441 (3)0.38729 (18)0.6901 (4)0.0616 (16)
H13A0.86710.37180.73740.074*
C140.8547 (4)0.4228 (2)0.6979 (5)0.0719 (18)
H14A0.88450.43210.75110.086*
C150.8224 (6)0.4450 (2)0.6292 (6)0.110 (3)
H15A0.83040.46960.63510.132*
C160.7776 (4)0.43226 (17)0.5498 (5)0.082 (2)
H16A0.75530.44810.50300.099*
C210.7487 (2)0.37776 (12)0.1835 (3)0.0357 (9)
C220.7469 (3)0.34955 (15)0.1145 (4)0.0519 (13)
H22A0.72350.32810.13310.062*
C230.7795 (4)0.3530 (2)0.0180 (5)0.077 (2)
H23A0.77830.33390.02890.092*
C240.8133 (4)0.3837 (2)0.0091 (5)0.086 (2)
H24A0.83590.38570.07430.103*
C250.8145 (4)0.4122 (2)0.0585 (5)0.085 (2)
H25A0.83750.43360.03900.102*
C260.7818 (3)0.40912 (16)0.1551 (4)0.0570 (14)
H26A0.78220.42850.20110.068*
C300.5489 (2)0.41149 (12)0.3640 (3)0.0370 (10)
H30A0.52480.43340.35460.044*
C31A0.5397 (3)0.42474 (13)0.5390 (3)0.0418 (11)0.502 (5)
C32A0.4658 (6)0.4298 (3)0.5515 (8)0.057 (2)0.502 (5)
H32A0.43260.41800.50730.068*0.502 (5)
C33A0.4385 (8)0.4520 (4)0.6287 (9)0.071 (3)0.502 (5)
H33A0.38730.45470.63780.085*0.502 (5)
C34A0.4870 (5)0.46996 (18)0.6913 (5)0.079 (2)0.502 (5)
H34A0.46920.48750.73660.095*0.502 (5)
C35A0.5633 (9)0.4624 (3)0.6887 (10)0.072 (2)0.502 (5)
H35A0.59550.47200.73850.086*0.502 (5)
C36A0.5899 (7)0.4402 (3)0.6100 (9)0.060 (3)0.502 (5)
H36A0.64080.43550.60440.072*0.502 (5)
C31B0.5397 (3)0.42474 (13)0.5390 (3)0.0418 (11)0.498 (5)
C32B0.4896 (6)0.4130 (4)0.6138 (8)0.057 (2)0.498 (5)
H32B0.47260.38940.61430.068*0.498 (5)
C33B0.4655 (8)0.4375 (4)0.6879 (10)0.071 (3)0.498 (5)
H33B0.43150.42970.73810.085*0.498 (5)
C34B0.4870 (5)0.46996 (18)0.6913 (5)0.079 (2)0.498 (5)
H34B0.47070.48500.74480.095*0.498 (5)
C35B0.5356 (8)0.4832 (3)0.6142 (9)0.072 (2)0.498 (5)
H35B0.54980.50720.61380.086*0.498 (5)
C36B0.5620 (8)0.4597 (3)0.5386 (10)0.072 (2)0.498 (5)
H36B0.59500.46780.48770.086*0.498 (5)
C410.5522 (3)0.40796 (13)0.1830 (3)0.0393 (10)
C420.5161 (3)0.38878 (15)0.1065 (4)0.0503 (12)
H42A0.50040.36530.11920.060*
C430.5033 (4)0.4045 (2)0.0113 (4)0.0695 (18)
H43A0.47960.39150.04130.083*
C440.5254 (5)0.4393 (2)0.0069 (5)0.083 (2)
H44A0.51570.45010.07110.100*
C450.5613 (5)0.45795 (17)0.0695 (5)0.084 (2)
H45A0.57580.48160.05720.100*
C460.5765 (4)0.44247 (15)0.1645 (4)0.0583 (15)
H46A0.60280.45510.21540.070*
C500.4963 (2)0.31307 (12)0.4030 (4)0.0374 (10)
H50A0.45240.29990.40870.045*
C510.4878 (3)0.31902 (13)0.5818 (4)0.0422 (11)
C520.5226 (3)0.30136 (16)0.6604 (4)0.0591 (15)
H52A0.57130.29320.65180.071*
C530.4855 (3)0.29555 (18)0.7530 (5)0.0699 (18)
H53A0.51050.28420.80760.084*
C540.4156 (4)0.3056 (2)0.7667 (5)0.082 (2)
H54A0.39240.30280.83130.098*
C550.3777 (4)0.3202 (2)0.6836 (5)0.078 (2)
H55A0.32700.32530.68990.094*
C560.4139 (3)0.32738 (18)0.5917 (5)0.0656 (17)
H56A0.38830.33790.53630.079*
C610.4943 (3)0.30080 (12)0.2226 (4)0.0392 (10)
C620.4186 (3)0.29581 (13)0.2111 (4)0.0477 (12)
H62A0.38610.30260.26430.057*
C630.3912 (3)0.28082 (15)0.1210 (4)0.0576 (15)
H63A0.34010.27680.11450.069*
C640.4381 (3)0.27161 (14)0.0399 (4)0.0585 (15)
H64A0.41890.26250.02220.070*
C650.5133 (3)0.27612 (15)0.0520 (4)0.0568 (14)
H65A0.54580.26920.00110.068*
C660.5410 (3)0.29078 (14)0.1420 (4)0.0509 (13)
H66A0.59230.29410.14890.061*
C700.6967 (2)0.28932 (12)0.4041 (3)0.0376 (10)
C710.6331 (6)0.3591 (3)0.7334 (5)0.054 (2)0.691 (12)
C720.6353 (8)0.3591 (5)0.8450 (7)0.124 (6)0.691 (12)
H72D0.67460.37460.86860.186*0.691 (12)
H72E0.64430.33510.86950.186*0.691 (12)
H72F0.58840.36750.87190.186*0.691 (12)
C71B0.6353 (14)0.3779 (6)0.7258 (12)0.054 (2)0.309 (12)
C72B0.6439 (19)0.3938 (11)0.8260 (15)0.124 (6)0.309 (12)
H72A0.60080.38860.86800.186*0.309 (12)
H72B0.64920.41930.81850.186*0.309 (12)
H72C0.68760.38420.85930.186*0.309 (12)
C1S0.7316 (7)0.4890 (7)0.9462 (17)0.226 (15)*0.50
H11S0.73920.49551.01880.272*0.50
H12S0.72440.46320.94170.272*0.50
Cl10.6535 (4)0.5120 (2)0.8940 (7)0.184 (3)*0.50
Cl20.8080 (4)0.5025 (3)0.8696 (8)0.231 (4)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03311 (19)0.03554 (19)0.02433 (17)0.00172 (15)0.00160 (14)0.00148 (12)
Ru20.03060 (18)0.03149 (18)0.02636 (17)0.00056 (14)0.00234 (13)0.00028 (12)
B10.046 (5)0.108 (9)0.070 (7)0.0000.0000.037 (6)
B20.101 (9)0.048 (6)0.091 (9)0.012 (6)0.0000.000
F10.101 (3)0.154 (5)0.096 (3)0.010 (3)0.028 (3)0.009 (3)
F20.073 (3)0.109 (4)0.128 (4)0.005 (2)0.009 (2)0.067 (3)
F30.243 (7)0.071 (3)0.080 (3)0.001 (4)0.014 (4)0.022 (2)
F40.121 (4)0.070 (3)0.155 (5)0.017 (3)0.018 (3)0.019 (3)
O10.0375 (16)0.0316 (16)0.0419 (17)0.0030 (13)0.0039 (13)0.0003 (13)
O20.048 (2)0.052 (2)0.054 (2)0.0000 (17)0.0077 (16)0.0017 (17)
N100.033 (2)0.064 (3)0.037 (2)0.0050 (19)0.0029 (16)0.0042 (18)
C710.067 (4)0.065 (6)0.030 (3)0.033 (6)0.003 (3)0.020 (4)
C720.144 (10)0.198 (17)0.030 (4)0.017 (13)0.010 (6)0.008 (7)
C71B0.067 (4)0.065 (6)0.030 (3)0.033 (6)0.003 (3)0.020 (4)
C72B0.144 (10)0.198 (17)0.030 (4)0.017 (13)0.010 (6)0.008 (7)
N10.0377 (19)0.0308 (19)0.0316 (19)0.0018 (15)0.0034 (15)0.0052 (14)
N20.0351 (18)0.0289 (18)0.0284 (17)0.0010 (15)0.0010 (14)0.0016 (13)
N30.041 (2)0.033 (2)0.0318 (19)0.0077 (16)0.0044 (15)0.0005 (14)
N40.0295 (18)0.0356 (19)0.0294 (17)0.0026 (15)0.0016 (14)0.0047 (14)
N50.0343 (19)0.038 (2)0.038 (2)0.0008 (16)0.0006 (15)0.0093 (16)
N60.037 (2)0.0295 (19)0.040 (2)0.0022 (15)0.0055 (16)0.0012 (15)
C90.066 (4)0.046 (3)0.058 (3)0.017 (3)0.014 (3)0.000 (2)
C100.036 (2)0.031 (2)0.034 (2)0.0009 (18)0.0020 (17)0.0035 (17)
C110.042 (3)0.049 (3)0.029 (2)0.005 (2)0.0026 (18)0.0088 (19)
C120.049 (3)0.051 (3)0.049 (3)0.007 (2)0.010 (2)0.013 (2)
C130.055 (3)0.084 (5)0.046 (3)0.010 (3)0.013 (3)0.013 (3)
C140.071 (4)0.090 (5)0.055 (4)0.016 (4)0.019 (3)0.023 (3)
C150.178 (9)0.057 (4)0.094 (6)0.027 (5)0.062 (6)0.019 (4)
C160.123 (6)0.050 (4)0.074 (4)0.019 (4)0.047 (4)0.000 (3)
C210.033 (2)0.044 (3)0.030 (2)0.0014 (19)0.0029 (17)0.0017 (18)
C220.060 (3)0.058 (3)0.038 (3)0.000 (3)0.006 (2)0.009 (2)
C230.084 (5)0.108 (6)0.039 (3)0.002 (4)0.011 (3)0.023 (3)
C240.091 (5)0.126 (7)0.040 (3)0.022 (5)0.025 (3)0.003 (4)
C250.089 (5)0.107 (6)0.059 (4)0.034 (4)0.021 (4)0.017 (4)
C260.065 (3)0.063 (4)0.043 (3)0.015 (3)0.009 (3)0.002 (2)
C300.038 (2)0.037 (2)0.036 (2)0.0093 (19)0.0007 (18)0.0003 (18)
C31A0.051 (3)0.042 (3)0.032 (2)0.010 (2)0.002 (2)0.0009 (19)
C32A0.057 (5)0.071 (6)0.042 (4)0.007 (4)0.007 (4)0.012 (4)
C33A0.075 (7)0.092 (8)0.046 (5)0.019 (5)0.021 (5)0.009 (5)
C34A0.115 (6)0.055 (4)0.068 (4)0.022 (4)0.024 (4)0.017 (3)
C35A0.112 (7)0.040 (4)0.064 (5)0.002 (4)0.014 (4)0.015 (3)
C36A0.065 (7)0.050 (7)0.066 (8)0.003 (6)0.007 (6)0.013 (6)
C31B0.051 (3)0.042 (3)0.032 (2)0.010 (2)0.002 (2)0.0009 (19)
C32B0.057 (5)0.071 (6)0.042 (4)0.007 (4)0.007 (4)0.012 (4)
C33B0.075 (7)0.092 (8)0.046 (5)0.019 (5)0.021 (5)0.009 (5)
C34B0.115 (6)0.055 (4)0.068 (4)0.022 (4)0.024 (4)0.017 (3)
C35B0.112 (7)0.040 (4)0.064 (5)0.002 (4)0.014 (4)0.015 (3)
C36B0.112 (7)0.040 (4)0.064 (5)0.002 (4)0.014 (4)0.015 (3)
C410.038 (2)0.046 (3)0.034 (2)0.011 (2)0.0025 (19)0.0053 (19)
C420.056 (3)0.056 (3)0.039 (3)0.003 (3)0.005 (2)0.007 (2)
C430.086 (5)0.080 (5)0.043 (3)0.011 (4)0.014 (3)0.004 (3)
C440.132 (7)0.076 (5)0.042 (3)0.030 (5)0.000 (4)0.023 (3)
C450.146 (7)0.048 (4)0.056 (4)0.019 (4)0.013 (4)0.016 (3)
C460.087 (4)0.045 (3)0.042 (3)0.007 (3)0.005 (3)0.006 (2)
C500.030 (2)0.035 (2)0.047 (3)0.0029 (18)0.0042 (19)0.0080 (19)
C510.034 (2)0.049 (3)0.044 (3)0.005 (2)0.006 (2)0.013 (2)
C520.059 (3)0.066 (4)0.052 (3)0.018 (3)0.014 (3)0.024 (3)
C530.071 (4)0.083 (5)0.056 (4)0.019 (3)0.012 (3)0.038 (3)
C540.066 (4)0.115 (6)0.064 (4)0.022 (4)0.028 (3)0.043 (4)
C550.058 (4)0.092 (5)0.085 (5)0.019 (4)0.029 (3)0.027 (4)
C560.058 (3)0.078 (4)0.061 (4)0.017 (3)0.008 (3)0.023 (3)
C610.044 (3)0.029 (2)0.044 (3)0.0042 (19)0.011 (2)0.0040 (18)
C620.048 (3)0.039 (3)0.056 (3)0.007 (2)0.015 (2)0.008 (2)
C630.058 (3)0.047 (3)0.067 (4)0.012 (3)0.031 (3)0.011 (3)
C640.079 (4)0.042 (3)0.054 (3)0.009 (3)0.029 (3)0.003 (2)
C650.069 (4)0.055 (3)0.047 (3)0.005 (3)0.010 (3)0.008 (2)
C660.051 (3)0.048 (3)0.054 (3)0.009 (2)0.010 (2)0.007 (2)
C700.036 (2)0.039 (3)0.037 (2)0.0006 (19)0.0063 (19)0.0019 (19)
Geometric parameters (Å, º) top
Ru1—Ru22.4131 (5)C23—H23A0.9400
Ru1—N32.041 (4)C24—C251.382 (10)
Ru1—O22.052 (4)C24—H24A0.9400
Ru1—N12.057 (4)C25—C261.388 (8)
Ru1—N52.057 (4)C25—H25A0.9400
Ru1—N102.166 (4)C26—H26A0.9400
Ru2—N41.997 (3)C30—H30A0.9400
Ru2—N22.000 (3)C31A—C32A1.361 (12)
Ru2—N62.017 (4)C31A—C36A1.415 (13)
Ru2—O12.041 (3)C32A—C33A1.393 (15)
B1—F21.363 (7)C32A—H32A0.9400
B1—F2i1.363 (7)C33A—C34A1.371 (16)
B1—F11.368 (7)C33A—H33A0.9400
B1—F1i1.368 (7)C34A—C35A1.410 (16)
B2—F3ii1.356 (8)C34A—H34A0.9400
B2—F31.356 (8)C35A—C36A1.401 (15)
B2—F41.387 (9)C35A—H35A0.9400
B2—F4ii1.387 (9)C36A—H36A0.9400
O1—C701.301 (5)C32B—C33B1.399 (16)
O2—C701.335 (6)C32B—H32B0.9400
N10—C711.131 (8)C33B—H33B0.9400
N10—C71B1.191 (13)C35B—C36B1.401 (15)
C71—C721.442 (10)C35B—H35B0.9400
C72—H72D0.9700C36B—H36B0.9400
C72—H72E0.9700C41—C421.388 (7)
C72—H72F0.9700C41—C461.391 (7)
C71B—C72B1.434 (17)C42—C431.384 (7)
C72B—H72A0.9700C42—H42A0.9400
C72B—H72B0.9700C43—C441.389 (10)
C72B—H72C0.9700C43—H43A0.9400
N1—C101.321 (5)C44—C451.375 (10)
N1—C111.438 (5)C44—H44A0.9400
N2—C101.326 (5)C45—C461.386 (8)
N2—C211.423 (5)C45—H45A0.9400
N3—C301.317 (5)C46—H46A0.9400
N3—C31A1.437 (5)C50—H50A0.9400
N4—C301.326 (5)C51—C521.367 (7)
N4—C411.426 (5)C51—C561.380 (7)
N5—C501.327 (6)C52—C531.389 (7)
N5—C511.435 (6)C52—H52A0.9400
N6—C501.330 (6)C53—C541.332 (8)
N6—C611.422 (5)C53—H53A0.9400
C9—C701.493 (7)C54—C551.388 (9)
C9—H9A0.9700C54—H54A0.9400
C9—H9B0.9700C55—C561.383 (8)
C9—H9C0.9700C55—H55A0.9400
C10—H10A0.9400C56—H56A0.9400
C11—C161.381 (8)C61—C621.392 (7)
C11—C121.383 (7)C61—C661.394 (7)
C12—C131.391 (7)C62—C631.385 (7)
C12—H12A0.9400C62—H62A0.9400
C13—C141.354 (9)C63—C641.393 (8)
C13—H13A0.9400C63—H63A0.9400
C14—C151.350 (10)C64—C651.380 (8)
C14—H14A0.9400C64—H64A0.9400
C15—C161.392 (8)C65—C661.381 (7)
C15—H15A0.9400C65—H65A0.9400
C16—H16A0.9400C66—H66A0.9400
C21—C261.373 (7)C1S—Cl21.775 (9)
C21—C221.386 (6)C1S—Cl11.789 (9)
C22—C231.387 (7)C1S—H11S0.9800
C22—H22A0.9400C1S—H12S0.9800
C23—C241.353 (10)
N3—Ru1—O2175.09 (14)C23—C22—H22A120.1
N3—Ru1—N190.64 (14)C24—C23—C22120.3 (6)
O2—Ru1—N189.65 (14)C24—C23—H23A119.8
N3—Ru1—N590.56 (15)C22—C23—H23A119.8
O2—Ru1—N588.72 (14)C23—C24—C25120.4 (6)
N1—Ru1—N5174.69 (14)C23—C24—H24A119.8
N3—Ru1—N1093.75 (15)C25—C24—H24A119.8
O2—Ru1—N1091.15 (15)C24—C25—C26119.8 (6)
N1—Ru1—N1091.38 (14)C24—C25—H25A120.1
N5—Ru1—N1093.70 (15)C26—C25—H25A120.1
N3—Ru1—Ru288.47 (10)C21—C26—C25119.9 (6)
O2—Ru1—Ru286.65 (10)C21—C26—H26A120.0
N1—Ru1—Ru287.54 (9)C25—C26—H26A120.0
N5—Ru1—Ru287.33 (10)N3—C30—N4122.5 (4)
N10—Ru1—Ru2177.54 (11)N3—C30—H30A118.7
N4—Ru2—N289.33 (14)N4—C30—H30A118.7
N4—Ru2—N693.00 (14)C32A—C31A—C36A119.8 (7)
N2—Ru2—N6177.63 (14)C32A—C31A—N3119.4 (6)
N4—Ru2—O1178.33 (13)C36A—C31A—N3120.6 (6)
N2—Ru2—O189.33 (13)C31A—C32A—C33A121.1 (11)
N6—Ru2—O188.33 (13)C31A—C32A—H32A119.4
N4—Ru2—Ru188.82 (10)C33A—C32A—H32A119.4
N2—Ru2—Ru189.65 (9)C34A—C33A—C32A119.5 (12)
N6—Ru2—Ru190.02 (10)C34A—C33A—H33A120.3
O1—Ru2—Ru190.17 (8)C32A—C33A—H33A120.3
F2—B1—F2i110.7 (8)C33A—C34A—C35A120.9 (8)
F2—B1—F1107.3 (3)C33A—C34A—H34A119.6
F2i—B1—F1111.8 (3)C35A—C34A—H34A119.6
F2—B1—F1i111.8 (3)C36A—C35A—C34A118.3 (12)
F2i—B1—F1i107.3 (3)C36A—C35A—H35A120.8
F1—B1—F1i108.0 (8)C34A—C35A—H35A120.8
F3ii—B2—F3115.0 (11)C35A—C36A—C31A119.7 (11)
F3ii—B2—F4110.2 (3)C35A—C36A—H36A120.2
F3—B2—F4108.8 (3)C31A—C36A—H36A120.2
F3ii—B2—F4ii108.8 (3)C33B—C32B—H32B121.1
F3—B2—F4ii110.2 (3)C32B—C33B—H33B118.1
F4—B2—F4ii103.1 (10)C36B—C35B—H35B120.6
C70—O1—Ru2119.6 (3)C35B—C36B—H36B120.0
C70—O2—Ru1122.0 (3)C42—C41—C46120.7 (5)
C71—N10—Ru1167.7 (7)C42—C41—N4119.5 (4)
C71B—N10—Ru1156.6 (13)C46—C41—N4119.8 (4)
N10—C71—C72174.4 (11)C43—C42—C41119.4 (6)
C71—C72—H72D109.5C43—C42—H42A120.3
C71—C72—H72E109.5C41—C42—H42A120.3
H72D—C72—H72E109.5C42—C43—C44120.3 (6)
C71—C72—H72F109.5C42—C43—H43A119.9
H72D—C72—H72F109.5C44—C43—H43A119.9
H72E—C72—H72F109.5C45—C44—C43119.7 (6)
N10—C71B—C72B174 (2)C45—C44—H44A120.1
C71B—C72B—H72A109.5C43—C44—H44A120.1
C71B—C72B—H72B109.5C44—C45—C46121.0 (6)
H72A—C72B—H72B109.5C44—C45—H45A119.5
C71B—C72B—H72C109.5C46—C45—H45A119.5
H72A—C72B—H72C109.5C45—C46—C41118.8 (6)
H72B—C72B—H72C109.5C45—C46—H46A120.6
C10—N1—C11114.8 (4)C41—C46—H46A120.6
C10—N1—Ru1120.2 (3)N5—C50—N6121.6 (4)
C11—N1—Ru1125.0 (3)N5—C50—H50A119.2
C10—N2—C21119.0 (4)N6—C50—H50A119.2
C10—N2—Ru2120.7 (3)C52—C51—C56119.2 (5)
C21—N2—Ru2120.2 (3)C52—C51—N5120.6 (4)
C30—N3—C31A114.8 (4)C56—C51—N5120.1 (4)
C30—N3—Ru1119.2 (3)C51—C52—C53119.6 (5)
C31A—N3—Ru1126.0 (3)C51—C52—H52A120.2
C30—N4—C41116.7 (4)C53—C52—H52A120.2
C30—N4—Ru2120.8 (3)C54—C53—C52121.9 (6)
C41—N4—Ru2121.6 (3)C54—C53—H53A119.1
C50—N5—C51114.8 (4)C52—C53—H53A119.1
C50—N5—Ru1121.0 (3)C53—C54—C55118.6 (6)
C51—N5—Ru1124.1 (3)C53—C54—H54A120.7
C50—N6—C61119.4 (4)C55—C54—H54A120.7
C50—N6—Ru2120.0 (3)C56—C55—C54120.5 (6)
C61—N6—Ru2120.5 (3)C56—C55—H55A119.8
C70—C9—H9A109.5C54—C55—H55A119.8
C70—C9—H9B109.5C51—C56—C55119.6 (6)
H9A—C9—H9B109.5C51—C56—H56A120.2
C70—C9—H9C109.5C55—C56—H56A120.2
H9A—C9—H9C109.5C62—C61—C66118.8 (5)
H9B—C9—H9C109.5C62—C61—N6123.7 (5)
N1—C10—N2121.9 (4)C66—C61—N6117.5 (4)
N1—C10—H10A119.1C63—C62—C61119.8 (5)
N2—C10—H10A119.1C63—C62—H62A120.1
C16—C11—C12119.0 (5)C61—C62—H62A120.1
C16—C11—N1120.5 (5)C62—C63—C64121.0 (5)
C12—C11—N1120.5 (4)C62—C63—H63A119.5
C11—C12—C13120.3 (5)C64—C63—H63A119.5
C11—C12—H12A119.8C65—C64—C63119.1 (5)
C13—C12—H12A119.8C65—C64—H64A120.5
C14—C13—C12120.1 (6)C63—C64—H64A120.5
C14—C13—H13A119.9C64—C65—C66120.2 (6)
C12—C13—H13A119.9C64—C65—H65A119.9
C15—C14—C13119.9 (6)C66—C65—H65A119.9
C15—C14—H14A120.0C65—C66—C61121.1 (5)
C13—C14—H14A120.0C65—C66—H66A119.4
C14—C15—C16121.6 (7)C61—C66—H66A119.4
C14—C15—H15A119.2O1—C70—O2121.5 (4)
C16—C15—H15A119.2O1—C70—C9116.7 (4)
C11—C16—C15118.9 (6)O2—C70—C9121.7 (4)
C11—C16—H16A120.5Cl2—C1S—Cl1105.5 (5)
C15—C16—H16A120.5Cl2—C1S—H11S110.6
C26—C21—C22119.7 (5)Cl1—C1S—H11S110.6
C26—C21—N2121.9 (4)Cl2—C1S—H12S110.6
C22—C21—N2118.3 (4)Cl1—C1S—H12S110.6
C21—C22—C23119.8 (6)H11S—C1S—H12S108.8
C21—C22—H22A120.1
N3—Ru1—Ru2—N40.53 (14)C16—C11—C12—C131.7 (8)
O2—Ru1—Ru2—N4179.98 (14)N1—C11—C12—C13178.7 (5)
N1—Ru1—Ru2—N490.18 (14)C11—C12—C13—C141.6 (9)
N5—Ru1—Ru2—N491.15 (14)C12—C13—C14—C150.9 (11)
N3—Ru1—Ru2—N289.87 (14)C13—C14—C15—C160.4 (14)
O2—Ru1—Ru2—N290.63 (14)C12—C11—C16—C151.2 (11)
N1—Ru1—Ru2—N20.84 (14)N1—C11—C16—C15179.2 (7)
N5—Ru1—Ru2—N2179.50 (14)C14—C15—C16—C110.5 (14)
N3—Ru1—Ru2—N692.47 (15)C10—N2—C21—C2641.3 (6)
O2—Ru1—Ru2—N687.02 (14)Ru2—N2—C21—C26140.5 (4)
N1—Ru1—Ru2—N6176.82 (14)C10—N2—C21—C22139.3 (5)
N5—Ru1—Ru2—N61.85 (14)Ru2—N2—C21—C2238.9 (5)
N3—Ru1—Ru2—O1179.20 (13)C26—C21—C22—C231.1 (8)
O2—Ru1—Ru2—O11.30 (13)N2—C21—C22—C23179.5 (5)
N1—Ru1—Ru2—O188.49 (13)C21—C22—C23—C240.1 (10)
N5—Ru1—Ru2—O190.17 (14)C22—C23—C24—C251.0 (12)
N2—Ru2—O1—C7092.4 (3)C23—C24—C25—C260.7 (13)
N6—Ru2—O1—C7087.3 (3)C22—C21—C26—C251.4 (9)
Ru1—Ru2—O1—C702.7 (3)N2—C21—C26—C25179.3 (5)
N1—Ru1—O2—C7087.2 (4)C24—C25—C26—C210.5 (11)
N5—Ru1—O2—C7087.7 (4)C31A—N3—C30—N4176.0 (4)
N10—Ru1—O2—C70178.6 (4)Ru1—N3—C30—N43.6 (6)
Ru2—Ru1—O2—C700.3 (3)C41—N4—C30—N3172.3 (4)
N3—Ru1—N10—C71146 (3)Ru2—N4—C30—N33.0 (6)
O2—Ru1—N10—C7133 (3)C30—N3—C31A—C32A62.9 (8)
N1—Ru1—N10—C71123 (3)Ru1—N3—C31A—C32A116.6 (7)
N5—Ru1—N10—C7155 (3)C30—N3—C31A—C36A122.4 (7)
N3—Ru1—N10—C71B34 (3)Ru1—N3—C31A—C36A58.2 (8)
O2—Ru1—N10—C71B146 (3)C36A—C31A—C32A—C33A4.8 (16)
N1—Ru1—N10—C71B57 (3)N3—C31A—C32A—C33A179.6 (10)
N5—Ru1—N10—C71B125 (3)C31A—C32A—C33A—C34A1.8 (19)
N3—Ru1—N1—C1087.1 (3)C32A—C33A—C34A—C35A9.2 (18)
O2—Ru1—N1—C1088.0 (3)C33A—C34A—C35A—C36A9.7 (17)
N10—Ru1—N1—C10179.2 (3)C34A—C35A—C36A—C31A3.0 (17)
Ru2—Ru1—N1—C101.4 (3)C32A—C31A—C36A—C35A4.1 (15)
N3—Ru1—N1—C1194.9 (4)N3—C31A—C36A—C35A178.9 (9)
O2—Ru1—N1—C1190.0 (4)C30—N4—C41—C42133.7 (5)
N10—Ru1—N1—C111.2 (4)Ru2—N4—C41—C4257.0 (5)
Ru2—Ru1—N1—C11176.6 (3)C30—N4—C41—C4646.6 (6)
N4—Ru2—N2—C1089.4 (3)Ru2—N4—C41—C46122.6 (4)
O1—Ru2—N2—C1089.6 (3)C46—C41—C42—C430.9 (8)
Ru1—Ru2—N2—C100.6 (3)N4—C41—C42—C43179.4 (5)
N4—Ru2—N2—C2192.4 (3)C41—C42—C43—C441.1 (10)
O1—Ru2—N2—C2188.6 (3)C42—C43—C44—C451.3 (11)
Ru1—Ru2—N2—C21178.8 (3)C43—C44—C45—C460.5 (12)
N1—Ru1—N3—C3085.4 (4)C44—C45—C46—C412.5 (10)
N5—Ru1—N3—C3089.5 (4)C42—C41—C46—C452.7 (8)
N10—Ru1—N3—C30176.8 (4)N4—C41—C46—C45177.7 (5)
Ru2—Ru1—N3—C302.2 (3)C51—N5—C50—N6178.1 (4)
N1—Ru1—N3—C31A95.2 (4)Ru1—N5—C50—N61.1 (6)
N5—Ru1—N3—C31A90.0 (4)C61—N6—C50—N5177.6 (4)
N10—Ru1—N3—C31A3.8 (4)Ru2—N6—C50—N51.2 (6)
Ru2—Ru1—N3—C31A177.3 (4)C50—N5—C51—C52120.4 (6)
N2—Ru2—N4—C3088.7 (3)Ru1—N5—C51—C5256.6 (6)
N6—Ru2—N4—C3090.9 (4)C50—N5—C51—C5655.9 (7)
Ru1—Ru2—N4—C301.0 (3)Ru1—N5—C51—C56127.1 (5)
N2—Ru2—N4—C4180.1 (3)C56—C51—C52—C537.0 (10)
N6—Ru2—N4—C41100.3 (3)N5—C51—C52—C53176.7 (6)
Ru1—Ru2—N4—C41169.8 (3)C51—C52—C53—C542.4 (11)
N3—Ru1—N5—C5090.6 (4)C52—C53—C54—C554.1 (12)
O2—Ru1—N5—C5084.6 (4)C53—C54—C55—C566.2 (13)
Ru2—Ru1—N5—C502.1 (3)C52—C51—C56—C554.9 (10)
N3—Ru1—N5—C5192.7 (4)N5—C51—C56—C55178.8 (6)
O2—Ru1—N5—C5192.2 (4)C54—C55—C56—C511.7 (12)
N10—Ru1—N5—C511.1 (4)C50—N6—C61—C6233.7 (7)
Ru2—Ru1—N5—C51178.9 (3)Ru2—N6—C61—C62147.6 (4)
N4—Ru2—N6—C5086.6 (3)C50—N6—C61—C66149.7 (4)
O1—Ru2—N6—C5092.4 (3)Ru2—N6—C61—C6629.1 (5)
Ru1—Ru2—N6—C502.2 (3)C66—C61—C62—C630.6 (7)
N4—Ru2—N6—C6194.6 (3)N6—C61—C62—C63177.2 (4)
O1—Ru2—N6—C6186.4 (3)C61—C62—C63—C642.0 (8)
Ru1—Ru2—N6—C61176.6 (3)C62—C63—C64—C652.9 (8)
C11—N1—C10—N2176.9 (4)C63—C64—C65—C662.3 (9)
Ru1—N1—C10—N21.3 (6)C64—C65—C66—C610.9 (9)
C21—N2—C10—N1177.9 (4)C62—C61—C66—C650.0 (8)
Ru2—N2—C10—N10.3 (6)N6—C61—C66—C65176.9 (5)
C10—N1—C11—C1666.5 (7)Ru2—O1—C70—O23.2 (6)
Ru1—N1—C11—C16115.4 (6)Ru2—O1—C70—C9179.3 (3)
C10—N1—C11—C12113.9 (5)Ru1—O2—C70—O11.7 (6)
Ru1—N1—C11—C1264.2 (5)Ru1—O2—C70—C9179.1 (4)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+3/2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C52—H52A···F10.942.693.482 (8)142
C53—H53A···F1i0.942.763.435 (8)130
C62—H62A···F2iii0.942.813.441 (7)126
C16—H16A···F30.942.473.339 (8)154
C26—H26A···F30.942.493.368 (8)156
C26—H26A···F4ii0.942.393.178 (7)141
C46—H46A···F40.942.613.312 (8)132
C1S—H11S···F4iv0.982.593.50 (3)153
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+3/2, y+1, z; (iii) x1/2, y, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ru2(C13H11N2)3(C2H3O2)(C2H3N)]BF4·0.5CH2Cl2
Mr1017.23
Crystal system, space groupOrthorhombic, Pnna
Temperature (K)213
a, b, c (Å)18.0977 (12), 37.603 (3), 12.9239 (9)
V3)8795.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.30 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995; Bruker, 2003)
Tmin, Tmax0.793, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
54752, 10087, 8029
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.144, 1.81
No. of reflections10087
No. of parameters565
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 1.25

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), CIFTAB in SHELXTL (Sheldrick, 2001).

Selected geometric parameters (Å, º) top
Ru1—Ru22.4131 (5)Ru1—N102.166 (4)
Ru1—N32.041 (4)Ru2—N41.997 (3)
Ru1—O22.052 (4)Ru2—N22.000 (3)
Ru1—N12.057 (4)Ru2—N62.017 (4)
Ru1—N52.057 (4)Ru2—O12.041 (3)
N3—Ru1—O2175.09 (14)N1—Ru1—N1091.38 (14)
N3—Ru1—N190.64 (14)N5—Ru1—N1093.70 (15)
O2—Ru1—N189.65 (14)N4—Ru2—N289.33 (14)
N3—Ru1—N590.56 (15)N4—Ru2—N693.00 (14)
O2—Ru1—N588.72 (14)N2—Ru2—N6177.63 (14)
N1—Ru1—N5174.69 (14)N4—Ru2—O1178.33 (13)
N3—Ru1—N1093.75 (15)N2—Ru2—O189.33 (13)
O2—Ru1—N1091.15 (15)N6—Ru2—O188.33 (13)
N3—Ru1—Ru2—N40.53 (14)O2—Ru1—Ru2—O11.30 (13)
N1—Ru1—Ru2—N20.84 (14)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds