Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C27H27N5O3·H2O, is built up from pyrazolinone, phenyl and aceto­phenone oxime moieties. The 2-­phenyl substituent is nearly perpendicular to the pyrazo­linone ring, with a dihedral angle of 87.66 (1)°. The aceto­phenone oxime moieties are twisted out of the pyrazolinone-ring plane by 47.04 (1)°. The mol­ecules in the crystal pack in an antiparallel fashion and are held together by hydrogen-bonded water mol­ecules and intermolecular O—H...O and O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104012314/fr1488sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104012314/fr1488Isup2.hkl
Contains datablock I

CCDC reference: 192303

Comment top

In recent years, there has been considerable interest in the chemistry of antipyrine and its derivatives. These compounds exhibit a wide range of biological activities and applications (Ismail, 2000; Abd El Rehim et al., 2001; Yadav et al., 2003; Madhu et al., 2003). X-ray crystallographic studies of antipyrine Schiff base derivatives have been abundantly reported (You et al., 2002, 2003; Wang et al., 2002; Liang et al., 2002; 2004). However, the comparatively less well known oxime derivatives have not been adequately explored in crystal engineering; a recent survey of the Cambridge Structural Database (Version?; Allen, 2002) found 370 entries containing the oxime moiety (Aakeröy et al., 2001, 2002). Here, we describe the structure of the title compound, (I), which contains both oxime and pyrazolinone functionalities simultaneously. \sch

A view of the molecule of (I) is shown in Fig. 1. The C2—O1 bond distance is slightly longer than that in the 4-aminoantipyrine derivatives 4-{[(1E)-(2-hydroxyphenyl)methylidene]amino}-1,5-dimethyl-2-phenyl- 2,3-dihydro-1H-pyrazol-3-one (Hökelek et al., 2001) and 4-(antipyrin-4-yliminomethyl)benzoic acid (Zhang et al., 2002), in which the CO double-bond distances are 1.230 (2) and 1.248 (2) Å, respectively. The bond lengths and angles in the acetophenone oxime moieties are in the normal ranges and compare well with the literature values for similar compounds (Aakeröy et al., 2001). The dihedral angle between the pyrazolinone ring and the C3—C8 phenyl ring is 87.66 (1)°, whereas the C14—C19 plane deviates from the pyrazolinone ring by 47.04 (1)°. The angle between the C22—C27 and C14—C19 rings is 69.97 (1)°.

Previous structural studies of molecules containing both oxime and carboxylic acid moieties have demonstrated that there is a pronounced preference for heteromeric (oxime-acid) interactions over homomeric motifs, in the absence of other strong hydrogen-bond donors or acceptors (Aakeröy et al., 2002; Téllez et al., 2002). The supramolecular network of (I) is built up of moderate intermolecular hydrogen bonds, involving the oxime O—H moiety and the aminoantipyrine carbonyl O atom of adjacent molecules (O3···O1 and O2···O4; Fig. 2). Neighbouring molecules are held together by water molecules of crystallization, which are hydrogen-bonded to the pyrazolinone carbonyl O atom via O4—H4C···O1 and to the oxime N atom via O4—H4B···N5ii [symmetry code: (ii) Please provide missing symmetry code]. The water molecule on each side further interacts with the oxime O atom to form a three-centre hydrogen bond, to satisfy both the donor and acceptor functionality. The hydrogen bonds between the oxime and pyrazolinone moieties can be considered strong because of the short O—H distances and the O—H···O angles, which are close to 180° (Table 2).

The structure of (I), incorporating antipyrine, acetophenone oxime and water, is a rare example among analogous reported structures of compounds incorporating mainly aminoantipyrine Schiff base and carboxylic acid derivatives. Such structures have potential applications in catalysis or separation (Aakeröy et al., 2001). Each molecule has eight lone pairs (three on each oxime and two on the carbonyl) available for accepting hydrogen bonds. Since water is a hydrogen-bond donor and acceptor, the molecules form many intermolecular hydrogen bonds to assemble the molecules in this specific manner. Of course, the size and shape of the molecule are also of key importance to the resulting structure.

Experimental top

4-Aminoantipyrine (4-ATP; 1 mol) and α-bromoacetophenone oxime (2 mol), alternatively called (E)-2-bromo-1-phenylethanone oxime, were mixed in ethanol-water (50 ml; 1:1 v/v) and heated at 343 K for 2 h with vigorous stirring. The resulting beige-coloured precipitate was filtered off and washed three times with EtOH-H2O (1:1 v/v) and finally with diethyl ether, then air dried (yield 82.5%). Recrystallization from ethanol (95%) gave colourless block-shaped crystals of (I) suitable for single-crystal X-ray analysis. IR (KBr, ν, cm−1): 3280 (O—H), 3153 (Ar CH), 2885 (N—CH3, CH2), 1605 and 1612 (C N, C O), 1548 (C C), 964 (N—O), 895, 840, 691, 557. ESI-MS (m/z): 470.

Refinement top

The water H atoms were refined isotropically, with Uiso values in the range 0.105 (12)–0.110 (14) Å2. The other H atoms were treated using a riding model, with fixed C—H distances of 0.93–0.97 Å for C—H bonds, 0.97 Å for C—H2 bonds and 0.96 Å for C—H3 (HFIX 137, 33), and with an O—H distance of 0.82 Å (HFIX 83). The Uiso(H) values for these H atoms were fixed at either 1.2 or 1.5Ueq(parent).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). The dashed lines show the hydrogen bonding.
4-[N,N-Bis(2-hydroxyimino-2-phenylethyl)amino]-2,3-dimethyl-2-phenyl- 2,3-dihydropyrazol-3-one monohydrate top
Crystal data top
C27H27N5O3·H2OF(000) = 1032
Mr = 487.55Dx = 1.243 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.385 (6) Åθ = 1.8–25.0°
b = 18.024 (4) ŵ = 0.09 mm1
c = 14.229 (5) ÅT = 293 K
β = 102.05 (5)°Block, colourless
V = 2604.6 (19) Å30.46 × 0.38 × 0.12 mm
Z = 4
Data collection top
Siemens P4
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 112
ω scansk = 121
4862 measured reflectionsl = 1616
4592 independent reflections3 standard reflections every 97 reflections
2956 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.8613P]
where P = (Fo2 + 2Fc2)/3
4592 reflections(Δ/σ)max = 0.006
334 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C27H27N5O3·H2OV = 2604.6 (19) Å3
Mr = 487.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.385 (6) ŵ = 0.09 mm1
b = 18.024 (4) ÅT = 293 K
c = 14.229 (5) Å0.46 × 0.38 × 0.12 mm
β = 102.05 (5)°
Data collection top
Siemens P4
diffractometer
Rint = 0.025
4862 measured reflections3 standard reflections every 97 reflections
4592 independent reflections intensity decay: none
2956 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
4592 reflectionsΔρmin = 0.22 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.79733 (16)0.51577 (9)0.65611 (14)0.0607 (5)
O20.8724 (2)0.62651 (11)0.46281 (16)0.0762 (6)
H2A0.94570.62030.45100.114*
O30.37695 (18)0.55068 (11)0.48587 (16)0.0771 (6)
H3A0.32480.53100.44170.116*
O40.9227 (2)0.38534 (12)0.62181 (18)0.0665 (6)
N10.95406 (19)0.59910 (11)0.73126 (16)0.0521 (5)
N20.96913 (19)0.67647 (11)0.73522 (16)0.0531 (5)
N30.63728 (18)0.66453 (11)0.59783 (14)0.0460 (5)
N40.8328 (2)0.70004 (13)0.44280 (17)0.0641 (6)
N50.3219 (2)0.61558 (12)0.51331 (18)0.0591 (6)
C10.7660 (2)0.65145 (13)0.65488 (17)0.0437 (6)
C20.8315 (2)0.58191 (13)0.67607 (18)0.0459 (6)
C31.0674 (2)0.55223 (13)0.74864 (19)0.0486 (6)
C41.1043 (3)0.51588 (17)0.8343 (2)0.0728 (9)
H4A1.05540.52110.88170.087*
C51.2172 (4)0.47049 (19)0.8501 (3)0.0935 (12)
H5A1.24350.44510.90790.112*
C61.2864 (3)0.46445 (19)0.7807 (4)0.0964 (14)
H6A1.36110.43460.79150.116*
C71.2513 (3)0.5003 (2)0.6950 (4)0.0928 (12)
H7A1.30100.49500.64810.111*
C81.1404 (3)0.54478 (17)0.6789 (2)0.0682 (8)
H8A1.11510.56970.62070.082*
C91.0771 (3)0.70939 (17)0.8032 (2)0.0760 (9)
H9A1.14710.67390.81980.114*
H9B1.04740.72390.86000.114*
H9C1.10860.75220.77480.114*
C100.8519 (2)0.70648 (13)0.69319 (17)0.0475 (6)
C110.8297 (3)0.78829 (14)0.6921 (2)0.0638 (8)
H11A0.84750.80670.75690.096*
H11B0.73990.79880.66210.096*
H11C0.88740.81200.65680.096*
C120.6340 (3)0.65588 (16)0.49395 (18)0.0552 (7)
H12A0.54410.66060.45820.066*
H12B0.66530.60680.48200.066*
C130.7183 (3)0.71329 (15)0.45984 (18)0.0548 (7)
C140.6711 (3)0.79160 (16)0.44144 (18)0.0588 (7)
C150.5494 (3)0.81370 (19)0.4557 (2)0.0779 (9)
H15A0.49590.77960.47810.093*
C160.5054 (4)0.8863 (2)0.4369 (3)0.0940 (11)
H16A0.42300.90000.44710.113*
C170.5814 (4)0.9374 (2)0.4038 (2)0.0881 (11)
H17A0.55120.98560.39080.106*
C180.7034 (4)0.91686 (19)0.3897 (2)0.0839 (10)
H18A0.75630.95150.36740.101*
C190.7477 (3)0.84501 (18)0.4087 (2)0.0707 (8)
H19A0.83070.83210.39920.085*
C200.5344 (2)0.62061 (15)0.6297 (2)0.0530 (6)
H20A0.54620.62380.69900.064*
H20B0.54210.56890.61260.064*
C210.3990 (2)0.64947 (14)0.58272 (19)0.0505 (6)
C220.3499 (3)0.72072 (15)0.61589 (19)0.0531 (6)
C230.2294 (4)0.7503 (2)0.5720 (3)0.0906 (11)
H23A0.17720.72510.52080.109*
C240.1851 (4)0.8167 (2)0.6028 (3)0.1092 (14)
H24A0.10380.83560.57220.131*
C250.2601 (4)0.8548 (2)0.6781 (3)0.0938 (12)
H25A0.23090.89960.69840.113*
C260.3784 (4)0.8257 (2)0.7226 (3)0.0947 (11)
H26A0.42960.85070.77440.114*
C270.4228 (3)0.76018 (19)0.6920 (2)0.0811 (10)
H27A0.50410.74180.72330.097*
H4C0.908 (4)0.427 (2)0.647 (3)0.110 (14)*
H4B0.842 (4)0.380 (2)0.571 (3)0.105 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (10)0.0394 (10)0.0877 (14)0.0009 (8)0.0062 (9)0.0082 (9)
O20.0706 (13)0.0650 (13)0.0983 (16)0.0198 (11)0.0296 (12)0.0072 (11)
O30.0526 (11)0.0605 (13)0.1075 (17)0.0122 (9)0.0079 (11)0.0270 (11)
O40.0519 (12)0.0530 (12)0.0906 (16)0.0146 (9)0.0053 (11)0.0023 (11)
N10.0426 (11)0.0392 (12)0.0686 (14)0.0008 (9)0.0021 (10)0.0076 (10)
N20.0471 (12)0.0389 (11)0.0662 (14)0.0023 (9)0.0043 (10)0.0082 (10)
N30.0401 (11)0.0491 (12)0.0461 (11)0.0039 (9)0.0027 (9)0.0018 (9)
N40.0680 (15)0.0604 (15)0.0656 (15)0.0155 (12)0.0175 (12)0.0042 (12)
N50.0433 (12)0.0501 (13)0.0795 (16)0.0073 (10)0.0030 (11)0.0078 (12)
C10.0389 (12)0.0431 (14)0.0463 (13)0.0036 (11)0.0027 (10)0.0028 (11)
C20.0392 (13)0.0420 (14)0.0525 (14)0.0007 (11)0.0008 (11)0.0048 (11)
C30.0417 (13)0.0386 (13)0.0588 (16)0.0031 (11)0.0045 (12)0.0024 (12)
C40.073 (2)0.068 (2)0.070 (2)0.0018 (16)0.0024 (16)0.0083 (16)
C50.095 (3)0.063 (2)0.100 (3)0.002 (2)0.032 (2)0.0217 (19)
C60.056 (2)0.052 (2)0.167 (4)0.0011 (16)0.009 (3)0.003 (3)
C70.066 (2)0.068 (2)0.151 (4)0.0011 (18)0.038 (2)0.012 (2)
C80.0582 (17)0.0624 (19)0.084 (2)0.0054 (14)0.0158 (16)0.0036 (16)
C90.0610 (18)0.0554 (18)0.097 (2)0.0099 (14)0.0165 (16)0.0170 (16)
C100.0482 (14)0.0402 (13)0.0510 (14)0.0037 (11)0.0035 (12)0.0041 (11)
C110.0692 (18)0.0424 (15)0.0741 (19)0.0035 (13)0.0019 (15)0.0093 (13)
C120.0506 (15)0.0630 (17)0.0492 (15)0.0032 (13)0.0036 (12)0.0078 (13)
C130.0547 (16)0.0631 (17)0.0450 (14)0.0105 (14)0.0071 (12)0.0004 (13)
C140.0642 (17)0.0671 (18)0.0440 (14)0.0139 (14)0.0089 (13)0.0041 (13)
C150.068 (2)0.081 (2)0.087 (2)0.0245 (17)0.0208 (17)0.0133 (18)
C160.082 (2)0.096 (3)0.105 (3)0.039 (2)0.021 (2)0.009 (2)
C170.114 (3)0.073 (2)0.072 (2)0.032 (2)0.009 (2)0.0076 (18)
C180.117 (3)0.065 (2)0.072 (2)0.017 (2)0.026 (2)0.0093 (17)
C190.083 (2)0.071 (2)0.0635 (18)0.0124 (17)0.0268 (16)0.0045 (16)
C200.0442 (14)0.0528 (15)0.0586 (16)0.0016 (12)0.0030 (12)0.0033 (12)
C210.0437 (14)0.0503 (15)0.0572 (16)0.0024 (12)0.0100 (12)0.0024 (12)
C220.0521 (15)0.0538 (15)0.0551 (16)0.0036 (12)0.0150 (13)0.0005 (13)
C230.092 (2)0.081 (2)0.088 (2)0.037 (2)0.007 (2)0.0171 (19)
C240.122 (3)0.090 (3)0.107 (3)0.056 (3)0.006 (3)0.012 (2)
C250.129 (3)0.064 (2)0.098 (3)0.018 (2)0.046 (3)0.012 (2)
C260.107 (3)0.087 (3)0.093 (3)0.001 (2)0.027 (2)0.035 (2)
C270.075 (2)0.087 (2)0.079 (2)0.0054 (18)0.0092 (17)0.0228 (18)
Geometric parameters (Å, º) top
O1—C21.259 (3)C11—H11A0.9600
O2—N41.399 (3)C11—H11B0.9600
O2—H2A0.8200C11—H11C0.9600
O3—N51.393 (3)C12—C131.500 (4)
O3—H3A0.8200C12—H12A0.9700
O4—H4C0.86 (4)C12—H12B0.9700
O4—H4B0.99 (4)C13—C141.499 (4)
N1—C21.384 (3)C14—C151.380 (4)
N1—N21.403 (3)C14—C191.390 (4)
N1—C31.428 (3)C15—C161.394 (5)
N2—C101.352 (3)C15—H15A0.9300
N2—C91.446 (3)C16—C171.359 (5)
N3—C11.431 (3)C16—H16A0.9300
N3—C201.475 (3)C17—C181.373 (5)
N3—C121.480 (3)C17—H17A0.9300
N4—C131.285 (3)C18—C191.382 (4)
N5—C211.288 (3)C18—H18A0.9300
C1—C101.369 (3)C19—H19A0.9300
C1—C21.428 (3)C20—C211.517 (4)
C3—C41.366 (4)C20—H20A0.9700
C3—C81.376 (4)C20—H20B0.9700
C4—C51.409 (5)C21—C221.494 (4)
C4—H4A0.9300C22—C271.382 (4)
C5—C61.342 (6)C22—C231.383 (4)
C5—H5A0.9300C23—C241.387 (5)
C6—C71.361 (6)C23—H23A0.9300
C6—H6A0.9300C24—C251.370 (5)
C7—C81.382 (5)C24—H24A0.9300
C7—H7A0.9300C25—C261.364 (5)
C8—H8A0.9300C25—H25A0.9300
C9—H9A0.9600C26—C271.372 (5)
C9—H9B0.9600C26—H26A0.9300
C9—H9C0.9600C27—H27A0.9300
C10—C111.492 (3)
N4—O2—H2A109.5N3—C12—H12A109.4
N5—O3—H3A109.5C13—C12—H12A109.5
H4C—O4—H4B101 (3)N3—C12—H12B109.5
C2—N1—N2109.08 (18)C13—C12—H12B109.5
C2—N1—C3126.4 (2)H12A—C12—H12B108.0
N2—N1—C3120.00 (19)N4—C13—C14115.1 (3)
C10—N2—N1107.28 (19)N4—C13—C12124.0 (3)
C10—N2—C9129.2 (2)C14—C13—C12121.0 (2)
N1—N2—C9119.9 (2)C15—C14—C19117.1 (3)
C1—N3—C20112.83 (19)C15—C14—C13121.5 (3)
C1—N3—C12111.90 (19)C19—C14—C13121.5 (3)
C20—N3—C12112.5 (2)C14—C15—C16121.1 (3)
C13—N4—O2112.4 (2)C14—C15—H15A119.4
C21—N5—O3112.8 (2)C16—C15—H15A119.4
C10—C1—C2108.0 (2)C17—C16—C15120.7 (3)
C10—C1—N3124.1 (2)C17—C16—H16A119.6
C2—C1—N3127.7 (2)C15—C16—H16A119.6
O1—C2—N1121.5 (2)C16—C17—C18119.3 (3)
O1—C2—C1133.1 (2)C16—C17—H17A120.4
N1—C2—C1105.3 (2)C18—C17—H17A120.4
C4—C3—C8120.2 (3)C17—C18—C19120.2 (4)
C4—C3—N1120.4 (3)C17—C18—H18A119.9
C8—C3—N1119.4 (2)C19—C18—H18A119.9
C3—C4—C5119.4 (3)C18—C19—C14121.6 (3)
C3—C4—H4A120.3C18—C19—H19A119.2
C5—C4—H4A120.3C14—C19—H19A119.2
C6—C5—C4119.0 (3)N3—C20—C21110.2 (2)
C6—C5—H5A120.5N3—C20—H20A109.6
C4—C5—H5A120.5C21—C20—H20A109.6
C5—C6—C7122.5 (4)N3—C20—H20B109.6
C5—C6—H6A118.8C21—C20—H20B109.6
C7—C6—H6A118.8H20A—C20—H20B108.1
C6—C7—C8118.8 (4)N5—C21—C22116.8 (2)
C6—C7—H7A120.6N5—C21—C20123.1 (2)
C8—C7—H7A120.6C22—C21—C20120.1 (2)
C3—C8—C7120.2 (3)C27—C22—C23116.8 (3)
C3—C8—H8A119.9C27—C22—C21121.5 (3)
C7—C8—H8A119.9C23—C22—C21121.6 (3)
N2—C9—H9A109.5C22—C23—C24121.2 (3)
N2—C9—H9B109.5C22—C23—H23A119.4
H9A—C9—H9B109.5C24—C23—H23A119.4
N2—C9—H9C109.5C25—C24—C23120.6 (4)
H9A—C9—H9C109.5C25—C24—H24A119.7
H9B—C9—H9C109.5C23—C24—H24A119.7
N2—C10—C1109.8 (2)C26—C25—C24118.7 (3)
N2—C10—C11121.5 (2)C26—C25—H25A120.6
C1—C10—C11128.7 (2)C24—C25—H25A120.6
C10—C11—H11A109.5C25—C26—C27120.9 (4)
C10—C11—H11B109.5C25—C26—H26A119.6
H11A—C11—H11B109.5C27—C26—H26A119.6
C10—C11—H11C109.5C26—C27—C22121.8 (3)
H11A—C11—H11C109.5C26—C27—H27A119.1
H11B—C11—H11C109.5C22—C27—H27A119.1
N3—C12—C13110.9 (2)
C2—N1—N2—C107.3 (3)C1—N3—C12—C1364.3 (3)
C3—N1—N2—C10164.9 (2)C20—N3—C12—C13167.4 (2)
C2—N1—N2—C9168.0 (2)O2—N4—C13—C14179.0 (2)
C3—N1—N2—C934.5 (4)O2—N4—C13—C122.1 (4)
C20—N3—C1—C10131.2 (3)N3—C12—C13—N4103.4 (3)
C12—N3—C1—C10100.7 (3)N3—C12—C13—C1477.7 (3)
C20—N3—C1—C253.9 (3)N4—C13—C14—C15179.3 (3)
C12—N3—C1—C274.2 (3)C12—C13—C14—C150.4 (4)
N2—N1—C2—O1175.2 (2)N4—C13—C14—C190.2 (4)
C3—N1—C2—O119.4 (4)C12—C13—C14—C19179.2 (2)
N2—N1—C2—C16.2 (3)C19—C14—C15—C160.6 (5)
C3—N1—C2—C1161.9 (2)C13—C14—C15—C16178.9 (3)
C10—C1—C2—O1178.7 (3)C14—C15—C16—C170.1 (6)
N3—C1—C2—O13.2 (5)C15—C16—C17—C180.6 (6)
C10—C1—C2—N12.9 (3)C16—C17—C18—C190.3 (5)
N3—C1—C2—N1178.4 (2)C17—C18—C19—C140.5 (5)
C2—N1—C3—C4102.7 (3)C15—C14—C19—C180.9 (4)
N2—N1—C3—C4103.9 (3)C13—C14—C19—C18178.6 (3)
C2—N1—C3—C878.3 (3)C1—N3—C20—C21166.9 (2)
N2—N1—C3—C875.1 (3)C12—N3—C20—C2165.3 (3)
C8—C3—C4—C50.3 (4)O3—N5—C21—C22178.7 (2)
N1—C3—C4—C5179.4 (3)O3—N5—C21—C200.7 (4)
C3—C4—C5—C60.4 (5)N3—C20—C21—N5105.1 (3)
C4—C5—C6—C70.3 (6)N3—C20—C21—C2274.2 (3)
C5—C6—C7—C80.2 (6)N5—C21—C22—C27177.7 (3)
C4—C3—C8—C70.2 (4)C20—C21—C22—C272.9 (4)
N1—C3—C8—C7179.2 (3)N5—C21—C22—C232.2 (4)
C6—C7—C8—C30.1 (5)C20—C21—C22—C23177.1 (3)
N1—N2—C10—C15.4 (3)C27—C22—C23—C240.5 (6)
C9—N2—C10—C1163.7 (3)C21—C22—C23—C24179.5 (3)
N1—N2—C10—C11174.9 (2)C22—C23—C24—C250.1 (7)
C9—N2—C10—C1116.6 (4)C23—C24—C25—C260.7 (7)
C2—C1—C10—N21.6 (3)C24—C25—C26—C271.0 (6)
N3—C1—C10—N2174.1 (2)C25—C26—C27—C220.6 (6)
C2—C1—C10—C11178.7 (3)C23—C22—C27—C260.2 (5)
N3—C1—C10—C115.5 (4)C21—C22—C27—C26179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.821.882.663 (3)159
O3—H3A···O1ii0.821.882.695 (3)178
O4—H4C···O10.86 (4)1.99 (4)2.779 (3)152 (4)
O4—H4B···N5ii0.99 (4)1.87 (4)2.848 (4)170 (3)
O4—H4B···O3ii0.99 (4)2.57 (4)3.372 (3)138 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC27H27N5O3·H2O
Mr487.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.385 (6), 18.024 (4), 14.229 (5)
β (°) 102.05 (5)
V3)2604.6 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.38 × 0.12
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4862, 4592, 2956
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.155, 1.02
No. of reflections4592
No. of parameters334
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
O1—C21.259 (3)N2—C91.446 (3)
O3—N51.393 (3)N3—C201.475 (3)
N1—C21.384 (3)N3—C121.480 (3)
N1—N21.403 (3)N4—C131.285 (3)
N1—C31.428 (3)N5—C211.288 (3)
N1—N2—C9119.9 (2)C21—N5—O3112.8 (2)
C1—N3—C12111.90 (19)O1—C2—N1121.5 (2)
C13—N4—O2112.4 (2)N3—C12—C13110.9 (2)
C1—N3—C12—C1364.3 (3)O3—N5—C21—C22178.7 (2)
O2—N4—C13—C14179.0 (2)N3—C20—C21—N5105.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.821.882.663 (3)159
O3—H3A···O1ii0.821.882.695 (3)178
O4—H4C···O10.86 (4)1.99 (4)2.779 (3)152 (4)
O4—H4B···N5ii0.99 (4)1.87 (4)2.848 (4)170 (3)
O4—H4B···O3ii0.99 (4)2.57 (4)3.372 (3)138 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds