Download citation
Download citation
link to html
In the Diels-Alder reaction, the preferred addition of dienes syn to the O atom in cross-conjugated cyclo­hexadienones containing an oxa-­spiro ring system is observed. The two structures reported here, namely rel-(1R,4aR,9S,9aS,10R)-4a,9,9a,10-tetra­hydro-9,10-di­phenyl­spiro­[9,10-epoxy­anthra­cene-1(4H),2'-oxiran]-4-one, C27H20O3, and rel-(1R,4aS,9R,9aS,10S)-4a,9,9a,10-tetra­hydro-9,10-di­phenyl­spiro­[9,10-epoxy­anthracene-1(4H),2'-oxetane]-4-one, C28H22O3, are the minor and sole products, respectively, of the reactions of di­phenyl­isobenzo­furan with two slightly different cyclo­hexadienones. These structures differ in the size of the oxa-­spiro ring, by one C atom, and in the relative configuration at the spiro­cyclic ring C atom, leading to some minor conformational differences between the two compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104015951/fr1490sup1.cif
Contains datablocks global, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104015951/fr1490IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104015951/fr1490IVsup3.hkl
Contains datablock IV

CCDC references: 251319; 251320

Comment top

Cross-conjugated cyclohexadienones carrying an oxaspiro ring, as in (I), hold interest as Diels–Alder dienophiles in that control of π-facial diastereoselectivity by the heteroatom is operative (Wipf & Kim, 1994; Tran-Hu—Dâu et al., 2001; Silvero et al., 1998; Takagi et al., 2003; Paquette et al., 2003). Irrespective of the size of the spiro ring and the resultant changes in basicity at the O center and overall steric contributions, diene approach from the direction syn to the O atom is heavily preferred (Ohkata et al., 2004). Diphenylisobenzofuran, (II) (Newman, 1961), one of the notably reactive dienes, is used in the present study because this compound often leads to crystalline products. We compare here the structural features of (III), the minor Diels–Alder adduct from the reaction of diphenylisobenzofuran with (I) (n=1), with those of (IV), the sole [4 + 2] product formed upon reaction of diphenylisobenzofuran with (I) (n = 2).

The size of the oxaspiro ring and the relative configuration of the spirocyclic atom C10 are the main features that differentiate these two structures. For both structures, the six-membered ring containing the spiro C atom (C9–C14) is in a boat conformation. In (III), atoms C10 and C13 lie 0.112 (1) and 0.236 (1) Å, respectively, from the least-squares plane defined by atoms C9, C11, C12 and C14. In (IV), atoms C10 and C13 lie 0.382 (1) and 0.284 (1) Å, respectively, from the analogous plane. The two boat conformations are bent in opposite directions, as seen in Figs. 1 and 2.

Another conformational difference between the two structures is seen in the orientation of the phenyl rings. This can be described by the dihedral angle between a phenyl ring and the plane defined by atoms C1, O1 and C8. In (III), the dihedral angle between the C22–C27 phenyl ring and the C1/O1/C8 plane is 84.0 (1)°. The analogous angle in (IV) is 83.9 (1)°, where the phenyl ring consists of atoms C21–C26. Note that both phenyl rings are located on the same end of the molecule as the spiro ring. For the other two phenyl rings, the dihedral angles are significantly different; in (III), this dihedral angle is 44.5 (1)°, while for (IV) it is 11.9 (1)°.

The oxetane ring in (IV) can be compared with the structure of oxetane (C3H6O), which was determined at two temperatures, viz. 90 and 140 K (Luger & Buschmann, 1984). Oxetane was found to have several interesting features, including ring puckering, as described by the dihedral angle between the C/O/C and C/C/C planes, of 10.7 (1)° at 90 K and 8.7 (2)° at 140 K, long C—O bond lengths of 1.460 (1) Å at 90 K and 1.443 (2) Å at 140 K, and an acute C—C—C angle of 84.79 (9)° at 90 K and 85.0 (1)° at 140 K. These same features are observed in (IV), with a ring-puckering angle of 5.8 (1)°, long O3—C27 O3—C10 bond lengths of 1.4514 (17) and 1.4656 (15) Å, and an acute C27—C28—C10 angle of 85.8 (1)°. There is only one other structure in the Cambridge Structural Database (Allen, 2002, Version 5.25 of November 2003) that contains an analogous spiro oxetane ring, where the spiro C atom is located adjacent to the O atom, namely 6,8,9-tris(ethyleneoxy)-2,4,10- trioxatricyclo(3.3.1.1)decane (Paquette et al., 2001). This compound contains three spiro oxetane rings and exhibits the above-mentioned features of (IV) and oxetane.

Experimental top

To a solution (1.0 M) of (I) in benzene was added one equivalent of diphenylisobenzofuran, (II). The reaction mixture was shielded from laboratory light and heated at the reflux temperature. When the reaction was complete (8.5 h for n=1 and 6 h for n=2), the volatile constituents were removed under reduced pressure, and the residue was purified by column chromatography on silica gel. The reaction with n=1 resulted in the isolation of two adducts in a 78:22 ratio, with (III) as the minor component. When the co-reactant was (I) with n=2, compound (IV) was formed exclusively. Compounds (III) and (IV) were crystallized by dissolving each in a minimal amount of ethyl acetate, and then adding hexane until the solution turned slightly cloudy. The melting points of (III) and (IV) are 406–408 K and 411–413 K, respectively.

Refinement top

The H atoms for both structures were placed at calculated positions and treated using using a riding model, with Uiso(H) values of 1.2Ueq(C). The C—H distances ranged from 0.95 to 1.00 Å, depending on the type of C atom. PLATON (Spek, 2003) was used to calculated some geometric parameters.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: reference?.

Figures top
[Figure 1] Fig. 1. The structure of (III), drawn with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The structure of (IV), drawn with 50% probability displacement ellipsoids.
(III) rel-(1R,4aR,9S,9aS,10R)-4a,9,9a,10-tetrahydro-9,10-diphenylspiro[9,10- epoxyanthracene-1(4H),2'-oxiran]-4–one top
Crystal data top
C27H20O3F(000) = 824
Mr = 392.43Dx = 1.337 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4662 reflections
a = 10.322 (1) Åθ = 2.0–27.5°
b = 14.239 (1) ŵ = 0.09 mm1
c = 14.138 (1) ÅT = 200 K
β = 110.254 (4)°Chunk, pale yellow
V = 1949.3 (3) Å30.35 × 0.31 × 0.19 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3424 reflections with I > 2σ(I)
Radiation source: fine–focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ϕ and ω scansh = 1313
41110 measured reflectionsk = 1818
4474 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.4364P]
where P = (Fo2 + 2Fc2)/3
4474 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C27H20O3V = 1949.3 (3) Å3
Mr = 392.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.322 (1) ŵ = 0.09 mm1
b = 14.239 (1) ÅT = 200 K
c = 14.138 (1) Å0.35 × 0.31 × 0.19 mm
β = 110.254 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3424 reflections with I > 2σ(I)
41110 measured reflectionsRint = 0.036
4474 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
4474 reflectionsΔρmin = 0.23 e Å3
271 parameters
Special details top

Experimental. All work was done at 200 K using an Oxford Cryosystems Cryostream Cooler. A quadrant of reciprocal space was measured with a redundancy factor of 4.2, which means that 90% of the data was measured at least 4.2 times. A combination of phi and omega scans with a frame width of 1.0° was used for data collection. Data integration was done with DENZO (Otwinowski & Minor, 1997). Scaling and merging of the data was done with SCALEPACK (Otwinowski & Minor, 1997).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78521 (9)0.91350 (6)0.79337 (6)0.0249 (2)
O20.92312 (12)0.92687 (9)0.53963 (9)0.0499 (3)
O30.38837 (11)0.86833 (8)0.51460 (9)0.0464 (3)
C10.87191 (13)0.91525 (9)0.73112 (9)0.0245 (3)
C20.88851 (13)0.81059 (9)0.71718 (9)0.0244 (3)
C30.99011 (14)0.75818 (10)0.69891 (10)0.0293 (3)
H31.07310.78650.69830.035*
C40.96651 (15)0.66200 (10)0.68136 (10)0.0328 (3)
H41.03530.62400.66980.039*
C50.84444 (15)0.62133 (10)0.68061 (10)0.0328 (3)
H50.83100.55580.66900.039*
C60.74068 (14)0.67491 (10)0.69667 (10)0.0292 (3)
H60.65610.64700.69450.035*
C70.76466 (13)0.76999 (9)0.71587 (9)0.0251 (3)
C80.67729 (13)0.85079 (9)0.73182 (9)0.0254 (3)
C90.62651 (14)0.90870 (9)0.63186 (10)0.0285 (3)
H90.57100.96260.64260.034*
C100.53647 (14)0.85611 (10)0.53852 (11)0.0346 (3)
C110.57426 (18)0.85937 (12)0.44781 (12)0.0457 (4)
H110.50850.83790.38630.055*
C120.69449 (18)0.89046 (12)0.44641 (12)0.0459 (4)
H120.71020.89170.38410.055*
C130.80386 (16)0.92290 (10)0.53727 (11)0.0349 (3)
C140.76543 (14)0.94965 (10)0.62811 (10)0.0283 (3)
H140.76021.01970.63040.034*
C150.44699 (16)0.77763 (12)0.54481 (13)0.0456 (4)
H15A0.42750.72810.49260.055*
H15B0.45430.75510.61270.055*
C160.99695 (13)0.97469 (9)0.78415 (10)0.0258 (3)
C171.06064 (15)0.96424 (11)0.88772 (11)0.0363 (3)
H171.02880.91730.92220.044*
C181.16971 (16)1.02129 (12)0.94119 (11)0.0432 (4)
H181.21141.01401.01210.052*
C191.21823 (15)1.08892 (11)0.89182 (12)0.0399 (4)
H191.29361.12790.92850.048*
C201.15666 (15)1.09941 (11)0.78916 (12)0.0381 (4)
H201.18981.14580.75500.046*
C211.04651 (14)1.04270 (10)0.73515 (11)0.0332 (3)
H211.00491.05050.66430.040*
C220.57793 (13)0.83223 (10)0.78705 (10)0.0290 (3)
C230.61108 (15)0.76515 (11)0.86332 (10)0.0339 (3)
H230.69200.72820.87620.041*
C240.52772 (17)0.75131 (13)0.92095 (11)0.0435 (4)
H240.55190.70540.97290.052*
C250.40968 (18)0.80445 (13)0.90257 (13)0.0493 (4)
H250.35310.79570.94240.059*
C260.37405 (18)0.87026 (13)0.82627 (15)0.0510 (5)
H260.29220.90620.81320.061*
C270.45736 (16)0.88431 (11)0.76832 (13)0.0418 (4)
H270.43190.92960.71580.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0243 (4)0.0265 (5)0.0248 (5)0.0026 (4)0.0095 (4)0.0024 (4)
O20.0553 (7)0.0586 (8)0.0441 (7)0.0114 (6)0.0276 (6)0.0065 (6)
O30.0313 (5)0.0467 (7)0.0494 (7)0.0033 (5)0.0009 (5)0.0034 (5)
C10.0262 (6)0.0251 (7)0.0233 (6)0.0005 (5)0.0102 (5)0.0009 (5)
C20.0276 (6)0.0238 (7)0.0208 (6)0.0000 (5)0.0072 (5)0.0011 (5)
C30.0289 (7)0.0316 (7)0.0287 (7)0.0011 (6)0.0117 (6)0.0014 (6)
C40.0369 (8)0.0309 (8)0.0319 (7)0.0071 (6)0.0136 (6)0.0008 (6)
C50.0431 (8)0.0235 (7)0.0297 (7)0.0012 (6)0.0100 (6)0.0017 (6)
C60.0308 (7)0.0275 (7)0.0278 (7)0.0038 (6)0.0082 (6)0.0003 (5)
C70.0270 (6)0.0258 (7)0.0218 (6)0.0008 (5)0.0074 (5)0.0018 (5)
C80.0233 (6)0.0257 (7)0.0251 (6)0.0009 (5)0.0057 (5)0.0023 (5)
C90.0281 (7)0.0274 (7)0.0273 (7)0.0026 (5)0.0062 (5)0.0008 (5)
C100.0306 (7)0.0347 (8)0.0307 (7)0.0041 (6)0.0006 (6)0.0008 (6)
C110.0502 (10)0.0496 (10)0.0283 (8)0.0003 (8)0.0020 (7)0.0069 (7)
C120.0580 (10)0.0519 (10)0.0266 (8)0.0001 (8)0.0132 (7)0.0030 (7)
C130.0435 (8)0.0335 (8)0.0291 (7)0.0015 (6)0.0143 (6)0.0039 (6)
C140.0330 (7)0.0244 (7)0.0256 (6)0.0011 (5)0.0076 (5)0.0013 (5)
C150.0411 (9)0.0411 (9)0.0425 (9)0.0051 (7)0.0008 (7)0.0014 (7)
C160.0262 (6)0.0243 (7)0.0281 (7)0.0008 (5)0.0110 (5)0.0017 (5)
C170.0360 (8)0.0417 (9)0.0300 (7)0.0073 (7)0.0099 (6)0.0033 (6)
C180.0395 (8)0.0567 (10)0.0294 (8)0.0092 (7)0.0068 (6)0.0041 (7)
C190.0330 (8)0.0415 (9)0.0453 (9)0.0097 (7)0.0135 (7)0.0118 (7)
C200.0362 (8)0.0350 (8)0.0446 (9)0.0091 (6)0.0159 (7)0.0001 (7)
C210.0340 (7)0.0332 (8)0.0318 (7)0.0042 (6)0.0107 (6)0.0022 (6)
C220.0247 (6)0.0309 (7)0.0314 (7)0.0045 (6)0.0097 (5)0.0074 (6)
C230.0299 (7)0.0435 (9)0.0279 (7)0.0048 (6)0.0095 (6)0.0034 (6)
C240.0466 (9)0.0551 (10)0.0315 (8)0.0152 (8)0.0169 (7)0.0059 (7)
C250.0475 (10)0.0606 (11)0.0515 (10)0.0181 (8)0.0322 (8)0.0192 (9)
C260.0381 (9)0.0518 (11)0.0732 (12)0.0016 (8)0.0322 (9)0.0139 (9)
C270.0356 (8)0.0381 (9)0.0560 (10)0.0013 (7)0.0215 (7)0.0018 (7)
Geometric parameters (Å, º) top
O1—C11.4565 (15)C12—C131.461 (2)
O1—C81.4575 (15)C12—H120.9500
O2—C131.2211 (18)C13—C141.5180 (19)
O3—C151.427 (2)C14—H141.0000
O3—C101.4572 (17)C15—H15A0.9900
C1—C161.5080 (18)C15—H15B0.9900
C1—C21.5206 (18)C16—C211.3874 (19)
C1—C141.5686 (18)C16—C171.3899 (19)
C2—C31.3824 (19)C17—C181.382 (2)
C2—C71.3972 (18)C17—H170.9500
C3—C41.398 (2)C18—C191.381 (2)
C3—H30.9500C18—H180.9500
C4—C51.383 (2)C19—C201.376 (2)
C4—H40.9500C19—H190.9500
C5—C61.396 (2)C20—C211.388 (2)
C5—H50.9500C20—H200.9500
C6—C71.3860 (19)C21—H210.9500
C6—H60.9500C22—C231.392 (2)
C7—C81.5260 (18)C22—C271.393 (2)
C8—C221.5118 (18)C23—C241.389 (2)
C8—C91.5617 (18)C23—H230.9500
C9—C101.5221 (19)C24—C251.380 (3)
C9—C141.5657 (19)C24—H240.9500
C9—H91.0000C25—C261.379 (3)
C10—C111.465 (2)C25—H250.9500
C10—C151.472 (2)C26—C271.392 (2)
C11—C121.324 (2)C26—H260.9500
C11—H110.9500C27—H270.9500
C1—O1—C898.75 (9)O2—C13—C14121.43 (13)
C15—O3—C1061.35 (10)C12—C13—C14118.33 (13)
O1—C1—C16107.95 (10)C13—C14—C9116.47 (12)
O1—C1—C2100.48 (9)C13—C14—C1113.76 (11)
C16—C1—C2119.93 (11)C9—C14—C1101.99 (10)
O1—C1—C14100.76 (10)C13—C14—H14108.1
C16—C1—C14119.36 (11)C9—C14—H14108.1
C2—C1—C14105.06 (10)C1—C14—H14108.1
C3—C2—C7121.59 (12)O3—C15—C1060.32 (10)
C3—C2—C1132.85 (12)O3—C15—H15A117.7
C7—C2—C1105.29 (11)C10—C15—H15A117.7
C2—C3—C4117.72 (13)O3—C15—H15B117.7
C2—C3—H3121.1C10—C15—H15B117.7
C4—C3—H3121.1H15A—C15—H15B114.9
C5—C4—C3120.91 (13)C21—C16—C17118.63 (13)
C5—C4—H4119.5C21—C16—C1122.92 (12)
C3—C4—H4119.5C17—C16—C1118.36 (12)
C4—C5—C6121.19 (13)C18—C17—C16120.80 (14)
C4—C5—H5119.4C18—C17—H17119.6
C6—C5—H5119.4C16—C17—H17119.6
C7—C6—C5118.08 (13)C19—C18—C17120.18 (14)
C7—C6—H6121.0C19—C18—H18119.9
C5—C6—H6121.0C17—C18—H18119.9
C6—C7—C2120.48 (12)C20—C19—C18119.53 (14)
C6—C7—C8133.69 (12)C20—C19—H19120.2
C2—C7—C8105.71 (11)C18—C19—H19120.2
O1—C8—C22108.28 (10)C19—C20—C21120.55 (14)
O1—C8—C7100.46 (9)C19—C20—H20119.7
C22—C8—C7119.06 (11)C21—C20—H20119.7
O1—C8—C999.47 (10)C16—C21—C20120.31 (13)
C22—C8—C9118.98 (11)C16—C21—H21119.8
C7—C8—C9107.14 (10)C20—C21—H21119.8
C10—C9—C8115.96 (11)C23—C22—C27118.45 (13)
C10—C9—C14116.44 (12)C23—C22—C8119.43 (12)
C8—C9—C14101.71 (10)C27—C22—C8122.00 (13)
C10—C9—H9107.4C24—C23—C22121.06 (15)
C8—C9—H9107.4C24—C23—H23119.5
C14—C9—H9107.4C22—C23—H23119.5
O3—C10—C11111.66 (12)C25—C24—C23119.84 (16)
O3—C10—C1558.33 (9)C25—C24—H24120.1
C11—C10—C15116.09 (14)C23—C24—H24120.1
O3—C10—C9114.77 (12)C26—C25—C24119.92 (15)
C11—C10—C9118.41 (13)C26—C25—H25120.0
C15—C10—C9121.91 (13)C24—C25—H25120.0
C12—C11—C10123.96 (14)C25—C26—C27120.40 (16)
C12—C11—H11118.0C25—C26—H26119.8
C10—C11—H11118.0C27—C26—H26119.8
C11—C12—C13122.39 (15)C26—C27—C22120.32 (16)
C11—C12—H12118.8C26—C27—H27119.8
C13—C12—H12118.8C22—C27—H27119.8
O2—C13—C12120.23 (14)
C8—O1—C1—C16177.64 (10)C11—C12—C13—O2160.20 (17)
C8—O1—C1—C251.25 (11)C11—C12—C13—C1418.8 (2)
C8—O1—C1—C1456.46 (11)O2—C13—C14—C9158.41 (14)
O1—C1—C2—C3153.39 (14)C12—C13—C14—C920.60 (19)
C16—C1—C2—C335.5 (2)O2—C13—C14—C140.20 (19)
C14—C1—C2—C3102.34 (16)C12—C13—C14—C1138.81 (14)
O1—C1—C2—C732.76 (12)C10—C9—C14—C137.02 (17)
C16—C1—C2—C7150.68 (11)C8—C9—C14—C13120.02 (12)
C14—C1—C2—C771.51 (12)C10—C9—C14—C1131.48 (12)
C7—C2—C3—C41.56 (19)C8—C9—C14—C14.44 (12)
C1—C2—C3—C4174.59 (13)O1—C1—C14—C13156.86 (11)
C2—C3—C4—C51.1 (2)C16—C1—C14—C1385.30 (15)
C3—C4—C5—C60.4 (2)C2—C1—C14—C1352.80 (14)
C4—C5—C6—C71.5 (2)O1—C1—C14—C930.60 (12)
C5—C6—C7—C21.10 (19)C16—C1—C14—C9148.44 (11)
C5—C6—C7—C8176.58 (13)C2—C1—C14—C973.45 (12)
C3—C2—C7—C60.45 (19)C11—C10—C15—O3100.41 (14)
C1—C2—C7—C6175.16 (12)C9—C10—C15—O3101.29 (14)
C3—C2—C7—C8176.15 (12)O1—C1—C16—C21134.13 (13)
C1—C2—C7—C81.44 (13)C2—C1—C16—C21111.84 (15)
C1—O1—C8—C22175.73 (10)C14—C1—C16—C2120.08 (19)
C1—O1—C8—C750.19 (10)O1—C1—C16—C1742.28 (16)
C1—O1—C8—C959.35 (10)C2—C1—C16—C1771.75 (16)
C6—C7—C8—O1153.74 (14)C14—C1—C16—C17156.33 (12)
C2—C7—C8—O130.31 (12)C21—C16—C17—C181.0 (2)
C6—C7—C8—C2235.9 (2)C1—C16—C17—C18175.58 (14)
C2—C7—C8—C22148.18 (11)C16—C17—C18—C190.9 (2)
C6—C7—C8—C9102.85 (16)C17—C18—C19—C200.4 (2)
C2—C7—C8—C973.10 (12)C18—C19—C20—C210.0 (2)
O1—C8—C9—C10165.37 (11)C17—C16—C21—C200.6 (2)
C22—C8—C9—C1077.51 (15)C1—C16—C21—C20175.82 (13)
C7—C8—C9—C1061.24 (14)C19—C20—C21—C160.1 (2)
O1—C8—C9—C1438.02 (11)O1—C8—C22—C2381.07 (15)
C22—C8—C9—C14155.14 (11)C7—C8—C22—C2332.65 (18)
C7—C8—C9—C1466.10 (12)C9—C8—C22—C23166.53 (12)
C15—O3—C10—C11108.12 (15)O1—C8—C22—C2794.92 (15)
C15—O3—C10—C9113.54 (15)C7—C8—C22—C27151.36 (13)
C8—C9—C10—O396.05 (14)C9—C8—C22—C2717.48 (19)
C14—C9—C10—O3144.34 (12)C27—C22—C23—C241.2 (2)
C8—C9—C10—C11128.57 (14)C8—C22—C23—C24174.95 (13)
C14—C9—C10—C118.96 (18)C22—C23—C24—C250.2 (2)
C8—C9—C10—C1529.24 (18)C23—C24—C25—C260.8 (2)
C14—C9—C10—C15148.86 (13)C24—C25—C26—C270.8 (3)
O3—C10—C11—C12149.43 (17)C25—C26—C27—C220.2 (3)
C15—C10—C11—C12146.33 (17)C23—C22—C27—C261.2 (2)
C9—C10—C11—C1212.8 (2)C8—C22—C27—C26174.83 (14)
C10—C11—C12—C131.5 (3)
(IV) rel-(1R,4aS,9R,9aS,10S)-4a,9,9a,10-tetrahydro-9,10-diphenyl- spiro[9,10-epoxyanthracene-1(4H),2'-oxetane]-4-one top
Crystal data top
C28H22O3F(000) = 856
Mr = 406.46Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4806 reflections
a = 8.434 (1) Åθ = 2.0–27.5°
b = 13.586 (1) ŵ = 0.09 mm1
c = 17.597 (2) ÅT = 200 K
β = 90.646 (4)°Rectangular chunk, pale yellow
V = 2016.3 (4) Å30.35 × 0.27 × 0.23 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3513 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
ϕ and ω scansh = 1010
38808 measured reflectionsk = 1717
4609 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.2487P]
where P = (Fo2 + 2Fc2)/3
4609 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C28H22O3V = 2016.3 (4) Å3
Mr = 406.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.434 (1) ŵ = 0.09 mm1
b = 13.586 (1) ÅT = 200 K
c = 17.597 (2) Å0.35 × 0.27 × 0.23 mm
β = 90.646 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3513 reflections with I > 2σ(I)
38808 measured reflectionsRint = 0.035
4609 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
4609 reflectionsΔρmin = 0.24 e Å3
280 parameters
Special details top

Experimental. All work was done at 200 K using an Oxford Cryosystems Cryostream Cooler. A quadrant of reciprocal space was measured with a redundancy factor of 4.1, which means that 90% of the data was measured at least 4.1 times. A combination of phi and omega scans with a frame width of 1.0° was used for data collection. Data integration was done with DENZO (Otwinowski & Minor, 1997). Scaling and merging of the data was done with SCALEPACK (Otwinowski & Minor, 1997).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17223 (9)0.11593 (6)0.37571 (5)0.0274 (2)
O20.55310 (11)0.11098 (7)0.39718 (5)0.0379 (2)
O30.59848 (11)0.28872 (6)0.36886 (5)0.0392 (2)
C10.25689 (14)0.02912 (8)0.35240 (7)0.0258 (3)
C20.31367 (14)0.05935 (9)0.27394 (7)0.0266 (3)
C30.35910 (15)0.00763 (10)0.20995 (7)0.0323 (3)
H30.34560.06170.20670.039*
C40.42534 (17)0.06086 (10)0.15041 (7)0.0389 (3)
H40.45660.02720.10570.047*
C50.44655 (17)0.16172 (10)0.15505 (7)0.0372 (3)
H50.49080.19620.11340.045*
C60.40365 (15)0.21327 (9)0.22019 (7)0.0308 (3)
H60.41970.28230.22400.037*
C70.33717 (14)0.16081 (9)0.27897 (6)0.0266 (3)
C80.29413 (14)0.18929 (9)0.35950 (7)0.0265 (3)
C90.43228 (14)0.15023 (9)0.41230 (6)0.0267 (3)
H90.41030.17190.46540.032*
C100.59935 (15)0.18506 (9)0.39192 (7)0.0309 (3)
C110.68060 (15)0.12162 (10)0.33536 (8)0.0366 (3)
H110.75030.15170.30020.044*
C120.65986 (15)0.02474 (10)0.33186 (7)0.0361 (3)
H120.72070.01340.29750.043*
C130.54382 (14)0.02355 (9)0.38060 (7)0.0294 (3)
C140.40708 (14)0.03738 (9)0.40820 (6)0.0259 (3)
H140.37620.01320.45960.031*
C150.16015 (14)0.06286 (9)0.36315 (7)0.0274 (3)
C160.02298 (15)0.05935 (10)0.40624 (8)0.0341 (3)
H160.01220.00170.42630.041*
C170.06263 (16)0.14436 (11)0.42007 (9)0.0427 (4)
H170.15580.14120.44980.051*
C180.01417 (16)0.23345 (10)0.39119 (8)0.0404 (3)
H180.07420.29130.40040.049*
C190.12263 (17)0.23803 (10)0.34863 (8)0.0381 (3)
H190.15730.29940.32900.046*
C200.20920 (16)0.15349 (9)0.33446 (7)0.0330 (3)
H200.30270.15730.30500.040*
C210.22890 (14)0.29088 (9)0.37393 (7)0.0290 (3)
C220.13493 (17)0.33565 (11)0.31866 (8)0.0409 (3)
H220.11460.30240.27210.049*
C230.07030 (19)0.42824 (12)0.33038 (9)0.0504 (4)
H230.00680.45810.29190.060*
C240.09832 (18)0.47701 (11)0.39802 (9)0.0487 (4)
H240.05530.54070.40600.058*
C250.18906 (19)0.43274 (11)0.45392 (9)0.0482 (4)
H250.20710.46570.50090.058*
C260.25408 (17)0.34055 (10)0.44207 (8)0.0388 (3)
H260.31670.31090.48100.047*
C270.6901 (2)0.31675 (12)0.43573 (9)0.0510 (4)
H27A0.62950.35730.47200.061*
H27B0.79210.34880.42350.061*
C280.70866 (17)0.21050 (10)0.46077 (8)0.0413 (3)
H28A0.66220.19560.51090.050*
H28B0.81790.18450.45690.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (4)0.0241 (4)0.0294 (4)0.0007 (3)0.0030 (3)0.0005 (3)
O20.0408 (5)0.0288 (5)0.0441 (5)0.0043 (4)0.0041 (4)0.0011 (4)
O30.0438 (5)0.0300 (5)0.0438 (5)0.0067 (4)0.0058 (4)0.0094 (4)
C10.0271 (6)0.0244 (6)0.0258 (6)0.0016 (5)0.0008 (5)0.0002 (5)
C20.0264 (6)0.0280 (6)0.0252 (6)0.0008 (5)0.0024 (5)0.0012 (5)
C30.0377 (7)0.0299 (7)0.0293 (6)0.0019 (5)0.0009 (5)0.0041 (5)
C40.0492 (8)0.0412 (8)0.0265 (6)0.0029 (6)0.0057 (6)0.0055 (6)
C50.0464 (8)0.0388 (8)0.0265 (6)0.0051 (6)0.0049 (6)0.0042 (6)
C60.0357 (7)0.0292 (7)0.0275 (6)0.0011 (5)0.0014 (5)0.0023 (5)
C70.0275 (6)0.0280 (6)0.0242 (6)0.0020 (5)0.0031 (5)0.0001 (5)
C80.0297 (6)0.0256 (6)0.0243 (6)0.0015 (5)0.0004 (5)0.0016 (5)
C90.0320 (6)0.0261 (6)0.0219 (6)0.0002 (5)0.0010 (5)0.0000 (5)
C100.0339 (7)0.0283 (7)0.0304 (6)0.0036 (5)0.0044 (5)0.0053 (5)
C110.0299 (7)0.0439 (8)0.0360 (7)0.0014 (6)0.0035 (5)0.0066 (6)
C120.0316 (7)0.0411 (8)0.0355 (7)0.0043 (6)0.0034 (5)0.0025 (6)
C130.0316 (6)0.0301 (7)0.0264 (6)0.0016 (5)0.0064 (5)0.0028 (5)
C140.0300 (6)0.0258 (6)0.0220 (6)0.0007 (5)0.0005 (5)0.0016 (5)
C150.0271 (6)0.0281 (6)0.0270 (6)0.0005 (5)0.0023 (5)0.0030 (5)
C160.0277 (6)0.0321 (7)0.0427 (7)0.0036 (5)0.0018 (5)0.0042 (6)
C170.0274 (7)0.0433 (9)0.0575 (9)0.0007 (6)0.0058 (6)0.0135 (7)
C180.0355 (7)0.0347 (8)0.0510 (8)0.0098 (6)0.0034 (6)0.0088 (6)
C190.0468 (8)0.0290 (7)0.0385 (7)0.0050 (6)0.0013 (6)0.0006 (6)
C200.0365 (7)0.0297 (7)0.0330 (7)0.0025 (5)0.0040 (5)0.0009 (5)
C210.0313 (6)0.0259 (6)0.0299 (6)0.0008 (5)0.0045 (5)0.0008 (5)
C220.0455 (8)0.0412 (8)0.0361 (7)0.0119 (6)0.0001 (6)0.0006 (6)
C230.0514 (9)0.0491 (9)0.0509 (9)0.0213 (7)0.0080 (7)0.0122 (7)
C240.0530 (9)0.0284 (8)0.0650 (10)0.0102 (7)0.0207 (8)0.0033 (7)
C250.0579 (10)0.0351 (8)0.0516 (9)0.0017 (7)0.0057 (7)0.0130 (7)
C260.0471 (8)0.0326 (7)0.0368 (7)0.0047 (6)0.0005 (6)0.0038 (6)
C270.0604 (10)0.0428 (9)0.0498 (9)0.0202 (7)0.0077 (8)0.0010 (7)
C280.0406 (8)0.0418 (8)0.0413 (8)0.0091 (6)0.0115 (6)0.0045 (6)
Geometric parameters (Å, º) top
O1—C11.4408 (14)C13—C141.5046 (17)
O1—C81.4623 (14)C14—H141.0000
O2—C131.2255 (15)C15—C161.3913 (18)
O3—C271.4514 (17)C15—C201.3954 (18)
O3—C101.4656 (15)C16—C171.3852 (19)
C1—C151.5054 (16)C16—H160.9500
C1—C21.5228 (16)C17—C181.376 (2)
C1—C141.5979 (16)C17—H170.9500
C2—C31.3851 (17)C18—C191.384 (2)
C2—C71.3953 (17)C18—H180.9500
C3—C41.3950 (18)C19—C201.3851 (18)
C3—H30.9500C19—H190.9500
C4—C51.3842 (19)C20—H200.9500
C4—H40.9500C21—C221.3882 (18)
C5—C61.3945 (18)C21—C261.3901 (18)
C5—H50.9500C22—C231.387 (2)
C6—C71.3802 (17)C22—H220.9500
C6—H60.9500C23—C241.380 (2)
C7—C81.5169 (16)C23—H230.9500
C8—C211.5084 (16)C24—C251.378 (2)
C8—C91.5742 (16)C24—H240.9500
C9—C101.5328 (17)C25—C261.384 (2)
C9—C141.5494 (16)C25—H250.9500
C9—H91.0000C26—H260.9500
C10—C111.4896 (19)C27—C281.517 (2)
C10—C281.5531 (17)C27—H27A0.9900
C11—C121.3291 (19)C27—H27B0.9900
C11—H110.9500C28—H28A0.9900
C12—C131.4638 (18)C28—H28B0.9900
C12—H120.9500
C1—O1—C898.66 (8)C13—C14—C1111.61 (9)
C27—O3—C1091.53 (9)C9—C14—C1101.86 (9)
O1—C1—C15111.88 (9)C13—C14—H14108.7
O1—C1—C2101.49 (9)C9—C14—H14108.7
C15—C1—C2120.95 (10)C1—C14—H14108.7
O1—C1—C1499.18 (8)C16—C15—C20118.63 (11)
C15—C1—C14114.09 (9)C16—C15—C1119.69 (11)
C2—C1—C14106.44 (9)C20—C15—C1121.58 (11)
C3—C2—C7120.82 (11)C17—C16—C15120.37 (13)
C3—C2—C1133.86 (11)C17—C16—H16119.8
C7—C2—C1104.77 (10)C15—C16—H16119.8
C2—C3—C4117.67 (12)C18—C17—C16120.72 (13)
C2—C3—H3121.2C18—C17—H17119.6
C4—C3—H3121.2C16—C17—H17119.6
C5—C4—C3121.43 (12)C17—C18—C19119.48 (13)
C5—C4—H4119.3C17—C18—H18120.3
C3—C4—H4119.3C19—C18—H18120.3
C4—C5—C6120.74 (12)C18—C19—C20120.30 (13)
C4—C5—H5119.6C18—C19—H19119.9
C6—C5—H5119.6C20—C19—H19119.9
C7—C6—C5117.91 (12)C19—C20—C15120.50 (12)
C7—C6—H6121.0C19—C20—H20119.7
C5—C6—H6121.0C15—C20—H20119.7
C6—C7—C2121.41 (11)C22—C21—C26118.17 (12)
C6—C7—C8132.21 (11)C22—C21—C8119.30 (11)
C2—C7—C8106.01 (10)C26—C21—C8122.48 (11)
O1—C8—C21109.41 (9)C23—C22—C21121.02 (13)
O1—C8—C7100.64 (9)C23—C22—H22119.5
C21—C8—C7118.83 (10)C21—C22—H22119.5
O1—C8—C999.93 (9)C24—C23—C22119.98 (14)
C21—C8—C9118.55 (10)C24—C23—H23120.0
C7—C8—C9106.38 (9)C22—C23—H23120.0
C10—C9—C14114.88 (10)C25—C24—C23119.64 (14)
C10—C9—C8115.73 (9)C25—C24—H24120.2
C14—C9—C8101.88 (9)C23—C24—H24120.2
C10—C9—H9108.0C24—C25—C26120.35 (14)
C14—C9—H9108.0C24—C25—H25119.8
C8—C9—H9108.0C26—C25—H25119.8
O3—C10—C11111.83 (11)C25—C26—C21120.82 (13)
O3—C10—C9111.08 (10)C25—C26—H26119.6
C11—C10—C9114.12 (10)C21—C26—H26119.6
O3—C10—C2890.19 (9)O3—C27—C2892.18 (10)
C11—C10—C28112.11 (11)O3—C27—H27A113.3
C9—C10—C28115.18 (11)C28—C27—H27A113.3
C12—C11—C10122.86 (12)O3—C27—H27B113.3
C12—C11—H11118.6C28—C27—H27B113.3
C10—C11—H11118.6H27A—C27—H27B110.6
C11—C12—C13120.35 (12)C27—C28—C1085.80 (10)
C11—C12—H12119.8C27—C28—H28A114.4
C13—C12—H12119.8C10—C28—H28A114.4
O2—C13—C12122.18 (12)C27—C28—H28B114.4
O2—C13—C14120.24 (12)C10—C28—H28B114.4
C12—C13—C14117.55 (11)H28A—C28—H28B111.5
C13—C14—C9117.01 (10)
C8—O1—C1—C15179.44 (9)C11—C12—C13—C1425.18 (17)
C8—O1—C1—C250.23 (10)O2—C13—C14—C9157.48 (10)
C8—O1—C1—C1458.76 (9)C12—C13—C14—C924.54 (14)
O1—C1—C2—C3157.19 (13)O2—C13—C14—C185.78 (13)
C15—C1—C2—C332.77 (19)C12—C13—C14—C192.21 (12)
C14—C1—C2—C399.54 (15)C10—C9—C14—C133.57 (14)
O1—C1—C2—C731.60 (11)C8—C9—C14—C13122.35 (10)
C15—C1—C2—C7156.02 (10)C10—C9—C14—C1125.53 (10)
C14—C1—C2—C771.68 (11)C8—C9—C14—C10.38 (11)
C7—C2—C3—C41.47 (18)O1—C1—C14—C13160.98 (9)
C1—C2—C3—C4171.57 (12)C15—C1—C14—C1379.97 (13)
C2—C3—C4—C50.6 (2)C2—C1—C14—C1356.02 (12)
C3—C4—C5—C60.7 (2)O1—C1—C14—C935.36 (10)
C4—C5—C6—C71.10 (19)C15—C1—C14—C9154.42 (10)
C5—C6—C7—C20.19 (18)C2—C1—C14—C969.60 (11)
C5—C6—C7—C8172.23 (12)O1—C1—C15—C1612.96 (15)
C3—C2—C7—C61.12 (18)C2—C1—C15—C16132.37 (12)
C1—C2—C7—C6173.75 (11)C14—C1—C15—C1698.62 (13)
C3—C2—C7—C8172.75 (11)O1—C1—C15—C20170.72 (10)
C1—C2—C7—C80.12 (12)C2—C1—C15—C2051.30 (16)
C1—O1—C8—C21175.70 (9)C14—C1—C15—C2077.71 (14)
C1—O1—C8—C749.80 (10)C20—C15—C16—C170.07 (18)
C1—O1—C8—C959.12 (9)C1—C15—C16—C17176.51 (12)
C6—C7—C8—O1156.29 (12)C15—C16—C17—C180.3 (2)
C2—C7—C8—O130.78 (11)C16—C17—C18—C190.7 (2)
C6—C7—C8—C2136.99 (19)C17—C18—C19—C200.7 (2)
C2—C7—C8—C21150.08 (10)C18—C19—C20—C150.3 (2)
C6—C7—C8—C999.94 (15)C16—C15—C20—C190.09 (18)
C2—C7—C8—C972.99 (11)C1—C15—C20—C19176.46 (11)
O1—C8—C9—C10159.55 (10)O1—C8—C21—C2281.31 (14)
C21—C8—C9—C1081.81 (13)C7—C8—C21—C2233.36 (17)
C7—C8—C9—C1055.26 (13)C9—C8—C21—C22165.13 (11)
O1—C8—C9—C1434.20 (10)O1—C8—C21—C2696.14 (14)
C21—C8—C9—C14152.84 (10)C7—C8—C21—C26149.19 (12)
C7—C8—C9—C1470.09 (11)C9—C8—C21—C2617.43 (17)
C27—O3—C10—C11118.22 (12)C26—C21—C22—C231.2 (2)
C27—O3—C10—C9113.00 (11)C8—C21—C22—C23178.78 (13)
C27—O3—C10—C284.21 (11)C21—C22—C23—C240.4 (2)
C14—C9—C10—O3158.28 (9)C22—C23—C24—C250.8 (2)
C8—C9—C10—O339.89 (14)C23—C24—C25—C261.0 (2)
C14—C9—C10—C1130.73 (14)C24—C25—C26—C210.2 (2)
C8—C9—C10—C1187.65 (13)C22—C21—C26—C250.9 (2)
C14—C9—C10—C28101.05 (12)C8—C21—C26—C25178.41 (13)
C8—C9—C10—C28140.56 (11)C10—O3—C27—C284.32 (12)
O3—C10—C11—C12160.88 (12)O3—C27—C28—C104.08 (11)
C9—C10—C11—C1233.72 (17)O3—C10—C28—C274.04 (11)
C28—C10—C11—C1299.53 (15)C11—C10—C28—C27117.80 (13)
C10—C11—C12—C135.06 (19)C9—C10—C28—C27109.48 (13)
C11—C12—C13—O2156.88 (13)

Experimental details

(III)(IV)
Crystal data
Chemical formulaC27H20O3C28H22O3
Mr392.43406.46
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)200200
a, b, c (Å)10.322 (1), 14.239 (1), 14.138 (1)8.434 (1), 13.586 (1), 17.597 (2)
β (°) 110.254 (4) 90.646 (4)
V3)1949.3 (3)2016.3 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.35 × 0.31 × 0.190.35 × 0.27 × 0.23
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
41110, 4474, 3424 38808, 4609, 3513
Rint0.0360.035
(sin θ/λ)max1)0.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.05 0.041, 0.112, 1.04
No. of reflections44744609
No. of parameters271280
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.230.19, 0.24

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), reference?.

Selected geometric parameters (Å, º) for (III) top
O3—C151.427 (2)C10—C151.472 (2)
O3—C101.4572 (17)C11—C121.324 (2)
C9—C101.5221 (19)C12—C131.461 (2)
C9—C141.5657 (19)C13—C141.5180 (19)
C10—C111.465 (2)
C1—O1—C898.75 (9)O3—C10—C9114.77 (12)
C15—O3—C1061.35 (10)C11—C10—C9118.41 (13)
O3—C10—C11111.66 (12)C15—C10—C9121.91 (13)
O3—C10—C1558.33 (9)O3—C15—C1060.32 (10)
C11—C10—C15116.09 (14)
Selected geometric parameters (Å, º) for (IV) top
O3—C271.4514 (17)C10—C281.5531 (17)
O3—C101.4656 (15)C11—C121.3291 (19)
C9—C101.5328 (17)C12—C131.4638 (18)
C9—C141.5494 (16)C13—C141.5046 (17)
C10—C111.4896 (19)C27—C281.517 (2)
C1—O1—C898.66 (8)O3—C10—C2890.19 (9)
C27—O3—C1091.53 (9)C11—C10—C28112.11 (11)
O3—C10—C11111.83 (11)C9—C10—C28115.18 (11)
O3—C10—C9111.08 (10)O3—C27—C2892.18 (10)
C11—C10—C9114.12 (10)C27—C28—C1085.80 (10)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds