Download citation
Download citation
link to html
The title organometallic compound, fac-tri­carbonyl-2κ3C-(4,4′-di­methyl-2,2′-bi­pyridine)-2κ2N,N′-tri­phenyl-1κ3C1-tin(II)­rhenium(I)(Sn—Re), [ReSn(C6H5)3(C12H12N2)(CO)3], con­tains three unique π–π stacking interactions. The result is an infinite chain of uninterrupted alternating intra- and intermolecular offset π–π stacking interactions throughout the crystal lattice. This extended π–π stacking arrangement, and an additional isolated intramolecular π–π interaction between the remaining 4,4′-di­methyl-2,2′-bi­pyridine ring and a second phenyl group, impose geometric constraints on the Re and Sn atoms, yielding distorted octahedral and tetrahedral coordinations, respectively, for the metal centers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104013836/fr1491sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104013836/fr1491Isup2.hkl
Contains datablock I

CCDC reference: 248125

Comment top

The title compound, fac-(CO)3(dmbpy)Re(I)Ph3Sn(I) (dmbpy is 4,4'-dimethyl-2,2'-bipyridine), (I), was prepared and its structure determined as part of a general effort to characterize rhenium polypyridine complexes, or their derivatives, which might be involved in CO2 reduction (Gibson et al., 2003). \sch

The molecules of (I) pack in a columnar network via an extended arrangement of parallel displaced ππ stacking interactions (Fig. 1). The atomic labelling scheme shown in Fig. 2 identifies the four aromatic rings involved in the detailed structural analysis. The first slipped stack is formed between the phenyl group containing atoms C16—C21 (Ph1) and the six-membered ring of N2/C9—C13 (dmbpy1). The second intramolecular interaction occurs between the phenyl ring defined by atoms C22—C27 (Ph2) and the ring containing atoms N1/C4—C8 (dmbpy2).

The chelating dmbpy ligand contains a pinched N1—Re—N2 bond angle, which requires the Re atom to adopt a distorted octahedral geometry. The Sn—Re—C3 bond angle is non-linear and the Re—C3 bond is slightly longer than the Re—C1 and Re—C2 bonds. Significant differences are observed in bond angles involving the ipso phenyl C atoms, the Sn atom and the Re atom, with the C28—Sn—Re bond angle being more than 10° greater than the other two. This is the consequence of inter- and intramolecular ππ stacking, involving two phenyl groups and both pyridine rings of the dmbpy ligand in each molecule.

It has been noted previously (Magistrato et al., 2001) that such aromatic ππ stacking interactions are rare within ligands of transition metal compounds, and their role in organometallic compounds is largely unknown. However, systems containing bipyridine ligands coordinated to the metal are well suited for ππ interactions because of their low π-electron density (Janiak, 2000).

Both pyridine rings of the dmbpy ligand which are bound to Re in each molecule of (I) are involved in intramolecular ππ stacking interactions with two of the phenyl ligands bound to Sn. With one, the pyridine centroid to phenyl centroid distance is 3.671 Å. In the second, the phenyl ring is slightly tilted away from the pyridine ring, and the pyridine centroid to phenyl centroid distance is 4.121 Å.

This second pyridine ring also participates in an intermolecular ππ stacking interaction with the phenyl group in a second molecule which is involved in the longer-range ππ interaction within that molecule. The intermolecular centroid to centroid distance is 4.221 Å. The angle formed by the two centroid-centroid vectors is 160.05°. The result is a well defined array that is controlled by the ππ interactions but does not have parallel arrangements of the aromatic groups because of the distorting effect of the third phenyl group bound to each Sn atom.

The bond angles around the Sn atom are also affected by the ππ stacking: the Cipso—Sn—Cipso bond angles vary from 101.32 (7)° to 110.33 (7)°. The largest angle is associated with the two phenyl rings involved in ππ stacking.

Experimental top

Compound (I) was synthesized according to the published procedure of Luong et al. (1980). fac-Re(dmbpy)(CO)3Br (0.52 g, 0.97 mmol) in tetrahydrofuran (THF, 25 ml) was stirred for 2 h with Na/Hg (0.2 g Na, 5 ml H g). The mixture was allowed to settle, and the supernatant was drawn off and then added dropwise to Ph3SnCl (0.44 g, 1.14 mmol) in THF (15 ml) in a foil-covered flask. The mixture was stirred for 2 h, the solvent was evaporated, and the residue was triturated with toluene. Toluene was removed from the extracts by evaporation, the residue was dissolved in THF, and hexane was added to precipitate the product. The product had spectroscopic properties analogous to those reported previously (Andréa et al., 1988). Single crystals of (I) for X-ray analysis were grown by slow diffusion from a solution in THF layered with hexane at 295 K.

Refinement top

Coordinates for all H-atom positions were calculated. Methyl groups were allowed to ride (the torsion angle which defines the orientation was allowed to refine) on their parent C atoms and the positions of the phenyl H atoms were constrained so that C—H = 0.95 Å. The Uiso values for all H atoms were refined, except for those of the methyl groups. The maximum residual electron density was 0.82 Å from Re1 and the deepest hole was 1.15 Å from C5.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A packing diagram for (I), illustrating the intra- and intermolecular offset ππ stacking interactions between neighboring phenyl and dimethylpyridyl rings.
[Figure 2] Fig. 2. A view of the molecule of (I), showing the atom-numbering scheme and with 40% probability displacement ellipsoids. H atoms are not shown.
fac-tricarbonyl-2κ3C-(4,4'-dimethyl-2,2'-bipyridine)-2κ2N,N'-triphenyl- 1κ3C1-tin(II)rhenium(I)(Sn—Re) top
Crystal data top
[ReSn(C6H5)3(C12H12N2)(CO)3]F(000) = 1552
Mr = 804.46Dx = 1.873 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9678 reflections
a = 10.1077 (5) Åθ = 2.3–28.1°
b = 20.0087 (11) ŵ = 5.15 mm1
c = 14.3020 (8) ÅT = 100 K
β = 99.483 (1)°Block, orange
V = 2852.9 (3) Å30.39 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6622 independent reflections
Radiation source: normal-focus sealed tube6330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 28.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1313
Tmin = 0.420, Tmax = 0.490k = 2625
24721 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0221P)2 + 1.1474P]
where P = (Fo2 + 2Fc2)/3
6622 reflections(Δ/σ)max = 0.003
384 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[ReSn(C6H5)3(C12H12N2)(CO)3]V = 2852.9 (3) Å3
Mr = 804.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.1077 (5) ŵ = 5.15 mm1
b = 20.0087 (11) ÅT = 100 K
c = 14.3020 (8) Å0.39 × 0.14 × 0.14 mm
β = 99.483 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6622 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
6330 reflections with I > 2σ(I)
Tmin = 0.420, Tmax = 0.490Rint = 0.018
24721 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.039H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.87 e Å3
6622 reflectionsΔρmin = 0.30 e Å3
384 parameters
Special details top

Experimental. Data were collected with a Bruker SMART APEX CCD-based diffractometer using /w-scans of width 0.3 °. and 25 s duration at a crystal-to-detector distance of 4.908 cm. Intensity decay over the course of the data collection was evaluated by recollecting the first 50 frames of data at the end of the experiment. No significant decay was noted.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.722942 (7)0.157502 (3)0.076553 (5)0.01307 (3)
Sn10.795488 (12)0.143284 (6)0.271024 (9)0.01405 (3)
O10.96326 (14)0.25323 (8)0.08702 (11)0.0291 (3)
O20.89845 (15)0.03464 (8)0.05741 (11)0.0301 (3)
O30.66904 (15)0.16547 (7)0.14185 (10)0.0218 (3)
N10.54700 (15)0.10163 (7)0.09963 (10)0.0141 (3)
N20.57439 (15)0.23190 (8)0.09872 (11)0.0153 (3)
C10.87369 (19)0.21657 (10)0.08132 (14)0.0200 (4)
C20.83529 (18)0.08185 (10)0.06493 (13)0.0191 (4)
C30.68147 (19)0.16410 (9)0.06046 (14)0.0171 (4)
C40.54037 (18)0.03430 (9)0.10454 (13)0.0158 (4)
H40.61360.00890.08960.020 (5)*
C50.43323 (18)0.00055 (9)0.13001 (13)0.0174 (4)
H50.43330.04690.13200.013 (5)*
C60.32460 (18)0.03624 (9)0.15285 (13)0.0172 (4)
C70.32935 (18)0.10534 (9)0.14680 (13)0.0170 (4)
H70.25650.13130.16090.017 (5)*
C80.44007 (18)0.13685 (9)0.12030 (13)0.0153 (3)
C90.45216 (18)0.20978 (9)0.11310 (12)0.0154 (3)
C100.34686 (19)0.25343 (10)0.11822 (14)0.0192 (4)
H100.26200.23630.12680.024 (6)*
C110.36471 (19)0.32188 (10)0.11084 (13)0.0194 (4)
C120.4914 (2)0.34387 (9)0.09963 (15)0.0213 (4)
H120.50890.39040.09650.034 (7)*
C130.59180 (19)0.29855 (9)0.09298 (13)0.0192 (4)
H130.67710.31490.08400.019 (5)*
C140.20699 (19)0.00149 (10)0.18425 (15)0.0230 (4)
H14A0.18570.02340.24130.034*
H14B0.22970.04550.19830.034*
H14C0.12910.00400.13360.034*
C150.2492 (2)0.36919 (11)0.11221 (18)0.0290 (5)
H15A0.18090.36140.05620.044*
H15B0.28140.41540.11170.044*
H15C0.21010.36150.16960.044*
C160.72905 (18)0.22929 (9)0.34345 (13)0.0170 (4)
C170.8193 (2)0.28124 (10)0.37282 (13)0.0205 (4)
H170.91200.27480.37120.025 (6)*
C180.7764 (2)0.34189 (10)0.40423 (15)0.0253 (5)
H180.83980.37640.42330.031 (6)*
C190.6422 (2)0.35249 (10)0.40792 (16)0.0281 (5)
H190.61300.39390.42970.019 (5)*
C200.5507 (2)0.30182 (11)0.37939 (16)0.0293 (5)
H200.45830.30850.38180.041 (7)*
C210.5942 (2)0.24113 (10)0.34718 (14)0.0232 (4)
H210.53030.20710.32730.021 (6)*
C220.70719 (18)0.05239 (9)0.31618 (13)0.0171 (4)
C230.75462 (19)0.00877 (10)0.28693 (13)0.0195 (4)
H230.83110.00900.25620.017 (5)*
C240.6928 (2)0.06912 (10)0.30156 (14)0.0214 (4)
H240.72750.10980.28130.019 (5)*
C250.5809 (2)0.06981 (10)0.34558 (14)0.0228 (4)
H250.53780.11090.35510.024 (6)*
C260.53156 (19)0.01010 (10)0.37579 (14)0.0219 (4)
H260.45480.01030.40630.024 (6)*
C270.59463 (19)0.05014 (10)0.36141 (13)0.0193 (4)
H270.56040.09060.38280.014 (5)*
C281.00401 (18)0.13035 (10)0.33379 (13)0.0176 (4)
C291.10119 (19)0.17656 (10)0.31667 (14)0.0202 (4)
H291.07620.21240.27390.015 (5)*
C301.2344 (2)0.17082 (11)0.36152 (15)0.0232 (4)
H301.29870.20320.35020.033 (7)*
C311.27284 (18)0.11795 (11)0.42250 (14)0.0238 (4)
H311.36360.11390.45260.033 (6)*
C321.1791 (2)0.07104 (10)0.43963 (14)0.0229 (4)
H321.20530.03470.48120.028 (6)*
C331.04596 (19)0.07734 (10)0.39565 (13)0.0204 (4)
H330.98220.04500.40790.022 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01193 (4)0.01401 (4)0.01353 (4)0.00048 (2)0.00281 (3)0.00083 (2)
Sn10.01178 (6)0.01612 (6)0.01415 (7)0.00086 (4)0.00184 (5)0.00105 (5)
O10.0238 (7)0.0309 (8)0.0334 (9)0.0113 (6)0.0073 (6)0.0032 (7)
O20.0279 (8)0.0290 (8)0.0337 (9)0.0113 (6)0.0063 (7)0.0027 (7)
O30.0280 (8)0.0211 (7)0.0154 (7)0.0005 (5)0.0012 (6)0.0006 (5)
N10.0140 (7)0.0145 (7)0.0131 (7)0.0002 (6)0.0005 (6)0.0013 (6)
N20.0165 (7)0.0152 (7)0.0146 (8)0.0002 (6)0.0036 (6)0.0009 (6)
C10.0199 (9)0.0236 (10)0.0168 (9)0.0007 (8)0.0042 (7)0.0011 (8)
C20.0153 (9)0.0236 (10)0.0181 (9)0.0010 (7)0.0023 (7)0.0017 (8)
C30.0149 (9)0.0127 (8)0.0239 (11)0.0001 (6)0.0039 (7)0.0004 (7)
C40.0168 (9)0.0161 (9)0.0137 (9)0.0007 (7)0.0003 (7)0.0026 (7)
C50.0214 (9)0.0142 (9)0.0151 (9)0.0017 (7)0.0016 (7)0.0017 (7)
C60.0170 (9)0.0194 (9)0.0140 (9)0.0034 (7)0.0004 (7)0.0008 (7)
C70.0144 (8)0.0210 (9)0.0154 (9)0.0007 (7)0.0017 (7)0.0005 (7)
C80.0147 (8)0.0161 (9)0.0143 (9)0.0002 (7)0.0001 (7)0.0006 (7)
C90.0174 (9)0.0165 (9)0.0124 (8)0.0010 (7)0.0025 (7)0.0005 (7)
C100.0173 (9)0.0204 (9)0.0201 (9)0.0007 (7)0.0035 (7)0.0013 (7)
C110.0210 (9)0.0198 (9)0.0172 (9)0.0051 (7)0.0023 (7)0.0009 (7)
C120.0282 (11)0.0148 (9)0.0215 (10)0.0003 (7)0.0059 (8)0.0001 (7)
C130.0212 (9)0.0165 (9)0.0209 (10)0.0020 (7)0.0060 (7)0.0010 (7)
C140.0208 (10)0.0226 (10)0.0268 (11)0.0042 (8)0.0074 (8)0.0026 (8)
C150.0260 (11)0.0207 (10)0.0406 (13)0.0093 (8)0.0060 (10)0.0023 (9)
C160.0206 (9)0.0182 (9)0.0117 (8)0.0006 (7)0.0013 (7)0.0002 (7)
C170.0211 (9)0.0222 (10)0.0175 (9)0.0021 (7)0.0007 (7)0.0005 (8)
C180.0365 (13)0.0207 (11)0.0172 (10)0.0053 (8)0.0005 (9)0.0010 (7)
C190.0423 (13)0.0205 (10)0.0221 (11)0.0056 (9)0.0072 (10)0.0018 (8)
C200.0271 (11)0.0306 (11)0.0321 (12)0.0069 (9)0.0111 (9)0.0014 (9)
C210.0217 (10)0.0229 (10)0.0254 (11)0.0024 (8)0.0057 (8)0.0029 (8)
C220.0159 (8)0.0207 (9)0.0136 (9)0.0018 (7)0.0004 (7)0.0006 (7)
C230.0189 (9)0.0231 (10)0.0160 (9)0.0002 (7)0.0011 (7)0.0017 (7)
C240.0259 (10)0.0174 (9)0.0187 (9)0.0017 (8)0.0027 (8)0.0011 (7)
C250.0244 (10)0.0207 (10)0.0212 (10)0.0066 (8)0.0024 (8)0.0051 (8)
C260.0174 (9)0.0285 (10)0.0195 (10)0.0031 (8)0.0025 (7)0.0030 (8)
C270.0189 (9)0.0215 (10)0.0171 (9)0.0001 (7)0.0017 (7)0.0017 (7)
C280.0146 (8)0.0209 (9)0.0169 (9)0.0014 (7)0.0020 (7)0.0051 (7)
C290.0185 (9)0.0210 (9)0.0213 (10)0.0005 (7)0.0040 (7)0.0020 (8)
C300.0157 (9)0.0280 (10)0.0265 (11)0.0026 (8)0.0054 (8)0.0065 (9)
C310.0154 (9)0.0327 (12)0.0225 (11)0.0042 (8)0.0006 (8)0.0072 (8)
C320.0231 (10)0.0248 (10)0.0197 (10)0.0061 (8)0.0004 (8)0.0031 (8)
C330.0202 (9)0.0225 (10)0.0185 (9)0.0003 (7)0.0029 (7)0.0039 (8)
Geometric parameters (Å, º) top
Re1—C11.9207 (19)C15—H15A0.98
Re1—C21.9160 (19)C15—H15B0.98
Re1—C31.940 (2)C15—H15C0.98
Re1—N12.1713 (15)C16—C211.393 (3)
Re1—N22.1743 (15)C16—C171.401 (3)
Re1—Sn12.7717 (2)C17—C181.388 (3)
Sn1—C162.1712 (19)C17—H170.95
Sn1—C222.1706 (19)C18—C191.383 (3)
Sn1—C282.1661 (18)C18—H180.95
O1—C11.158 (2)C19—C201.388 (3)
O2—C21.155 (2)C19—H190.95
O3—C31.150 (2)C20—C211.395 (3)
N1—C41.351 (2)C20—H200.95
N1—C81.363 (2)C21—H210.95
N2—C131.349 (2)C22—C271.399 (3)
N2—C91.360 (2)C22—C231.403 (3)
C4—C51.375 (3)C23—C241.391 (3)
C4—H40.95C23—H230.95
C5—C61.393 (3)C24—C251.383 (3)
C5—H50.95C24—H240.95
C6—C71.387 (3)C25—C261.391 (3)
C6—C141.508 (3)C25—H250.95
C7—C81.390 (3)C26—C271.394 (3)
C7—H70.95C26—H260.95
C8—C91.469 (2)C27—H270.95
C9—C101.388 (3)C28—C291.400 (3)
C10—C111.388 (3)C28—C331.401 (3)
C10—H100.95C29—C301.398 (3)
C11—C121.389 (3)C29—H290.95
C11—C151.506 (3)C30—C311.385 (3)
C12—C131.376 (3)C30—H300.95
C12—H120.95C31—C321.384 (3)
C13—H130.95C31—H310.95
C14—H14A0.98C32—C331.394 (3)
C14—H14B0.98C32—H320.95
C14—H14C0.98C33—H330.95
C1—Re1—C290.64 (8)C6—C14—H14C109.5
C1—Re1—C391.84 (8)H14A—C14—H14C109.5
C2—Re1—C389.92 (8)H14B—C14—H14C109.5
C1—Re1—N1167.49 (7)C11—C15—H15A109.5
C2—Re1—N196.80 (7)C11—C15—H15B109.5
C3—Re1—N198.19 (7)H15A—C15—H15B109.5
C1—Re1—N297.84 (7)C11—C15—H15C109.5
C2—Re1—N2170.74 (7)H15A—C15—H15C109.5
C3—Re1—N293.51 (7)H15B—C15—H15C109.5
N1—Re1—N274.20 (6)C21—C16—C17117.07 (18)
Sn1—Re1—C187.16 (6)C21—C16—Sn1122.31 (14)
Sn1—Re1—C286.75 (6)C17—C16—Sn1119.59 (14)
Sn1—Re1—C3176.52 (5)C18—C17—C16121.55 (19)
Sn1—Re1—N183.25 (4)C18—C17—H17119.2
Sn1—Re1—N289.94 (4)C16—C17—H17119.2
C28—Sn1—C22101.32 (7)C19—C18—C17120.47 (19)
C28—Sn1—C16104.67 (7)C19—C18—H18119.8
C22—Sn1—C16110.33 (7)C17—C18—H18119.8
C28—Sn1—Re1120.44 (5)C18—C19—C20119.15 (19)
C22—Sn1—Re1109.32 (5)C18—C19—H19120.4
C16—Sn1—Re1110.24 (5)C20—C19—H19120.4
C4—N1—C8117.15 (15)C19—C20—C21120.2 (2)
C4—N1—Re1124.76 (12)C19—C20—H20119.9
C8—N1—Re1117.74 (12)C21—C20—H20119.9
C13—N2—C9117.51 (16)C16—C21—C20121.59 (19)
C13—N2—Re1124.59 (12)C16—C21—H21119.2
C9—N2—Re1117.75 (12)C20—C21—H21119.2
O1—C1—Re1177.56 (17)C27—C22—C23116.98 (17)
O2—C2—Re1177.24 (17)C27—C22—Sn1124.75 (14)
O3—C3—Re1173.35 (16)C23—C22—Sn1117.69 (13)
N1—C4—C5123.46 (17)C24—C23—C22121.90 (18)
N1—C4—H4118.3C24—C23—H23119.1
C5—C4—H4118.3C22—C23—H23119.1
C4—C5—C6119.72 (17)C25—C24—C23119.91 (19)
C4—C5—H5120.1C25—C24—H24120.0
C6—C5—H5120.1C23—C24—H24120.0
C7—C6—C5117.37 (17)C24—C25—C26119.66 (18)
C7—C6—C14121.03 (17)C24—C25—H25120.2
C5—C6—C14121.60 (17)C26—C25—H25120.2
C6—C7—C8120.45 (17)C25—C26—C27120.06 (18)
C6—C7—H7119.8C25—C26—H26120.0
C8—C7—H7119.8C27—C26—H26120.0
N1—C8—C7121.83 (17)C26—C27—C22121.49 (18)
N1—C8—C9114.85 (15)C26—C27—H27119.3
C7—C8—C9123.32 (17)C22—C27—H27119.3
N2—C9—C10121.79 (17)C29—C28—C33117.55 (17)
N2—C9—C8114.97 (15)C29—C28—Sn1120.76 (14)
C10—C9—C8123.22 (16)C33—C28—Sn1121.64 (14)
C9—C10—C11120.44 (18)C30—C29—C28121.08 (19)
C9—C10—H10119.8C30—C29—H29119.5
C11—C10—H10119.8C28—C29—H29119.5
C12—C11—C10117.10 (17)C31—C30—C29120.05 (19)
C12—C11—C15122.31 (18)C31—C30—H30120.0
C10—C11—C15120.57 (18)C29—C30—H30120.0
C13—C12—C11120.26 (18)C32—C31—C30120.02 (18)
C13—C12—H12119.9C32—C31—H31120.0
C11—C12—H12119.9C30—C31—H31120.0
N2—C13—C12122.84 (18)C31—C32—C33119.80 (19)
N2—C13—H13118.6C31—C32—H32120.1
C12—C13—H13118.6C33—C32—H32120.1
C6—C14—H14A109.5C32—C33—C28121.50 (19)
C6—C14—H14B109.5C32—C33—H33119.2
H14A—C14—H14B109.5C28—C33—H33119.2
C2—Re1—Sn1—C2847.64 (8)C8—C9—C10—C11179.95 (17)
C1—Re1—Sn1—C2843.16 (8)C9—C10—C11—C120.8 (3)
N1—Re1—Sn1—C28144.89 (7)C9—C10—C11—C15177.39 (19)
N2—Re1—Sn1—C28141.01 (7)C10—C11—C12—C132.2 (3)
C2—Re1—Sn1—C2268.92 (8)C15—C11—C12—C13176.0 (2)
C1—Re1—Sn1—C22159.73 (8)C9—N2—C13—C121.0 (3)
N1—Re1—Sn1—C2228.32 (7)Re1—N2—C13—C12174.40 (15)
N2—Re1—Sn1—C22102.42 (7)C11—C12—C13—N21.3 (3)
C2—Re1—Sn1—C16169.63 (8)C28—Sn1—C16—C21158.45 (16)
C1—Re1—Sn1—C1678.83 (8)C22—Sn1—C16—C2150.19 (17)
N1—Re1—Sn1—C1693.12 (7)Re1—Sn1—C16—C2170.65 (16)
N2—Re1—Sn1—C1619.02 (7)C28—Sn1—C16—C1733.47 (16)
C2—Re1—N1—C41.55 (15)C22—Sn1—C16—C17141.74 (14)
C3—Re1—N1—C492.45 (15)Re1—Sn1—C16—C1797.42 (14)
N2—Re1—N1—C4176.20 (15)C21—C16—C17—C180.0 (3)
Sn1—Re1—N1—C484.35 (14)Sn1—C16—C17—C18168.66 (15)
C2—Re1—N1—C8174.48 (13)C16—C17—C18—C190.4 (3)
C3—Re1—N1—C894.62 (14)C17—C18—C19—C200.3 (3)
N2—Re1—N1—C83.27 (13)C18—C19—C20—C210.2 (3)
Sn1—Re1—N1—C888.58 (12)C17—C16—C21—C200.5 (3)
C1—Re1—N2—C1313.20 (16)Sn1—C16—C21—C20168.84 (16)
C3—Re1—N2—C1379.15 (16)C19—C20—C21—C160.6 (3)
N1—Re1—N2—C13176.68 (16)C28—Sn1—C22—C27128.60 (16)
Sn1—Re1—N2—C13100.32 (15)C16—Sn1—C22—C2718.13 (17)
C1—Re1—N2—C9171.41 (13)Re1—Sn1—C22—C27103.26 (15)
C3—Re1—N2—C996.24 (14)C28—Sn1—C22—C2360.41 (15)
N1—Re1—N2—C91.29 (12)C16—Sn1—C22—C23170.87 (13)
Sn1—Re1—N2—C984.29 (13)Re1—Sn1—C22—C2367.74 (14)
C8—N1—C4—C50.7 (3)C27—C22—C23—C240.3 (3)
Re1—N1—C4—C5172.22 (13)Sn1—C22—C23—C24171.44 (14)
N1—C4—C5—C60.4 (3)C22—C23—C24—C250.4 (3)
C4—C5—C6—C71.2 (3)C23—C24—C25—C260.6 (3)
C4—C5—C6—C14177.98 (17)C24—C25—C26—C270.2 (3)
C5—C6—C7—C81.0 (3)C25—C26—C27—C220.5 (3)
C14—C6—C7—C8178.20 (17)C23—C22—C27—C260.7 (3)
C4—N1—C8—C71.0 (3)Sn1—C22—C27—C26170.36 (14)
Re1—N1—C8—C7172.50 (13)C22—Sn1—C28—C29175.56 (15)
C4—N1—C8—C9179.53 (15)C16—Sn1—C28—C2969.69 (16)
Re1—N1—C8—C97.0 (2)Re1—Sn1—C28—C2954.97 (16)
C6—C7—C8—N10.1 (3)C22—Sn1—C28—C337.01 (16)
C6—C7—C8—C9179.56 (17)C16—Sn1—C28—C33107.74 (16)
C13—N2—C9—C102.4 (3)Re1—Sn1—C28—C33127.61 (14)
Re1—N2—C9—C10173.31 (14)C33—C28—C29—C301.5 (3)
C13—N2—C9—C8179.02 (16)Sn1—C28—C29—C30176.00 (14)
Re1—N2—C9—C85.3 (2)C28—C29—C30—C311.4 (3)
N1—C8—C9—N27.9 (2)C29—C30—C31—C320.5 (3)
C7—C8—C9—N2171.55 (17)C30—C31—C32—C330.2 (3)
N1—C8—C9—C10170.61 (17)C31—C32—C33—C280.1 (3)
C7—C8—C9—C109.9 (3)C29—C28—C33—C320.8 (3)
N2—C9—C10—C111.5 (3)Sn1—C28—C33—C32176.74 (14)

Experimental details

Crystal data
Chemical formula[ReSn(C6H5)3(C12H12N2)(CO)3]
Mr804.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.1077 (5), 20.0087 (11), 14.3020 (8)
β (°) 99.483 (1)
V3)2852.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.15
Crystal size (mm)0.39 × 0.14 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.420, 0.490
No. of measured, independent and
observed [I > 2σ(I)] reflections
24721, 6622, 6330
Rint0.018
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.039, 1.03
No. of reflections6622
No. of parameters384
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.87, 0.30

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and SHELXTL (Bruker, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
Re1—C11.9207 (19)Re1—Sn12.7717 (2)
Re1—C21.9160 (19)Sn1—C162.1712 (19)
Re1—C31.940 (2)Sn1—C222.1706 (19)
Re1—N12.1713 (15)Sn1—C282.1661 (18)
Re1—N22.1743 (15)
C1—Re1—N1167.49 (7)N1—Re1—N274.20 (6)
C2—Re1—N196.80 (7)Sn1—Re1—C187.16 (6)
C3—Re1—N198.19 (7)Sn1—Re1—C286.75 (6)
C1—Re1—N297.84 (7)Sn1—Re1—C3176.52 (5)
C2—Re1—N2170.74 (7)Sn1—Re1—N183.25 (4)
C3—Re1—N293.51 (7)Sn1—Re1—N289.94 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds