Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The reaction of ClAuPPh3 and 1,1′-bi­phenyl-2,2′-di­thiol in the presence of tri­methyl­benzyl­ammonium chloride and K2CO3 in a tetra­hydro­furan/methanol solution gives the title complex, [Au2(C12H8S2)(C18H15P)2]. The mol­ecule contains P—Au—S units which `cross' with torsion angles of ∼90° [P—Au—Au—P = 86.23 (5)° and S—Au—Au—S = 95.62 (5)°]. The intra- and intermolecular Au...Au distances [3.9064 (3) and 6.3797 (5) Å, respectively] are outside the range for typical Au...Au interactions. However, the Au atoms appear to be drawn together, leading to a significant bending of the P—Au—S angles [170.24 (5) and 169.52 (5)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104016099/fr1487sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016099/fr1487Isup2.hkl
Contains datablock I

CCDC reference: 251291

Comment top

Interest in gold chemistry has increased exponentially in recent years, to include diverse topics such as catalysis (Grisel et al., 2002), liquid crystals (Jana et al., 2002), antiviral activity (Dinger & Henderson, 1998), and novel luminescence (Lee & Eisenbeg, 2003; Mohamed et al., 2003; Yam et al., 2003; White-Morris et al., 2003). An important factor fueling this growth involves gold–gold interactions, which at about 30 kJ mol−1 (Schmidbaur et al., 1988; Narayanaswamy et al., 1993; Harwell et al., 1996), have been increasingly used to engineer specific molecular properties. Gold–sulfur complexes have been of special interest because soft sulfur ligands are predicted to promote gold–gold interactions (Pyykko et al., 1994). Dithiol ligands, such as [1,1'-biphenyl]-4–4'-dithiol or [1,1'-biphenyl]-2–2'-dithiol, are interesting because of their potential to facilitate the formation of gold arrays. Phosphine–gold–dithiolate complexes utilizing [1,1'-biphenyl]-4–4'-dithiol provide examples of how steric factors influence the formation of such solid-state gold arrays. When the phosphine is tri(c-hexyl)phosphine, there are no discernible sub-van der Waals contacts between Au atoms, but when the phosphine is tri(p-tolyl)phosphine, an aurophilicity-based one-dimensional array is formed (Ehlich et al., 2002). The [1,1'-biphenyl]-4–4'-dithiol ligand has also been used to form SAMs (self-assembled monolayers) on gold surfaces (de Boer et al., 2003). An examination of structures containing biphenyl with sulfur attached at the 2 and 2' positions shows no structure containing gold coordinated to the [1,1'-biphenyl]-2–2'-dithiol ligand (Cambridge Structural Database, Version 5.25 of November 2003; Allen, 2002).

Accordingly, we now report the solid-state structure of the title complex, (I). Complex (I) contains one discrete dinuclear monomer (Fig. 1). The P—Au bond lengths and the S—Au bond lengths are typical for gold(I)–phosphine–thiolate complexes. The intramolecular Au···Au distance [3.9064 (3) Å] precludes a typical gold–gold bonding interaction, which occurs when the distance between two AuI atoms is at or slightly below the sum of the van der Waals radii (3.32 Å; Bondi, 1964). The crossed arrangement of the P—Au—S units exhibits a P—Au—Au—P torsion angle of 86.23 (5)°. The phenyl rings of the biphenyldithiolate moiety are twisted out of the plane with respect to each other, forming a C12—C7—C6—C1 dihedral angle of 119.4 (6)°.

Structures containing biphenyl with sulfur attached at the 2- and 2'-positions reveal a wide range (2–116°) of absolute torsion angles between the phenyl rings (C2—C1—C1'—C2' referenced to biphenyl). Some generalizations can be made by grouping these structures into subsets. In one subset, which comprises more than half the structures,the biphenyl rings are relatively flat, with torsion angles of 2–38°. These structures are constrained by virtue of a direct bond between S atoms (i.e. disulfide) or by a single S, O or Se atom bridging between the 6- and 6'-positions on the biphenyl rings. Another subset of structures contains metal chelates (M = Mo, Ni, Pd, Rh, Ti, Cu and Ru), with torsion angles of 59–87°. If there are bulky groups opposite the S atoms, i.e. in the 6- and 6'-positions, the torsion angles between the phenyl rings tend to be near 90°. Finally, there are a few structures that contain bulky groups bonded to the S atoms (e.g. sulfonates), and the torsion angle can be as high as 116°. Complex (I) appears to fall in this last category. The triphenylphosphine–gold units coordinated to sulfur are very bulky, and the torsion angle between the phenyl rings opens up to 119° in order to minimize interactions between the triphenyl phosphine rings. Inspection of (I) also reveals that the Au atoms appear to be drawn together, leading to a significant bending of the P—Au—S angles [170.24 (5) and 169.53 (5)°]. However, as noted above, the long distance between the Au atoms precludes a typical gold–gold bonding interaction. Comparison with other structures shows that significant bending is observed when short gold–gold, gold–metal or gold–heteroatom interactions are present [e.g. Au—Au (Davila et al., 1993; Crespo et al., 1997), Au—Ir (Rio et al., 2001), Au—Os (Leung et al., 1998), Au—N (Vincert et al., 2001; Wilton-Ely et al., 2002), Au—S (Wilton-Ely et al., 2001; Kuz'mina et al., 1993)]. These observations suggest the possibility that aurophilicity, even at these long distances, may influence the solid-state structure. In recent work, Pyykko an co-workers (Pyykko & Tamm, 1998; Pyykko, 2004) estimated the aurophilic energy as a function of the Au···Au distance, and at 3.9 Å, a gold–gold interaction is estimated to be around 3 kJ mol−1. This is about one-tenth of the strength of a typical strong gold–gold interaction. Other weak interactions, such as C—H···F, which are estimated to be significantly weaker than a typical O···H hydrogen bond, have been shown to be important features for stabilizing crystal structures (Howard et al., 1996; Thalladi et al., 1998; Lee et al., 2000).

Experimental top

Complex (I) was synthesized by reaction of ClAuPPh3 (910 mg, 1.84 mmol) and [1,1'-biphenyl]-2,2'-dithiol (200 mg, 0.92 mmol) in the presence of trimethylbenzyl ammonium chloride (68 mg, 0.36 mmol) and K2CO3 (500 mg, 3.62 mmol) in THF/methanol solution. Crystals suitable for X-ray analysis were grown from Et2O/CH2Cl2 and obtained as colorless plates.

Refinement top

H atoms were positioned geometrically (C—H = 0.95 Å) and treated as riding, with Uiso(H) values of 1.2Ueq(C). The final difference map was featureless, the highest residual electron-density peaks being approximately 0.9 Å from the Au atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted for clarity. [P—Au—S = 170.24 (5) and 169.53 (5)°, Au1.·Au2 = 3.9064 (3) Å, S1.·S2 = 5.186 (2) Å and P1.·P2 = 5.529 (2) Å.]
µ-Biphenyl-2,2'-dithiolato-κ2S:S'bis[(triphenylphosphine-κP)gold(I)] top
Crystal data top
[Au2(C12H8S2)(C18H15P)2]F(000) = 2184
Mr = 1134.78Dx = 1.848 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6392 reflections
a = 20.0310 (4) Åθ = 2.5–28.3°
b = 10.2199 (2) ŵ = 7.40 mm1
c = 20.0399 (3) ÅT = 150 K
β = 96.303 (2)°Plate, colorless
V = 4077.67 (13) Å30.20 × 0.10 × 0.04 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
10002 independent reflections
Radiation source: fine-focus sealed tube6889 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 0.75 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω scansh = 2626
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.319, Tmax = 0.756l = 2625
42287 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.026P)2 + 4.627P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
10002 reflectionsΔρmax = 1.00 e Å3
488 parametersΔρmin = 0.92 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: PattersonExtinction coefficient: 0.00011 (3)
Crystal data top
[Au2(C12H8S2)(C18H15P)2]V = 4077.67 (13) Å3
Mr = 1134.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.0310 (4) ŵ = 7.40 mm1
b = 10.2199 (2) ÅT = 150 K
c = 20.0399 (3) Å0.20 × 0.10 × 0.04 mm
β = 96.303 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
10002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6889 reflections with I > 2σ(I)
Tmin = 0.319, Tmax = 0.756Rint = 0.066
42287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.00Δρmax = 1.00 e Å3
10002 reflectionsΔρmin = 0.92 e Å3
488 parameters
Special details top

Experimental. The crystal was mounted on the tip of a glass fiber with epoxy resin.

The final unit cell is obtained from the refinement of the XYZ weighted centroids of reflectinos above 20 σ(I).

The first 50 frames of data were recollected for a decay correction. The decay correction was applied simultaneously with the absorption correction in SADABS. No formal measure of the extent of decay is printed out by this program.

Note that the absorption correction parameters Tmin and Tmax also reflect beam corrections, etc. As a result, the numerical values for Tmin and Tmax may differ from expected values based solely on absorption effects and crystal size.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.656201 (10)0.52307 (2)0.385260 (10)0.02347 (6)
Au20.851480 (10)0.52615 (2)0.425512 (9)0.02680 (6)
P10.63051 (7)0.71947 (13)0.42761 (7)0.0224 (3)
P20.85662 (7)0.44607 (13)0.53089 (7)0.0235 (3)
S10.66453 (7)0.31238 (13)0.34640 (7)0.0254 (3)
S20.86467 (7)0.62565 (14)0.32472 (7)0.0299 (3)
C10.7439 (2)0.2851 (5)0.3171 (2)0.0225 (11)
C20.7736 (3)0.1632 (5)0.3330 (3)0.0304 (13)
H20.75220.10500.36090.037*
C30.8323 (3)0.1254 (6)0.3098 (3)0.0334 (13)
H30.85110.04180.32110.040*
C40.8643 (3)0.2104 (6)0.2697 (3)0.0328 (13)
H40.90450.18450.25230.039*
C50.8374 (3)0.3326 (5)0.2550 (3)0.0291 (12)
H50.86050.39130.22890.035*
C60.7768 (3)0.3725 (5)0.2777 (2)0.0220 (11)
C70.7503 (2)0.5044 (5)0.2572 (2)0.0215 (11)
C80.6894 (3)0.5132 (6)0.2161 (3)0.0289 (12)
H80.66540.43520.20370.035*
C90.6630 (3)0.6314 (6)0.1932 (3)0.0366 (14)
H90.62120.63430.16580.044*
C100.6974 (3)0.7453 (6)0.2102 (3)0.0382 (15)
H100.67970.82710.19400.046*
C110.7580 (3)0.7400 (5)0.2510 (3)0.0311 (13)
H110.78150.81900.26260.037*
C120.7853 (3)0.6208 (5)0.2753 (2)0.0259 (12)
C130.5813 (2)0.8212 (5)0.3657 (2)0.0209 (11)
C140.6011 (3)0.9443 (5)0.3468 (3)0.0296 (13)
H140.64270.97900.36620.036*
C150.5613 (3)1.0172 (6)0.3002 (3)0.0337 (13)
H150.57581.10120.28740.040*
C160.5008 (3)0.9685 (5)0.2724 (3)0.0300 (12)
H160.47311.01890.24060.036*
C170.4802 (3)0.8450 (5)0.2908 (3)0.0304 (13)
H170.43830.81120.27150.037*
C180.5199 (3)0.7719 (5)0.3366 (3)0.0269 (12)
H180.50570.68720.34850.032*
C190.7012 (3)0.8186 (5)0.4602 (3)0.0251 (11)
C200.7020 (3)0.8972 (6)0.5170 (3)0.0342 (13)
H200.66440.89900.54210.041*
C210.7583 (3)0.9731 (6)0.5368 (3)0.0416 (15)
H210.75901.02730.57540.050*
C220.8130 (3)0.9702 (6)0.5011 (3)0.0440 (16)
H220.85101.02330.51470.053*
C230.8130 (3)0.8909 (6)0.4455 (3)0.0377 (14)
H230.85110.88850.42130.045*
C240.7581 (3)0.8157 (5)0.4253 (3)0.0285 (12)
H240.75860.76070.38720.034*
C250.5780 (3)0.7062 (5)0.4959 (3)0.0252 (11)
C260.5896 (3)0.6026 (5)0.5411 (3)0.0332 (13)
H260.62250.53810.53490.040*
C270.5524 (3)0.5952 (6)0.5951 (3)0.0396 (15)
H270.55960.52430.62570.047*
C280.5050 (3)0.6889 (6)0.6053 (3)0.0361 (14)
H280.48010.68280.64290.043*
C290.4941 (3)0.7902 (6)0.5612 (3)0.0378 (14)
H290.46150.85480.56830.045*
C300.5303 (3)0.8000 (6)0.5062 (3)0.0335 (13)
H300.52230.87080.47560.040*
C310.9117 (3)0.3066 (5)0.5453 (3)0.0237 (11)
C320.9614 (3)0.2852 (6)0.5033 (3)0.0411 (15)
H320.96370.33930.46500.049*
C331.0076 (3)0.1851 (7)0.5170 (3)0.0481 (18)
H331.04160.17140.48810.058*
C341.0047 (3)0.1049 (6)0.5724 (3)0.0414 (15)
H341.03640.03640.58170.050*
C350.9551 (3)0.1258 (6)0.6138 (3)0.0322 (13)
H350.95280.07180.65200.039*
C360.9090 (3)0.2245 (5)0.5999 (3)0.0284 (12)
H360.87450.23660.62830.034*
C370.8931 (3)0.5649 (5)0.5922 (2)0.0245 (11)
C380.9526 (3)0.5420 (5)0.6323 (3)0.0296 (12)
H380.97620.46220.62840.035*
C390.9776 (3)0.6354 (6)0.6779 (3)0.0419 (15)
H391.01850.61940.70540.050*
C400.9440 (3)0.7523 (6)0.6844 (3)0.0409 (15)
H400.96180.81620.71590.049*
C410.8847 (3)0.7750 (6)0.6448 (3)0.0364 (14)
H410.86110.85460.64940.044*
C420.8590 (3)0.6831 (5)0.5984 (3)0.0309 (13)
H420.81830.70000.57070.037*
C430.7787 (3)0.3932 (5)0.5613 (3)0.0241 (11)
C440.7631 (3)0.4170 (6)0.6260 (3)0.0329 (13)
H440.79270.46770.65590.040*
C450.7048 (3)0.3676 (7)0.6474 (3)0.0435 (16)
H450.69450.38330.69190.052*
C460.6617 (3)0.2953 (6)0.6032 (4)0.0438 (17)
H460.62170.26090.61770.053*
C470.6757 (3)0.2719 (6)0.5381 (4)0.0433 (16)
H470.64550.22300.50790.052*
C480.7349 (3)0.3214 (6)0.5177 (3)0.0327 (13)
H480.74530.30550.47330.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.02383 (11)0.02224 (11)0.02492 (11)0.00198 (9)0.00529 (8)0.00012 (9)
Au20.03352 (13)0.02781 (12)0.01836 (11)0.00362 (9)0.00041 (8)0.00231 (9)
P10.0207 (7)0.0244 (7)0.0225 (7)0.0013 (5)0.0042 (5)0.0003 (5)
P20.0256 (7)0.0254 (8)0.0190 (7)0.0017 (5)0.0001 (5)0.0016 (5)
S10.0219 (7)0.0244 (7)0.0303 (7)0.0021 (5)0.0047 (5)0.0024 (5)
S20.0313 (8)0.0363 (8)0.0216 (7)0.0092 (6)0.0008 (5)0.0034 (6)
C10.021 (3)0.027 (3)0.018 (3)0.001 (2)0.001 (2)0.004 (2)
C20.028 (3)0.030 (3)0.033 (3)0.001 (2)0.000 (2)0.005 (2)
C30.032 (3)0.025 (3)0.042 (4)0.006 (2)0.000 (3)0.002 (3)
C40.026 (3)0.036 (3)0.038 (3)0.001 (2)0.007 (2)0.012 (3)
C50.030 (3)0.030 (3)0.028 (3)0.003 (2)0.007 (2)0.007 (2)
C60.025 (3)0.023 (3)0.018 (3)0.000 (2)0.000 (2)0.002 (2)
C70.024 (3)0.022 (3)0.019 (2)0.0012 (19)0.0070 (19)0.0007 (19)
C80.026 (3)0.034 (3)0.026 (3)0.002 (2)0.000 (2)0.001 (2)
C90.034 (3)0.042 (4)0.033 (3)0.008 (3)0.000 (3)0.005 (3)
C100.054 (4)0.031 (3)0.029 (3)0.009 (3)0.000 (3)0.009 (2)
C110.046 (4)0.023 (3)0.025 (3)0.003 (2)0.005 (3)0.006 (2)
C120.029 (3)0.032 (3)0.016 (3)0.000 (2)0.001 (2)0.003 (2)
C130.024 (3)0.023 (3)0.016 (2)0.003 (2)0.002 (2)0.003 (2)
C140.024 (3)0.026 (3)0.038 (3)0.007 (2)0.002 (2)0.000 (2)
C150.034 (3)0.028 (3)0.037 (3)0.001 (3)0.002 (2)0.007 (3)
C160.035 (3)0.031 (3)0.022 (3)0.006 (3)0.006 (2)0.002 (2)
C170.028 (3)0.038 (3)0.024 (3)0.000 (2)0.002 (2)0.008 (2)
C180.034 (3)0.021 (3)0.026 (3)0.004 (2)0.002 (2)0.005 (2)
C190.029 (3)0.022 (3)0.024 (3)0.004 (2)0.002 (2)0.005 (2)
C200.027 (3)0.039 (4)0.036 (3)0.002 (3)0.001 (2)0.007 (3)
C210.040 (4)0.034 (3)0.047 (4)0.009 (3)0.010 (3)0.012 (3)
C220.033 (3)0.034 (3)0.061 (4)0.004 (3)0.014 (3)0.011 (3)
C230.022 (3)0.047 (4)0.043 (4)0.009 (3)0.005 (3)0.010 (3)
C240.027 (3)0.036 (3)0.022 (3)0.003 (2)0.000 (2)0.004 (2)
C250.020 (3)0.034 (3)0.022 (3)0.001 (2)0.003 (2)0.001 (2)
C260.031 (3)0.031 (3)0.039 (3)0.003 (2)0.011 (3)0.005 (3)
C270.033 (3)0.049 (4)0.039 (4)0.006 (3)0.012 (3)0.013 (3)
C280.027 (3)0.055 (4)0.027 (3)0.007 (3)0.007 (2)0.000 (3)
C290.025 (3)0.055 (4)0.033 (3)0.010 (3)0.006 (2)0.001 (3)
C300.029 (3)0.041 (4)0.030 (3)0.006 (3)0.001 (2)0.002 (3)
C310.024 (3)0.023 (3)0.023 (3)0.005 (2)0.002 (2)0.001 (2)
C320.043 (4)0.046 (4)0.037 (4)0.004 (3)0.018 (3)0.012 (3)
C330.037 (4)0.059 (5)0.052 (5)0.014 (3)0.020 (3)0.010 (3)
C340.028 (3)0.040 (4)0.057 (4)0.007 (3)0.007 (3)0.004 (3)
C350.031 (3)0.034 (3)0.031 (3)0.003 (3)0.000 (2)0.003 (2)
C360.030 (3)0.029 (3)0.026 (3)0.003 (2)0.003 (2)0.001 (2)
C370.031 (3)0.027 (3)0.016 (3)0.007 (2)0.002 (2)0.001 (2)
C380.032 (3)0.026 (3)0.030 (3)0.000 (2)0.001 (2)0.001 (2)
C390.033 (3)0.050 (4)0.039 (4)0.002 (3)0.012 (3)0.008 (3)
C400.043 (4)0.041 (4)0.038 (4)0.012 (3)0.002 (3)0.014 (3)
C410.036 (3)0.034 (3)0.041 (4)0.002 (3)0.012 (3)0.009 (3)
C420.030 (3)0.032 (3)0.030 (3)0.003 (2)0.004 (2)0.001 (2)
C430.023 (3)0.022 (3)0.026 (3)0.001 (2)0.001 (2)0.006 (2)
C440.027 (3)0.039 (3)0.032 (3)0.003 (3)0.002 (2)0.009 (3)
C450.038 (4)0.054 (4)0.041 (4)0.007 (3)0.016 (3)0.018 (3)
C460.020 (3)0.041 (4)0.072 (5)0.004 (3)0.011 (3)0.029 (3)
C470.022 (3)0.039 (4)0.067 (5)0.002 (3)0.005 (3)0.003 (3)
C480.022 (3)0.034 (3)0.041 (4)0.004 (2)0.002 (2)0.001 (3)
Geometric parameters (Å, º) top
Au1—P12.2605 (14)C22—C231.378 (9)
Au1—S12.3020 (13)C22—H220.9500
Au2—P22.2565 (13)C23—C241.365 (7)
Au2—S22.3024 (13)C23—H230.9500
P1—C191.804 (6)C24—H240.9500
P1—C251.820 (5)C25—C301.384 (7)
P1—C131.823 (5)C25—C261.397 (7)
P2—C311.806 (5)C26—C271.381 (7)
P2—C431.819 (5)C26—H260.9500
P2—C371.823 (5)C27—C281.379 (8)
S1—C11.777 (5)C27—H270.9500
S2—C121.779 (5)C28—C291.363 (8)
C1—C21.401 (7)C28—H280.9500
C1—C61.403 (7)C29—C301.389 (7)
C2—C31.368 (7)C29—H290.9500
C2—H20.9500C30—H300.9500
C3—C41.387 (8)C31—C361.384 (7)
C3—H30.9500C31—C321.391 (7)
C4—C51.379 (8)C32—C331.387 (8)
C4—H40.9500C32—H320.9500
C5—C61.402 (7)C33—C341.387 (8)
C5—H50.9500C33—H330.9500
C6—C71.491 (7)C34—C351.379 (8)
C7—C81.398 (7)C34—H340.9500
C7—C121.408 (7)C35—C361.376 (7)
C8—C91.377 (8)C35—H350.9500
C8—H80.9500C36—H360.9500
C9—C101.376 (8)C37—C381.383 (7)
C9—H90.9500C37—C421.399 (7)
C10—C111.388 (8)C38—C391.377 (8)
C10—H100.9500C38—H380.9500
C11—C121.401 (7)C39—C401.384 (8)
C11—H110.9500C39—H390.9500
C13—C141.384 (7)C40—C411.374 (8)
C13—C181.396 (7)C40—H400.9500
C14—C151.378 (7)C41—C421.381 (8)
C14—H140.9500C41—H410.9500
C15—C161.370 (8)C42—H420.9500
C15—H150.9500C43—C481.379 (7)
C16—C171.391 (8)C43—C441.390 (7)
C16—H160.9500C44—C451.382 (8)
C17—C181.368 (7)C44—H440.9500
C17—H170.9500C45—C461.381 (9)
C18—H180.9500C45—H450.9500
C19—C201.392 (7)C46—C471.385 (9)
C19—C241.402 (7)C46—H460.9500
C20—C211.391 (8)C47—C481.391 (8)
C20—H200.9500C47—H470.9500
C21—C221.373 (9)C48—H480.9500
C21—H210.9500
P1—Au1—S1170.24 (5)C21—C22—H22119.8
P2—Au2—S2169.52 (5)C23—C22—H22119.8
C19—P1—C25105.4 (2)C24—C23—C22120.0 (6)
C19—P1—C13105.7 (2)C24—C23—H23120.0
C25—P1—C13103.9 (2)C22—C23—H23120.0
C19—P1—Au1115.62 (17)C23—C24—C19120.8 (5)
C25—P1—Au1112.97 (18)C23—C24—H24119.6
C13—P1—Au1112.27 (16)C19—C24—H24119.6
C31—P2—C43104.1 (2)C30—C25—C26119.7 (5)
C31—P2—C37103.0 (2)C30—C25—P1121.7 (4)
C43—P2—C37105.5 (2)C26—C25—P1118.4 (4)
C31—P2—Au2113.59 (17)C27—C26—C25119.0 (5)
C43—P2—Au2117.93 (17)C27—C26—H26120.5
C37—P2—Au2111.28 (17)C25—C26—H26120.5
C1—S1—Au1111.05 (17)C28—C27—C26121.2 (6)
C12—S2—Au2107.15 (17)C28—C27—H27119.4
C2—C1—C6118.7 (5)C26—C27—H27119.4
C2—C1—S1115.9 (4)C29—C28—C27119.6 (5)
C6—C1—S1125.3 (4)C29—C28—H28120.2
C3—C2—C1122.2 (5)C27—C28—H28120.2
C3—C2—H2118.9C28—C29—C30120.6 (5)
C1—C2—H2118.9C28—C29—H29119.7
C2—C3—C4119.2 (5)C30—C29—H29119.7
C2—C3—H3120.4C25—C30—C29119.8 (5)
C4—C3—H3120.4C25—C30—H30120.1
C5—C4—C3119.8 (5)C29—C30—H30120.1
C5—C4—H4120.1C36—C31—C32118.4 (5)
C3—C4—H4120.1C36—C31—P2121.9 (4)
C4—C5—C6121.7 (5)C32—C31—P2119.5 (4)
C4—C5—H5119.1C33—C32—C31120.2 (6)
C6—C5—H5119.1C33—C32—H32119.9
C5—C6—C1118.3 (5)C31—C32—H32119.9
C5—C6—C7117.9 (5)C34—C33—C32120.6 (6)
C1—C6—C7123.8 (4)C34—C33—H33119.7
C8—C7—C12118.4 (5)C32—C33—H33119.7
C8—C7—C6118.8 (5)C35—C34—C33119.1 (6)
C12—C7—C6122.7 (5)C35—C34—H34120.4
C9—C8—C7122.1 (5)C33—C34—H34120.4
C9—C8—H8119.0C36—C35—C34120.3 (5)
C7—C8—H8119.0C36—C35—H35119.9
C10—C9—C8119.8 (6)C34—C35—H35119.9
C10—C9—H9120.1C35—C36—C31121.4 (5)
C8—C9—H9120.1C35—C36—H36119.3
C9—C10—C11119.6 (5)C31—C36—H36119.3
C9—C10—H10120.2C38—C37—C42119.5 (5)
C11—C10—H10120.2C38—C37—P2122.3 (4)
C10—C11—C12121.5 (5)C42—C37—P2118.1 (4)
C10—C11—H11119.3C39—C38—C37119.7 (5)
C12—C11—H11119.3C39—C38—H38120.2
C11—C12—C7118.7 (5)C37—C38—H38120.2
C11—C12—S2117.5 (4)C38—C39—C40121.0 (6)
C7—C12—S2123.8 (4)C38—C39—H39119.5
C14—C13—C18118.6 (5)C40—C39—H39119.5
C14—C13—P1123.7 (4)C41—C40—C39119.4 (6)
C18—C13—P1117.7 (4)C41—C40—H40120.3
C15—C14—C13121.1 (5)C39—C40—H40120.3
C15—C14—H14119.5C40—C41—C42120.6 (6)
C13—C14—H14119.5C40—C41—H41119.7
C16—C15—C14119.9 (5)C42—C41—H41119.7
C16—C15—H15120.1C41—C42—C37119.8 (5)
C14—C15—H15120.1C41—C42—H42120.1
C15—C16—C17119.8 (5)C37—C42—H42120.1
C15—C16—H16120.1C48—C43—C44119.4 (5)
C17—C16—H16120.1C48—C43—P2117.1 (4)
C18—C17—C16120.4 (5)C44—C43—P2123.4 (4)
C18—C17—H17119.8C45—C44—C43120.7 (6)
C16—C17—H17119.8C45—C44—H44119.7
C17—C18—C13120.3 (5)C43—C44—H44119.7
C17—C18—H18119.9C46—C45—C44119.1 (6)
C13—C18—H18119.9C46—C45—H45120.5
C20—C19—C24118.9 (5)C44—C45—H45120.5
C20—C19—P1123.9 (4)C45—C46—C47121.3 (6)
C24—C19—P1117.2 (4)C45—C46—H46119.4
C21—C20—C19119.4 (5)C47—C46—H46119.4
C21—C20—H20120.3C46—C47—C48118.8 (6)
C19—C20—H20120.3C46—C47—H47120.6
C22—C21—C20120.5 (6)C48—C47—H47120.6
C22—C21—H21119.8C43—C48—C47120.8 (6)
C20—C21—H21119.8C43—C48—H48119.6
C21—C22—C23120.3 (6)C47—C48—H48119.6
S2—Au2—P2—C3179.1 (3)C20—C19—C24—C231.6 (8)
S2—Au2—P2—C43158.8 (3)P1—C19—C24—C23178.0 (4)
S2—Au2—P2—C3736.7 (4)C19—P1—C25—C3086.2 (5)
P2—Au2—S2—C12164.6 (3)C13—P1—C25—C3024.7 (5)
Au1—S1—C1—C2139.9 (4)Au1—P1—C25—C30146.7 (4)
Au1—S1—C1—C643.0 (5)C19—P1—C25—C2689.8 (5)
C6—C1—C2—C32.0 (8)C13—P1—C25—C26159.3 (4)
S1—C1—C2—C3175.4 (4)Au1—P1—C25—C2637.3 (5)
C1—C2—C3—C40.6 (9)C30—C25—C26—C270.7 (8)
C2—C3—C4—C51.5 (9)P1—C25—C26—C27176.7 (5)
C3—C4—C5—C62.3 (8)C25—C26—C27—C280.8 (9)
C4—C5—C6—C10.9 (8)C26—C27—C28—C290.5 (9)
C4—C5—C6—C7177.6 (5)C27—C28—C29—C300.0 (9)
C2—C1—C6—C51.2 (7)C26—C25—C30—C290.2 (8)
S1—C1—C6—C5175.9 (4)P1—C25—C30—C29176.1 (4)
C2—C1—C6—C7179.7 (5)C28—C29—C30—C250.1 (9)
S1—C1—C6—C72.6 (7)C43—P2—C31—C3634.0 (5)
C5—C6—C7—C8115.5 (5)C37—P2—C31—C3676.0 (5)
C1—C6—C7—C863.0 (7)Au2—P2—C31—C36163.5 (4)
C5—C6—C7—C1262.1 (7)C43—P2—C31—C32150.4 (5)
C1—C6—C7—C12119.4 (6)C37—P2—C31—C3299.6 (5)
C12—C7—C8—C90.0 (8)Au2—P2—C31—C3220.9 (5)
C6—C7—C8—C9177.7 (5)C36—C31—C32—C331.2 (9)
C7—C8—C9—C100.7 (8)P2—C31—C32—C33174.6 (5)
C8—C9—C10—C110.8 (9)C31—C32—C33—C340.3 (11)
C9—C10—C11—C120.2 (9)C32—C33—C34—C350.1 (10)
C10—C11—C12—C70.5 (8)C33—C34—C35—C360.4 (9)
C10—C11—C12—S2177.9 (4)C34—C35—C36—C311.3 (9)
C8—C7—C12—C110.6 (7)C32—C31—C36—C351.6 (8)
C6—C7—C12—C11177.0 (5)P2—C31—C36—C35174.0 (4)
C8—C7—C12—S2177.8 (4)C31—P2—C37—C385.0 (5)
C6—C7—C12—S20.2 (7)C43—P2—C37—C38113.8 (5)
Au2—S2—C12—C11124.1 (4)Au2—P2—C37—C38117.1 (4)
Au2—S2—C12—C758.7 (4)C31—P2—C37—C42175.0 (4)
C19—P1—C13—C144.7 (5)C43—P2—C37—C4266.1 (4)
C25—P1—C13—C14115.4 (5)Au2—P2—C37—C4262.9 (4)
Au1—P1—C13—C14122.2 (4)C42—C37—C38—C390.2 (8)
C19—P1—C13—C18174.5 (4)P2—C37—C38—C39179.8 (4)
C25—P1—C13—C1863.8 (4)C37—C38—C39—C400.0 (9)
Au1—P1—C13—C1858.6 (4)C38—C39—C40—C410.3 (10)
C18—C13—C14—C150.0 (8)C39—C40—C41—C420.7 (9)
P1—C13—C14—C15179.2 (4)C40—C41—C42—C370.9 (9)
C13—C14—C15—C160.6 (9)C38—C37—C42—C410.6 (8)
C14—C15—C16—C170.6 (8)P2—C37—C42—C41179.3 (4)
C15—C16—C17—C180.0 (8)C31—P2—C43—C4883.7 (5)
C16—C17—C18—C130.6 (8)C37—P2—C43—C48168.2 (4)
C14—C13—C18—C170.6 (8)Au2—P2—C43—C4843.2 (5)
P1—C13—C18—C17178.6 (4)C31—P2—C43—C4493.6 (5)
C25—P1—C19—C2017.3 (5)C37—P2—C43—C4414.5 (5)
C13—P1—C19—C2092.4 (5)Au2—P2—C43—C44139.5 (4)
Au1—P1—C19—C20142.7 (4)C48—C43—C44—C451.1 (8)
C25—P1—C19—C24163.2 (4)P2—C43—C44—C45176.2 (4)
C13—P1—C19—C2487.1 (4)C43—C44—C45—C460.7 (9)
Au1—P1—C19—C2437.7 (4)C44—C45—C46—C470.3 (9)
C24—C19—C20—C211.5 (8)C45—C46—C47—C480.8 (9)
P1—C19—C20—C21178.0 (4)C44—C43—C48—C470.5 (8)
C19—C20—C21—C220.4 (9)P2—C43—C48—C47177.0 (4)
C20—C21—C22—C230.8 (9)C46—C47—C48—C430.5 (9)
C21—C22—C23—C240.8 (9)S1—Au1—Au2—S295.62 (5)
C22—C23—C24—C190.4 (9)P1—Au1—Au2—P286.23 (5)

Experimental details

Crystal data
Chemical formula[Au2(C12H8S2)(C18H15P)2]
Mr1134.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)20.0310 (4), 10.2199 (2), 20.0399 (3)
β (°) 96.303 (2)
V3)4077.67 (13)
Z4
Radiation typeMo Kα
µ (mm1)7.40
Crystal size (mm)0.20 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.319, 0.756
No. of measured, independent and
observed [I > 2σ(I)] reflections
42287, 10002, 6889
Rint0.066
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.071, 1.00
No. of reflections10002
No. of parameters488
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.00, 0.92

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXTL (Siemens, 1994), SHELXTL.

Selected geometric parameters (Å, º) top
Au1—P12.2605 (14)P1—C131.823 (5)
Au1—S12.3020 (13)P2—C311.806 (5)
Au2—P22.2565 (13)P2—C431.819 (5)
Au2—S22.3024 (13)P2—C371.823 (5)
P1—C191.804 (6)S1—C11.777 (5)
P1—C251.820 (5)S2—C121.779 (5)
P1—Au1—S1170.24 (5)C1—S1—Au1111.05 (17)
P2—Au2—S2169.52 (5)C12—S2—Au2107.15 (17)
S1—Au1—Au2—S295.62 (5)P1—Au1—Au2—P286.23 (5)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds