Download citation
Download citation
link to html
Tartronic acid forms a hydrogen-bonded complex, C5H5NO·C3H4O5, (I), with 2-pyridone, while it forms acid salts, namely 3-hydroxy­pyridinium hydrogen tartronate, (II), and 4-hy­droxy­pyridinium hydrogen tartronate, (III), both C5H6NO+·C3H3O5, with 3-hydroxy­pyridine and 4-hydroxy­pyridine, respectively. In (I), the pyridone mol­ecules and the acid mol­ecules form R{_2^2}(8) and R{_2^2}(10) hydrogen-bonded rings, respectively, around the inversion centres. In (II) and (III), the cations and anions are linked by N—H...O and O—H...O hydrogen bonds to form a hydrogen-bonded chain. In each of (I), (II) and (III), an intermolecular hydrogen bond is formed between a carboxyl group and the hydroxyl group attached to the central C atom, and in (I), the hydroxyl group participates in an intramolecular hydrogen bond with a carbonyl group. No intermolecular hydrogen bond is formed between the carboxyl groups in (I), or between the carboxyl and carboxyl­ate groups in (II) and (III).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104019201/fr1496sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104019201/fr1496Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104019201/fr1496IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104019201/fr1496IIIsup4.hkl
Contains datablock III

CCDC references: 254923; 254924; 254925

Comment top

Tartronic acid, a member of a family of hydroxycarboxylic acids, is of potential interest in crystal engineering for the formation of two- and three-dimensional aggregates with organic bases, as shown in several organic salts of tartaric acid (Aakeröy et al., 1992; Aakeröy & Hitchcock, 1993; Aakeröy Bahra & Niewenhuzen, 1996), malonic acid (Aakeröy & Niewenhuzen, 1994, 1996), dihydroxymalonic acid (Aakeröy Niewenhuzen & Robinson, 1998) and oxamic acid (Aakeröy Hughes & Niewenhuyzen, 1996). Furthermore, tartronic acid is an interesting candidate for the selective synthesis and crystallization of optically active substances, because its acidic anion, the hydrogen tartronate ion, is optically active. Previously, we have reported the three-dimensional hydrogen-bonded structure of imidazolium hydrogen tartronate, where the anions form a homochiral infinite chain but the chains aggregate to form a heterochiral layer (Fukunaga & Ishida, 2003). In the present study, we have selected hydroxypyridines as the counter-base in order to extend the previous examination further, and report here the structures of the title compounds, (I)-(III). Fig. 1 shows the asymmetric units of compounds (I), (II) and (III). \sch

In (I), the base molecule is in the lactam form (Yang & Craven, 1998), and no acid-base interaction involving H-atom transfer is observed. Two pyridone molecules are held together by N—H···O hydrogen bonds, forming a centrosymmetric hydrogen-bonded ring with graph-set discriptor R44(8) (Bernstein et al., 1995), and two molecules of tartronic acid are held together by O—H···O hydrogen bonds between the hydroxyl and carbonyl groups, forming a centrosymmetric R22(10) ring (Fig. 2a and Table 2). The dimeric unit composed of pyridone molecules is connected to that composed of acid molecules via an O6—H9···O1 hydrogen bond on one side, and by C6—H5···O3iv and C6—H5···O5i bifurcated hydrogen bonds on the other side, to afford a molecular tape running along [011] [symmetry codes: (i) 1 − x, −y, 1 − z; (iv) x, y − 1, 1 + z; Fig. 2a and Table 2]. The molecular tapes are stacked parallel to the c direction through an O4—H8···O2iii hydrogen bond, resulting in a layer parallel to (202) [symmetry code: (iii) 1 + x, y, z; Figs. 2 b and 2c, and Table 2]. The closest separation between the pyridone rings in the layer is 3.428 Å, and the centre-to-centre separation is 3.735 (3) Å.

The hydrogen-bonding motif formed between the pyridone dimer and the acid moiety is similar to that reported for 2:1 co-crystals of 2-pyridone and several dicarboxylic acids, namely oxalic acid, succinic acid, adipic acid dihydrate, suberic acid and sebacic acid (Aakeröy, Beatty & Zou, 1998), fumaric acid and meso-2,3-dibromosuccinic acid (Aakeröy et al., 2000), oxalic acid and trans-β-hydromuconic acid (Kashino et al., 2001), and malonic acid and pimeric acid (Edwards et al., 2002). The pyridone dimer is also formed in 1:1 co-crystals of 2-pyridone and some non-centrosymmetric dicarboxylic acids, namely glutaric acid and azelaic acid (Edwards et al., 2002). The pyridone dimer is not formed in the 1:1 co-crystals of 2-pyridone with trans-glutaconic acid and L-tartaric acid (Kashino et al., 2001).

In (II) and (III), H-atom transfer occurs from the acid to the base moiety and a chiral hydrogen tartronate anion is induced in these crystals. In (II), a cation is linked to two neighbouring anions related by a glide plane through the N1—H1···O6, N1—H1···O2, O1—H3···O5v and C4—H4···O5v hydrogen bonds, to form a zigzag chain running along [102] [symmetry code: (v) 1 + x, −y, z − 1/2; Fig. 3a and Table 4]. On the other hand, the anions aggregate through O—H···O hydrogen bonds between the hydroxyl and carboxylate groups (O2—H8···O6vi) and between the carboxyl and hydroxyl groups (O4—H9···O2vii) to form a homochiral plane parallel to (001) [symmetry codes: (vi) x, 1 + y, z; (vii) x − 1, y, z; Fig. 3 b]. The planes related by a glide plane are bridged by cations through the N—H···O, O—H···O and C—H···O hydrogen bonds mentioned above, resulting in a three-dimensional hydrogen-bonded network. It is noted that such a homochiral plane has also been found in some chiral crystals, namely 3-hydroxypyridinium hydrogen L-tartarate (Tafeenko et al., 1990) and 3-hydroxypyridinium hydrogen L-maleate (Aakeröy & Niewenhuyzen, 1994). In these crystals, planes with the same chirality were bridged by the cations.

In (III), an intramolecular O—H···O hydrogen bond is observed between the carboxyl and carboxylate groups in the anion (Fig. 1 and Table 6). A cation is linked to two neighbouring anions, which are related to each other by a translation along [101], through the O1—H4···O5ix, C5—H5···O5ix and bifurcated N—H···O hydrogen bonds to form a zigzag chain running along [121] [symmetry codes: (ix) x − 1, y, 1 + z; Fig. 4a and Table 6). The chains are linked by an O2—H8···O3x hydrogen bond between the hydroxyl and carboxyl groups, resulting in a heterochiral layer parallel to (101) [symmetry code: (x) 1/2 + x, 1 − y, 1/2 + z; Fig. 4 b]. The layers are connected via an C7—H7···O2xiii hydrogen bond [symmetry code: (xiii) 1 + x, y, z; Table 6].

In the crystal of tartronic acid, neighbouring molecules related by a 21 axis form a molecular chain through O—H···O hydrogen bonds between the carboxyl groups (van Eijck et al., 1965). In the crystal of ammonium hydrogen tartronate, hydrogen tartronate anions related by a 21 axis form a very short O—H···O hydrogen bond between the carboxyl and carboxylate groups (Taka et al., 1998; Moritani et al., 2001). This is an indication that a strong intermolecular hydrogen bond is formed between the carboxyl and carboxylate groups of the anions. However, in the crystals of (I), (II) and (III), no such type of hydrogen-bonding is observed. This fact shows that the hydroxyl group attached to the central C atom of tartronic acid or the hydrogen tartronate anion can form stable intermolecular hydrogen bond(s) in place of the carboxyl group.

Experimental top

Crystals of (I), (II) and (III) were grown by slow evaporation at room temperature of ethanol solutions of tartronic acid and the respective hydroxypyridines, in a molar ratio of 1:1.

Refinement top

For all compounds, H atoms attached to C atoms were treated as riding, with C—H = 0.98 (methine H) or 0.93 Å (aromatic H), and with Uiso(H) = 1.2Ueq(C). For (I) and (II), H atoms involved in O—H···O and N—H···O hydrogen bonds were refined. For (III), the O—H distances and the C—O—H angles were fixed to 0.82 Å and 109.5°, respectively, while the torsion angles around the C—O bonds were refined, with Uiso(H) = 1.5Ueq(O). H atoms attached to N atoms were constrained in the riding model, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). For (II) and (III), Friedel opposites were merged.

Computing details top

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric units of (a) (I), (b) (II) and (c) (III). Displacement ellipsoids are drawn at the 50% probability level. The N—H···O and O—H···O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. The crystal structure and hydrogen-bonding scheme for (I). (a) Hydrogen-bonded rings centred on inversion centres. (b) The pyridone molecules linked to the hydrogen-bonded ribbons of the acid molecules. (c) A packing diagram viewed along the a direction, showing the N—H···O, O—H···O and C—H···O hydrogen bonds (symmetry codes as in Table 2).
[Figure 3] Fig. 3. The crystal structure and hydrogen-bonding scheme for (II). (a) The hydrogen-bonded chain formed by the anion and cation. (b) The homochiral anions, forming a hydrogen-bonded plane across the c axis. (c) A packing diagram viewed along the b direction, showing the N—H···O, O—H···O and C—H···O hydrogen bonds (symmetry codes as in Table 4).
[Figure 4] Fig. 4. The crystal structure and hydrogen-bonding scheme for (III). (a) The hydrogen-bonded chain formed by the anion and cation. (b) The hydrogen-bonded net formed by the N—H···O, O—H···O and C—H···O hydrogen bonds, viewed along the (101) plane (symmetry codes as in Table 6).
(I) top
Crystal data top
C5H5NO·C3H4O5Z = 2
Mr = 215.16F(000) = 224
Triclinic, P1Dx = 1.549 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.879 (4) ÅCell parameters from 25 reflections
b = 6.859 (4) Åθ = 10.3–11.5°
c = 12.588 (8) ŵ = 0.14 mm1
α = 74.61 (5)°T = 296 K
β = 80.94 (6)°Plate, colourless
γ = 70.95 (5)°0.30 × 0.20 × 0.08 mm
V = 461.2 (5) Å3
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.032
Radiation source: Rigaku rotating anodeθmax = 30.0°, θmin = 3.2°
Graphite monochromatorh = 88
ω/2θ scansk = 91
3319 measured reflectionsl = 1717
2698 independent reflections3 standard reflections every 97 reflections
1323 reflections with I > 2σ(I) intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.08P)2]
where P = (Fo2 + 2Fc2)/3
2698 reflections(Δ/σ)max = 0.001
153 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
0 constraints
Crystal data top
C5H5NO·C3H4O5γ = 70.95 (5)°
Mr = 215.16V = 461.2 (5) Å3
Triclinic, P1Z = 2
a = 5.879 (4) ÅMo Kα radiation
b = 6.859 (4) ŵ = 0.14 mm1
c = 12.588 (8) ÅT = 296 K
α = 74.61 (5)°0.30 × 0.20 × 0.08 mm
β = 80.94 (6)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.032
3319 measured reflections3 standard reflections every 97 reflections
2698 independent reflections intensity decay: 0.0%
1323 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.26 e Å3
2698 reflectionsΔρmin = 0.24 e Å3
153 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5760 (4)0.2370 (4)0.44393 (17)0.0441 (6)
O20.4022 (4)0.7641 (4)0.01997 (18)0.0366 (6)
O30.8635 (4)0.7274 (4)0.05312 (16)0.0403 (6)
O40.9596 (4)0.7379 (4)0.10989 (19)0.0426 (7)
O50.5145 (4)0.3892 (4)0.17429 (18)0.0455 (7)
O60.6360 (5)0.5405 (4)0.28236 (19)0.0421 (6)
N10.6855 (5)0.0014 (4)0.6052 (2)0.0349 (6)
C20.6995 (6)0.1784 (5)0.5281 (2)0.0331 (7)
C30.8526 (6)0.2838 (6)0.5480 (3)0.0422 (8)
C40.9782 (7)0.2080 (6)0.6388 (3)0.0477 (9)
C50.9599 (6)0.0227 (6)0.7161 (3)0.0414 (8)
C60.8131 (6)0.0764 (6)0.6969 (2)0.0392 (8)
C70.5646 (5)0.7342 (5)0.0989 (2)0.0282 (6)
C80.8142 (5)0.7321 (5)0.0429 (2)0.0274 (6)
C90.5710 (5)0.5335 (5)0.1894 (2)0.0310 (7)
H10.586 (5)0.074 (5)0.590 (3)0.033 (8)*
H20.8670.4070.4980.051*
H31.0790.2800.6500.057*
H41.0470.0300.7790.050*
H50.7980.2000.7470.047*
H60.5050.8550.1340.034*
H70.477 (7)0.712 (6)0.042 (3)0.058 (12)*
H81.081 (7)0.733 (6)0.077 (3)0.054 (13)*
H90.614 (9)0.444 (8)0.330 (4)0.083 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0575 (15)0.0457 (15)0.0328 (12)0.0280 (13)0.0139 (10)0.0069 (11)
O20.0284 (11)0.0495 (15)0.0319 (11)0.0128 (11)0.0086 (9)0.0038 (11)
O30.0419 (13)0.0536 (15)0.0254 (11)0.0181 (12)0.0009 (9)0.0055 (10)
O40.0300 (13)0.0721 (19)0.0351 (12)0.0244 (13)0.0032 (10)0.0158 (12)
O50.0609 (16)0.0472 (15)0.0382 (12)0.0334 (13)0.0081 (11)0.0024 (11)
O60.0614 (16)0.0451 (15)0.0274 (11)0.0306 (13)0.0129 (10)0.0029 (11)
N10.0461 (16)0.0363 (15)0.0277 (12)0.0233 (13)0.0080 (11)0.0007 (11)
C20.0380 (17)0.0341 (18)0.0273 (14)0.0152 (14)0.0010 (12)0.0028 (13)
C30.055 (2)0.042 (2)0.0351 (17)0.0297 (18)0.0065 (15)0.0029 (15)
C40.054 (2)0.056 (2)0.0438 (19)0.0329 (19)0.0122 (16)0.0036 (17)
C50.049 (2)0.047 (2)0.0305 (16)0.0212 (17)0.0111 (14)0.0016 (15)
C60.052 (2)0.0400 (19)0.0268 (15)0.0212 (17)0.0080 (14)0.0032 (14)
C70.0263 (14)0.0325 (16)0.0263 (13)0.0126 (13)0.0062 (11)0.0004 (12)
C80.0265 (14)0.0253 (15)0.0279 (14)0.0084 (12)0.0013 (11)0.0016 (11)
C90.0272 (15)0.0387 (18)0.0299 (15)0.0166 (14)0.0008 (12)0.0049 (13)
Geometric parameters (Å, º) top
O1—C21.279 (7)C2—C31.409 (10)
O2—C71.416 (5)C3—C41.350 (9)
O2—H70.92 (4)C3—H20.93
O3—C81.204 (3)C4—C51.404 (11)
O4—C81.308 (4)C4—H30.93
O4—H80.76 (4)C5—C61.342 (10)
O5—C91.208 (7)C5—H40.93
O6—C91.304 (4)C6—H50.93
O6—H90.79 (5)C7—C81.522 (4)
N1—C21.355 (4)C7—C91.530 (4)
N1—C61.365 (8)C7—H60.98
N1—H10.97 (3)
O1···O62.569 (4)O4···H4vii2.72
O1···N1i2.809 (4)O4···C5vii3.234 (5)
O2···H8ii1.97 (4)O4···C4vii3.370 (5)
O2···O4ii2.712 (4)O5···H7iii1.96 (4)
O2···O5iii2.825 (4)O5···H5i2.52
O2···C8iv3.192 (5)O5···C6i3.286 (5)
O3···H5v2.50O6···H3vii2.72
O3···H4v2.64O6···C3viii3.383 (5)
O3···O3vi3.049 (4)O6···C23.399 (4)
O3···C8vi3.084 (5)C2···H92.68 (5)
O3···C6v3.096 (4)C2···H1i2.77 (3)
O3···C5v3.157 (5)C7···H8ii2.90 (4)
C7—O2—H7113 (2)C4—C5—H4121.1
C8—O4—H8107 (3)C5—C6—N1120.8 (3)
C9—O6—H9110 (3)C5—C6—H5119.6
C2—N1—C6123.3 (3)N1—C6—H5119.6
C2—N1—H1116.3 (19)O2—C7—C8110.6 (2)
C6—N1—H1120.3 (19)O2—C7—C9110.9 (3)
O1—C2—N1118.7 (3)C8—C7—C9112.1 (3)
O1—C2—C3125.1 (3)O2—C7—H6107.7
N1—C2—C3116.2 (6)C8—C7—H6107.7
C4—C3—C2120.7 (4)C9—C7—H6107.7
C4—C3—H2119.6O3—C8—O4125.8 (3)
C2—C3—H2119.6O3—C8—C7121.6 (3)
C3—C4—C5121.1 (7)O4—C8—C7112.5 (2)
C3—C4—H3119.4O5—C9—O6125.2 (6)
C5—C4—H3119.4O5—C9—C7122.0 (3)
C6—C5—C4117.9 (6)O6—C9—C7112.8 (3)
C6—C5—H4121.1
C6—N1—C2—O1178.8 (3)O2—C7—C8—O39.4 (4)
C6—N1—C2—C31.0 (5)C9—C7—C8—O3114.9 (6)
O1—C2—C3—C4179.2 (4)O2—C7—C8—O4170.1 (3)
N1—C2—C3—C40.7 (5)C9—C7—C8—O465.7 (6)
C2—C3—C4—C50.1 (6)O2—C7—C9—O523.5 (4)
C3—C4—C5—C60.1 (6)C8—C7—C9—O5100.6 (4)
C4—C5—C6—N10.2 (5)O2—C7—C9—O6154.7 (3)
C2—N1—C6—C50.8 (5)C8—C7—C9—O681.2 (6)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z; (v) x, y+1, z1; (vi) x+2, y+1, z; (vii) x+2, y+1, z+1; (viii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.96 (3)1.85 (3)2.809 (4)174 (4)
O2—H7···O5iii0.93 (4)1.96 (4)2.825 (4)155 (4)
O4—H8···O2ix0.76 (4)1.97 (4)2.712 (4)164 (4)
O6—H9···O10.80 (5)1.77 (5)2.569 (4)175 (3)
O2—H7···O30.93 (4)2.29 (4)2.675 (4)104 (3)
C6—H5···O3x0.932.503.096 (4)122
C6—H5···O5i0.932.523.286 (5)140
Symmetry codes: (i) x+1, y, z+1; (iii) x+1, y+1, z; (ix) x+1, y, z; (x) x, y1, z+1.
(II) top
Crystal data top
C5H6NO+·C3H3O5F(000) = 224
Mr = 215.16Dx = 1.467 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 25 reflections
a = 5.7563 (11) Åθ = 11.0–11.5°
b = 5.1871 (7) ŵ = 0.13 mm1
c = 16.3206 (19) ÅT = 298 K
β = 92.186 (13)°Plate, colourless
V = 486.95 (13) Å30.50 × 0.50 × 0.10 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.016
Radiation source: Rigaku rotating anodeθmax = 31.0°, θmin = 2.5°
Graphite monochromatorh = 18
ω/2θ scansk = 17
2353 measured reflectionsl = 2323
1562 independent reflections3 standard reflections every 97 reflections
1394 reflections with I > 2σ(I) intensity decay: 0.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0945P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1562 reflectionsΔρmax = 0.43 e Å3
153 parametersΔρmin = 0.18 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.115 (19)
Crystal data top
C5H6NO+·C3H3O5V = 486.95 (13) Å3
Mr = 215.16Z = 2
Monoclinic, PcMo Kα radiation
a = 5.7563 (11) ŵ = 0.13 mm1
b = 5.1871 (7) ÅT = 298 K
c = 16.3206 (19) Å0.50 × 0.50 × 0.10 mm
β = 92.186 (13)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.016
2353 measured reflections3 standard reflections every 97 reflections
1562 independent reflections intensity decay: 0.2%
1394 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.43 e Å3
1562 reflectionsΔρmin = 0.18 e Å3
153 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9138 (5)0.0907 (5)0.08939 (14)0.0655 (6)
O20.2852 (2)0.4262 (2)0.34707 (11)0.0335 (3)
O30.1582 (3)0.4706 (4)0.28672 (12)0.0503 (5)
O40.2977 (3)0.3127 (4)0.40281 (12)0.0473 (5)
O50.0705 (4)0.0990 (3)0.45448 (12)0.0529 (5)
O60.2425 (3)0.0767 (3)0.33621 (11)0.0442 (5)
N10.4292 (4)0.1192 (5)0.20162 (13)0.0466 (5)
C20.6141 (5)0.0148 (5)0.17989 (14)0.0466 (6)
C30.7280 (5)0.0497 (5)0.10891 (14)0.0462 (5)
C40.6415 (6)0.2591 (7)0.06331 (15)0.0555 (6)
C50.4496 (6)0.3944 (7)0.08893 (17)0.0597 (7)
C60.3427 (5)0.3205 (7)0.15909 (18)0.0556 (7)
C70.1089 (3)0.3168 (3)0.39297 (12)0.0253 (3)
C80.1301 (3)0.3763 (3)0.35368 (13)0.0286 (3)
C90.1436 (3)0.0219 (3)0.39551 (13)0.0300 (3)
H10.344 (8)0.059 (9)0.237 (3)0.073 (13)*
H20.6670.1520.2120.056*
H30.968 (9)0.025 (10)0.043 (3)0.082 (15)*
H40.7130.3080.0160.067*
H50.3930.5350.0590.072*
H60.2130.4090.1770.067*
H70.1180.3860.4490.030*
H80.271 (6)0.591 (7)0.344 (2)0.042 (7)*
H90.421 (8)0.375 (8)0.383 (3)0.062 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0825 (16)0.0663 (13)0.0497 (11)0.0027 (12)0.0306 (11)0.0030 (10)
O20.0223 (5)0.0221 (5)0.0570 (9)0.0003 (5)0.0118 (5)0.0016 (5)
O30.0352 (8)0.0702 (12)0.0451 (9)0.0014 (8)0.0030 (7)0.0192 (8)
O40.0211 (6)0.0715 (12)0.0498 (9)0.0010 (7)0.0090 (6)0.0114 (9)
O50.0744 (13)0.0364 (8)0.0501 (10)0.0122 (8)0.0326 (9)0.0128 (7)
O60.0635 (11)0.0224 (6)0.0488 (9)0.0011 (6)0.0326 (8)0.0010 (6)
N10.0561 (12)0.0503 (11)0.0343 (8)0.0167 (9)0.0141 (8)0.0013 (8)
C20.0677 (15)0.0407 (10)0.0325 (10)0.0113 (10)0.0171 (10)0.0022 (9)
C30.0594 (14)0.0481 (12)0.0321 (9)0.0122 (11)0.0142 (9)0.0013 (9)
C40.0677 (16)0.0665 (15)0.0331 (10)0.0093 (14)0.0114 (10)0.0112 (11)
C50.0651 (17)0.0722 (18)0.0415 (12)0.0028 (15)0.0016 (12)0.0160 (13)
C60.0459 (14)0.0736 (19)0.0475 (13)0.0042 (12)0.0030 (10)0.0020 (13)
C70.0195 (6)0.0227 (6)0.0339 (7)0.0020 (5)0.0037 (5)0.0024 (6)
C80.0229 (6)0.0274 (7)0.0357 (8)0.0012 (6)0.0038 (6)0.0001 (7)
C90.0291 (8)0.0240 (6)0.0377 (8)0.0036 (6)0.0111 (6)0.0038 (7)
Geometric parameters (Å, º) top
O1—C31.342 (4)C2—C31.394 (3)
O1—H30.90 (5)C2—H20.93
O2—C71.404 (2)C3—C41.397 (4)
O2—H80.86 (4)C4—C51.387 (5)
O3—C81.203 (3)C4—H40.93
O4—C81.320 (2)C5—C61.375 (4)
O4—H90.83 (5)C5—H50.93
O5—C91.236 (3)C6—H60.93
O6—C91.251 (2)C7—C81.527 (2)
N1—C21.330 (4)C7—C91.543 (2)
N1—C61.339 (4)C7—H70.98
N1—H10.84 (5)
O2···H12.62 (5)O5···H7vii2.69
O2···H62.79O5···H8vii2.71 (3)
O2···N13.004 (3)O5···C7vii3.203 (2)
O2···C63.146 (3)O5···C4vi3.206 (4)
O2···C9i3.299 (2)O5···C3vi3.269 (3)
O2···C8ii3.373 (2)O5···C8vii3.362 (3)
O3···H2iii2.50O6···C7vii3.377 (2)
O3···H62.86C7···H9ii2.73 (5)
O3···N1iv3.262 (3)C9···H8vii2.51 (4)
O3···C2iv3.305 (3)C9···H3vi2.65 (5)
O4···H4v2.70C9···H12.88 (5)
O5···H4vi2.56
C3—O1—H3107 (3)C4—C5—H5120.1
C7—O2—H8111 (2)N1—C6—C5118.7 (3)
C8—O4—H9108 (3)N1—C6—H6120.7
C2—N1—C6123.7 (2)C5—C6—H6120.7
C2—N1—H1119 (3)O2—C7—C8110.62 (15)
C6—N1—H1116 (3)O2—C7—C9108.66 (13)
N1—C2—C3120.2 (2)C8—C7—C9108.96 (13)
N1—C2—H2119.9O2—C7—H7109.5
C3—C2—H2119.9C8—C7—H7109.5
O1—C3—C2118.1 (2)C9—C7—H7109.5
O1—C3—C4124.5 (2)O3—C8—O4125.29 (19)
C2—C3—C4117.4 (3)O3—C8—C7123.47 (17)
C5—C4—C3120.3 (2)O4—C8—C7111.24 (17)
C5—C4—H4119.9O5—C9—O6125.01 (17)
C3—C4—H4119.9O5—C9—C7118.45 (17)
C6—C5—C4119.8 (3)O6—C9—C7116.53 (16)
C6—C5—H5120.1
C6—N1—C2—C30.6 (4)O2—C7—C8—O310.1 (3)
N1—C2—C3—O1180.0 (3)C9—C7—C8—O3109.3 (2)
N1—C2—C3—C40.6 (4)O2—C7—C8—O4169.49 (16)
O1—C3—C4—C5179.3 (3)C9—C7—C8—O471.1 (2)
C2—C3—C4—C50.0 (4)O2—C7—C9—O5153.1 (2)
C3—C4—C5—C60.7 (5)C8—C7—C9—O586.3 (3)
C2—N1—C6—C50.0 (4)O2—C7—C9—O627.8 (2)
C4—C5—C6—N10.6 (5)C8—C7—C9—O692.8 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x1, y+1, z; (iv) x1, y, z; (v) x1, y+1, z+1/2; (vi) x1, y, z+1/2; (vii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O5viii0.90 (5)1.71 (5)2.604 (3)180 (7)
O2—H8···O6i0.86 (4)1.74 (4)2.5956 (19)179 (4)
O4—H9···O2iv0.83 (5)1.79 (5)2.602 (2)165 (4)
N1—H1···O60.83 (5)1.88 (5)2.682 (3)162 (5)
C2—H2···O3ix0.932.503.422 (3)174
C4—H4···O5viii0.932.563.206 (4)127
Symmetry codes: (i) x, y+1, z; (iv) x1, y, z; (viii) x+1, y, z1/2; (ix) x+1, y1, z.
(III) top
Crystal data top
C5H6NO+·C3H3O5F(000) = 224
Mr = 215.16Dx = 1.574 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 25 reflections
a = 4.0607 (13) Åθ = 10.8–11.4°
b = 13.144 (3) ŵ = 0.14 mm1
c = 8.696 (2) ÅT = 298 K
β = 101.99 (2)°Plate, colourless
V = 454.0 (2) Å30.46 × 0.26 × 0.17 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
861 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.038
Graphite monochromatorθmax = 30.0°, θmin = 2.9°
ω/2θ scansh = 15
Absorption correction: ψ scan
(North et al., 1968)
k = 118
Tmin = 0.942, Tmax = 0.977l = 1212
1985 measured reflections3 standard reflections every 97 reflections
1341 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
1341 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
C5H6NO+·C3H3O5V = 454.0 (2) Å3
Mr = 215.16Z = 2
Monoclinic, PnMo Kα radiation
a = 4.0607 (13) ŵ = 0.14 mm1
b = 13.144 (3) ÅT = 298 K
c = 8.696 (2) Å0.46 × 0.26 × 0.17 mm
β = 101.99 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
861 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.942, Tmax = 0.9773 standard reflections every 97 reflections
1985 measured reflections intensity decay: 2.0%
1341 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.00Δρmax = 0.21 e Å3
1341 reflectionsΔρmin = 0.19 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0432 (12)0.8918 (2)0.9464 (4)0.0558 (9)
O20.5687 (8)0.6265 (2)0.4054 (3)0.0357 (7)
O30.3569 (10)0.4882 (2)0.1718 (4)0.0526 (9)
O40.6132 (9)0.5659 (2)0.0077 (3)0.0494 (9)
O50.8864 (9)0.7360 (2)0.0931 (4)0.0510 (9)
O60.7017 (9)0.8064 (2)0.2937 (4)0.0458 (8)
N10.3879 (11)0.8035 (3)0.5608 (4)0.0401 (9)
C20.3392 (13)0.9020 (3)0.5858 (5)0.0426 (10)
C30.2261 (13)0.9332 (3)0.7144 (5)0.0454 (12)
C40.1519 (12)0.8613 (3)0.8191 (5)0.0392 (10)
C50.1983 (12)0.7588 (3)0.7885 (5)0.0374 (9)
C60.3127 (13)0.7327 (3)0.6582 (5)0.0432 (11)
C70.7267 (11)0.6245 (3)0.2768 (4)0.0301 (8)
C80.5441 (12)0.5539 (3)0.1482 (4)0.0348 (9)
C90.7685 (11)0.7335 (3)0.2199 (4)0.0351 (10)
H10.4690.7850.4810.048*
H20.3830.9500.5140.051*
H30.1991.0020.7320.054*
H40.0010.8420.9960.084*
H50.1510.7090.8570.045*
H60.3390.6640.6360.052*
H70.9530.5970.3140.036*
H80.6300.5770.4620.053*
H90.7200.6190.0060.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.093 (3)0.0359 (15)0.0512 (19)0.004 (2)0.0448 (19)0.0015 (15)
O20.0484 (17)0.0332 (13)0.0305 (15)0.0042 (13)0.0203 (14)0.0028 (11)
O30.067 (3)0.0397 (15)0.0571 (18)0.0144 (17)0.0257 (18)0.0135 (14)
O40.070 (3)0.0503 (17)0.0333 (14)0.0062 (18)0.0236 (16)0.0125 (14)
O50.077 (3)0.0431 (16)0.0428 (17)0.0120 (18)0.0340 (18)0.0003 (14)
O60.069 (2)0.0318 (13)0.0411 (15)0.0061 (16)0.0218 (16)0.0010 (13)
N10.052 (3)0.0410 (18)0.0321 (17)0.0068 (18)0.0204 (17)0.0014 (15)
C20.060 (3)0.0318 (18)0.042 (2)0.003 (2)0.024 (2)0.0086 (17)
C30.069 (3)0.0207 (16)0.054 (3)0.0034 (19)0.030 (3)0.0045 (17)
C40.056 (3)0.033 (2)0.033 (2)0.000 (2)0.019 (2)0.0013 (16)
C50.053 (3)0.0297 (17)0.0334 (18)0.003 (2)0.0185 (19)0.0030 (16)
C60.064 (3)0.0331 (18)0.039 (2)0.002 (2)0.026 (2)0.0009 (18)
C70.037 (2)0.0311 (16)0.0245 (17)0.0060 (18)0.0120 (16)0.0000 (15)
C80.044 (3)0.0267 (16)0.037 (2)0.0047 (18)0.0161 (19)0.0048 (15)
C90.043 (3)0.034 (2)0.0306 (19)0.0057 (18)0.0139 (19)0.0002 (16)
Geometric parameters (Å, º) top
O1—C41.336 (5)C2—C31.358 (6)
O1—H40.82C2—H20.93
O2—C71.400 (4)C3—C41.389 (5)
O2—H80.82C3—H30.93
O3—C81.196 (5)C4—C51.394 (5)
O4—C81.318 (5)C5—C61.356 (6)
O4—H90.82C5—H50.93
O5—C91.291 (5)C6—H60.93
O6—C91.215 (5)C7—C81.522 (6)
N1—C21.334 (5)C7—C91.537 (5)
N1—C61.336 (5)C7—H70.98
N1—H10.86
O2···H62.43O4···C7ii3.385 (5)
O2···O32.729 (4)O4···C5iii3.401 (6)
O2···C62.968 (5)O5···H5iv2.53
O2···C7i3.370 (6)O5···C5iv3.178 (6)
O3···H7i2.67O5···C4iv3.258 (6)
O3···O4i3.226 (5)O6···H3v2.57
O3···C8i3.376 (6)O6···N1vi3.235 (5)
O3···C7i3.401 (6)C2···C4vi3.537 (7)
O4···H8ii2.69C2···C3vi3.566 (8)
O4···H7ii2.72C5···C6i3.554 (7)
O4···H5iii2.78
C4—O1—H4109.5C4—C5—H5120.4
C7—O2—H8109.5N1—C6—C5121.1 (4)
C8—O4—H9109.5N1—C6—H6119.4
C2—N1—C6120.8 (4)C5—C6—H6119.4
C2—N1—H1119.6O2—C7—C8111.3 (3)
C6—N1—H1119.6O2—C7—C9109.8 (3)
N1—C2—C3121.0 (4)C8—C7—C9113.7 (3)
N1—C2—H2119.5O2—C7—H7107.2
C3—C2—H2119.5C8—C7—H7107.2
C2—C3—C4119.4 (3)C9—C7—H7107.2
C2—C3—H3120.3O3—C8—O4120.7 (4)
C4—C3—H3120.3O3—C8—C7123.0 (3)
O1—C4—C3119.5 (3)O4—C8—C7116.3 (4)
O1—C4—C5122.0 (3)O6—C9—O5126.5 (4)
C3—C4—C5118.5 (4)O6—C9—C7120.9 (3)
C6—C5—C4119.2 (4)O5—C9—C7112.6 (4)
C6—C5—H5120.4
C6—N1—C2—C32.9 (9)O2—C7—C8—O319.9 (6)
N1—C2—C3—C41.7 (8)C9—C7—C8—O3144.6 (4)
C2—C3—C4—O1179.5 (5)O2—C7—C8—O4162.7 (3)
C2—C3—C4—C50.3 (8)C9—C7—C8—O438.0 (5)
O1—C4—C5—C6179.3 (5)O2—C7—C9—O67.4 (6)
C3—C4—C5—C60.2 (8)C8—C7—C9—O6132.9 (4)
C2—N1—C6—C52.8 (8)O2—C7—C9—O5174.4 (4)
C4—C5—C6—N11.4 (8)C8—C7—C9—O548.9 (5)
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1, z1/2; (iii) x, y, z1; (iv) x+1, y, z1; (v) x+1/2, y+2, z1/2; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H4···O5vii0.821.742.562 (4)177
O2—H8···O3viii0.822.052.808 (4)153
O4—H9···O50.821.792.538 (4)151
N1—H1···O20.862.252.862 (5)128
N1—H1···O60.862.072.872 (5)156
C2—H2···O1v0.932.293.149 (5)153
C3—H3···O6ix0.932.573.497 (5)173
C5—H5···O5vii0.932.543.179 (6)127
C7—H7···O2vi0.982.493.369 (6)149
Symmetry codes: (v) x+1/2, y+2, z1/2; (vi) x+1, y, z; (vii) x1, y, z+1; (viii) x+1/2, y+1, z+1/2; (ix) x1/2, y+2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC5H5NO·C3H4O5C5H6NO+·C3H3O5C5H6NO+·C3H3O5
Mr215.16215.16215.16
Crystal system, space groupTriclinic, P1Monoclinic, PcMonoclinic, Pn
Temperature (K)296298298
a, b, c (Å)5.879 (4), 6.859 (4), 12.588 (8)5.7563 (11), 5.1871 (7), 16.3206 (19)4.0607 (13), 13.144 (3), 8.696 (2)
α, β, γ (°)74.61 (5), 80.94 (6), 70.95 (5)90, 92.186 (13), 9090, 101.99 (2), 90
V3)461.2 (5)486.95 (13)454.0 (2)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.140.130.14
Crystal size (mm)0.30 × 0.20 × 0.080.50 × 0.50 × 0.100.46 × 0.26 × 0.17
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.942, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
3319, 2698, 1323 2353, 1562, 1394 1985, 1341, 861
Rint0.0320.0160.038
(sin θ/λ)max1)0.7030.7250.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.191, 1.00 0.042, 0.119, 1.00 0.051, 0.133, 1.00
No. of reflections269815621341
No. of parameters153153136
No. of restraints022
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.240.43, 0.180.21, 0.19

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1990), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997-1999), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), TEXSAN for Windows.

Selected geometric parameters (Å, º) for (I) top
O1—C21.279 (7)O4—C81.308 (4)
O2—C71.416 (5)O5—C91.208 (7)
O3—C81.204 (3)O6—C91.304 (4)
O1—C2—N1118.7 (3)O3—C8—C7121.6 (3)
O1—C2—C3125.1 (3)O4—C8—C7112.5 (2)
O2—C7—C8110.6 (2)O5—C9—C7122.0 (3)
O2—C7—C9110.9 (3)O6—C9—C7112.8 (3)
C8—C7—C9112.1 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.96 (3)1.85 (3)2.809 (4)174 (4)
O2—H7···O5ii0.93 (4)1.96 (4)2.825 (4)155 (4)
O4—H8···O2iii0.76 (4)1.97 (4)2.712 (4)164 (4)
O6—H9···O10.80 (5)1.77 (5)2.569 (4)175 (3)
O2—H7···O30.93 (4)2.29 (4)2.675 (4)104 (3)
C6—H5···O3iv0.932.503.096 (4)122
C6—H5···O5i0.932.523.286 (5)140
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x, y1, z+1.
Selected geometric parameters (Å, º) for (II) top
O1—C31.342 (4)O4—C81.320 (2)
O2—C71.404 (2)O5—C91.236 (3)
O3—C81.203 (3)O6—C91.251 (2)
O1—C3—C2118.1 (2)O3—C8—C7123.47 (17)
O1—C3—C4124.5 (2)O4—C8—C7111.24 (17)
O2—C7—C8110.62 (15)O5—C9—C7118.45 (17)
O2—C7—C9108.66 (13)O6—C9—C7116.53 (16)
C8—C7—C9108.96 (13)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O5i0.90 (5)1.71 (5)2.604 (3)180 (7)
O2—H8···O6ii0.86 (4)1.74 (4)2.5956 (19)179 (4)
O4—H9···O2iii0.83 (5)1.79 (5)2.602 (2)165 (4)
N1—H1···O60.83 (5)1.88 (5)2.682 (3)162 (5)
C2—H2···O3iv0.932.503.422 (3)174
C4—H4···O5i0.932.563.206 (4)127
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y1, z.
Selected geometric parameters (Å, º) for (III) top
O1—C41.336 (5)O4—C81.318 (5)
O2—C71.400 (4)O5—C91.291 (5)
O3—C81.196 (5)O6—C91.215 (5)
O1—C4—C3119.5 (3)O3—C8—C7123.0 (3)
O1—C4—C5122.0 (3)O4—C8—C7116.3 (4)
O2—C7—C8111.3 (3)O6—C9—C7120.9 (3)
O2—C7—C9109.8 (3)O5—C9—C7112.6 (4)
C8—C7—C9113.7 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H4···O5i0.821.742.562 (4)177
O2—H8···O3ii0.822.052.808 (4)153
O4—H9···O50.821.792.538 (4)151
N1—H1···O20.862.252.862 (5)128
N1—H1···O60.862.072.872 (5)156
C2—H2···O1iii0.932.293.149 (5)153
C3—H3···O6iv0.932.573.497 (5)173
C5—H5···O5i0.932.543.179 (6)127
C7—H7···O2v0.982.493.369 (6)149
Symmetry codes: (i) x1, y, z+1; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y+2, z1/2; (iv) x1/2, y+2, z+1/2; (v) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds