Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, both C13H11NO3, exist as the keto–amine tautomers, and the formal hydroxyl H atoms, which display strong intramolecular hydrogen bonds, are located on the N atoms. This is a verification of the preference for the keto–amine tautomeric form in the solid state. The 2-hydroxy isomer has two independent mol­ecules, with the mol­ecules linked by intramolecular N—H...O and O—H...O and intermolecular O—H...O hydrogen bonds into three-dimensional networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104010832/fr1477sup1.cif
Contains datablocks global, II, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010832/fr1477Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010832/fr1477IIsup3.hkl
Contains datablock II

CCDC references: 243627; 243628

Comment top

O-Hydroxy Schiff bases, derived from the reaction of o-hydroxy aldehydes with aniline, have been extensively examined (Steward & Lingafelter, 1959; Calligaris et al., 1972; Maslen & Waters, 1975). These Schiff base compounds display interesting photochromic and thermochromic features and can be classified by them (Cohen et al., 1964; Moustakali-Mavridis et al., 1978; Hadjoudis et al., 1987). Photo- and thermochromism arise via H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994).

There are two types of intramolecular hydrogen bonds in Schiff bases, namely keto-amine (N—H···O) and enol-imine (N···H—O) tautomeric forms. The present X-ray investigation shows that the title compounds, (I) and (II), respectively, prefer keto-amine tautomerism rather than enol-imine tautomerism. O-Hydroxy Schiff bases have been previously seen in the keto form (Ünver Kabak et al., 2002; Odabaşoğlu Albayrak Büyükgüngör & Goesmann, 2003; Koşar et al., 2004; Hökelek et al., 2000), as the enol form (Karadayı et al., 2003; Leardini et al., 1998; Ünver & Yıldız et al., 2002; Elmalı et al., 1998), or as enol/keto mixtures (Nazır et al., 2000), by means of H-atom transfer. Related to this phenomenon, we present here the structures of (I) and (II). \sch

The molecular structure of (I) is shown in Fig. 1, with the atom-numbering scheme. Selected bond lengths and angles are listed in Table 1. The C13—O2 and C7—N1 bond lengths verify the keto-amine form for compound (I). These distances agree with the corresponding distances in 2-([tris(hydroxymethyl)methyl]aminomethylene)cyclohexa-3,5-dien-1(2H)-one [1.3025 (16) and 1.2952 (18) Å; Odabaşoğlu Albayrak Büyükgüngör & Lönnecke, 2003] and 3-[(2-oxo-1-naphthylidene)-methylamino]benzoic acid [1.290 (2) and 1.319 (3) Å; Pavlović & Sosa, 2000], which also show the keto-amine tautomeric form. The same bonds are comparable with the corresponding distances in N-(2-fluoro-3-methoxy)salicylaldimine [1.347 (3) and 1.280 (3) Å; Ünver Kendi et al., 2002] and N-[3,5-bis(trifluoromethyl)phenyl]-3-methoxysalicylaldimine [1.352 (3) and 1.280 (4) Å; Karadayı et al., 2003], which exist in the enol-imine tautomeric form.

Compound (I) displays a strong intramolecular N—H···O hydrogen bond between atoms N1 and O2 (Table 2). This type of strong intramolecular hydrogen bond is a common feature of o-hydroxysalicylidene systems (Filarowski et al., 2003; Yıldız et al., 1998; Odabaşoğlu Albayrak Büyükgüngör & Lönnecke, 2003). The N—H···O hydrogen-bonded ring is coplanar with the adjacent ring, with an N1—C7—C8—C13 torsion angle of 0.0 (3)°.

Compound (II) is very similar to (I), with two independent molecules. Fig. 4 shows the positions of these two independent molecules relative to each other. Because of the distinct settling of the hydroxyl groups, there are more or less distinctions of the bond lengths and angles of (II). Please clarify. Fig. 3 shows the molecular structure of (II), with the atom-numbering scheme. Selected bond lengths and angles for (II) are listed in Table 3. Compound (II) has two strong intramolecular N—H···O hydrogen bonds and an intramolecular O—H···O hydrogen bond (Table 4). The N1—H1···O2 hydrogen-bonded ring of (II) is planar and the torsion angle with the adjacent ring is 0.2 (5)°. The N2—H4···O5 hydrogen-bonded ring is also planar and is coupled with the adjacent ring, with an N2—C20—C21—C26 torsion angle of 1.4 (5)°.

Experimental top

The title compounds were prepared as described by Odabaşoğlu et al. (2003) Which ref?, using 4-hydroxyaniline and 4-hydroxysalicylaldehyde as starting materials for (I), and 4-hydroxyaniline and 3-hydroxysalicylaldehyde for (II). Well shaped crystals were obtained by slow evaporation from ethanol solutions [for (I), yield 82%, m.p. 504–506 K; for (II), yield 85%, m.p. 464–466 K].

Refinement top

For (I), all H-atom parameters were freely refined. C—H distances were in the range 0.95 (2)–1.022 (18) Å, and Uiso(H) values were in the range 0.058 (5)–0.126 (9) Å2. For (II), all H atoms, except for H1, H4, H7, H20, H33, H44, H66 and H77, were treated using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(parent atom). The remaining H atoms were refined isotropically; the calculated C—H bond lengths were in the range 0.98 (4)–0.99 (4) Å.

Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate intra- and intermolecular hydrogen bonds.
[Figure 3] Fig. 3. A view of one molecule of (II), with the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A view of (II), with the relative positions of the two independent molecules.
(I) 3-Hydroxy-6-[(4-hydroxyphenylamino)methylene]cyclohexa-2,4-dienone top
Crystal data top
C13H11NO3F(000) = 960
Mr = 229.23Dx = 1.426 Mg m3
Monoclinic, C2/cMelting point = 504–506 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.2579 (11) ÅCell parameters from 6435 reflections
b = 7.8772 (8) Åθ = 2.0–27.7°
c = 20.4502 (15) ŵ = 0.10 mm1
β = 91.369 (6)°T = 293 K
V = 2135.1 (3) Å3Cylindrical, dark red
Z = 80.45 × 0.35 × 0.21 mm
Data collection top
Stoe IPDS 2
diffractometer
2486 independent reflections
Radiation source: fine-focus sealed tube1563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 6.67 pixels mm-1θmax = 27.7°, θmin = 2.0°
ω scansh = 1717
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 1010
Tmin = 0.965, Tmax = 0.982l = 2426
10511 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0753P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2486 reflectionsΔρmax = 0.16 e Å3
199 parametersΔρmin = 0.16 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0077 (14)
Crystal data top
C13H11NO3V = 2135.1 (3) Å3
Mr = 229.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.2579 (11) ŵ = 0.10 mm1
b = 7.8772 (8) ÅT = 293 K
c = 20.4502 (15) Å0.45 × 0.35 × 0.21 mm
β = 91.369 (6)°
Data collection top
Stoe IPDS 2
diffractometer
2486 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
1563 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.982Rint = 0.058
10511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 0.94Δρmax = 0.16 e Å3
2486 reflectionsΔρmin = 0.16 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47885 (12)0.04312 (18)0.38194 (7)0.0481 (4)
C20.41946 (13)0.0346 (2)0.43672 (8)0.0549 (4)
C30.36464 (14)0.1097 (2)0.44864 (8)0.0568 (4)
C40.36660 (13)0.24587 (19)0.40626 (8)0.0531 (4)
C50.42554 (14)0.2375 (2)0.35132 (8)0.0548 (4)
C60.48178 (13)0.0942 (2)0.33986 (8)0.0537 (4)
C70.55882 (13)0.3190 (2)0.40342 (8)0.0523 (4)
C80.61561 (12)0.45820 (18)0.38323 (7)0.0484 (4)
C90.63712 (13)0.5918 (2)0.42783 (8)0.0535 (4)
C100.69340 (13)0.72785 (19)0.41131 (7)0.0520 (4)
C110.73387 (12)0.73564 (17)0.34762 (7)0.0461 (4)
C120.71393 (12)0.60878 (18)0.30277 (7)0.0482 (4)
C130.65495 (11)0.46856 (17)0.31863 (7)0.0462 (4)
N10.53662 (10)0.18849 (16)0.36650 (6)0.0519 (3)
O10.31075 (12)0.38408 (16)0.42144 (6)0.0773 (4)
O30.79215 (9)0.86810 (13)0.33348 (5)0.0584 (3)
O20.63456 (9)0.34721 (13)0.27654 (5)0.0597 (4)
H10.5664 (15)0.200 (2)0.3240 (10)0.076 (6)*
H20.4170 (13)0.133 (2)0.4671 (9)0.058 (5)*
H30.3231 (15)0.114 (2)0.4860 (10)0.072 (5)*
H50.4239 (13)0.340 (2)0.3208 (9)0.063 (5)*
H60.5236 (14)0.084 (2)0.3010 (10)0.070 (5)*
H70.5343 (14)0.317 (2)0.4473 (9)0.064 (5)*
H90.6101 (14)0.584 (2)0.4729 (10)0.071 (5)*
H100.7081 (13)0.825 (2)0.4411 (9)0.058 (5)*
H110.3137 (18)0.469 (3)0.3848 (12)0.110 (8)*
H120.7423 (14)0.616 (2)0.2593 (9)0.065 (5)*
H330.819 (2)0.862 (3)0.2911 (10)0.126 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0498 (8)0.0458 (7)0.0489 (8)0.0043 (7)0.0055 (7)0.0021 (6)
C20.0628 (10)0.0481 (8)0.0545 (9)0.0080 (7)0.0143 (8)0.0077 (7)
C30.0661 (10)0.0537 (9)0.0515 (9)0.0122 (7)0.0154 (8)0.0044 (7)
C40.0621 (10)0.0459 (8)0.0516 (9)0.0097 (7)0.0054 (8)0.0012 (7)
C50.0662 (11)0.0484 (8)0.0498 (8)0.0056 (7)0.0046 (8)0.0051 (7)
C60.0607 (10)0.0550 (9)0.0457 (8)0.0052 (7)0.0082 (7)0.0011 (7)
C70.0593 (10)0.0476 (8)0.0505 (8)0.0045 (7)0.0115 (7)0.0002 (7)
C80.0543 (8)0.0445 (7)0.0468 (8)0.0032 (7)0.0113 (7)0.0007 (6)
C90.0668 (10)0.0504 (8)0.0441 (8)0.0058 (7)0.0148 (7)0.0027 (6)
C100.0682 (10)0.0458 (8)0.0424 (7)0.0072 (7)0.0094 (7)0.0030 (6)
C110.0555 (9)0.0390 (7)0.0442 (8)0.0022 (6)0.0078 (7)0.0022 (6)
C120.0592 (9)0.0438 (8)0.0423 (7)0.0025 (6)0.0116 (7)0.0003 (6)
C130.0524 (8)0.0417 (7)0.0449 (8)0.0004 (6)0.0087 (6)0.0042 (6)
N10.0563 (8)0.0482 (7)0.0519 (7)0.0087 (6)0.0132 (6)0.0008 (6)
O10.1127 (11)0.0573 (7)0.0632 (8)0.0355 (7)0.0265 (8)0.0087 (6)
O30.0830 (8)0.0448 (5)0.0481 (6)0.0176 (5)0.0177 (6)0.0030 (5)
O20.0783 (8)0.0504 (6)0.0516 (6)0.0157 (6)0.0212 (6)0.0136 (5)
Geometric parameters (Å, º) top
C1—C61.383 (2)C8—C91.417 (2)
C1—C21.386 (2)C8—C131.4343 (19)
C1—N11.4174 (19)C9—C101.353 (2)
C2—C31.374 (2)C9—H90.999 (19)
C2—H20.992 (17)C10—C111.422 (2)
C3—C41.380 (2)C10—H100.994 (18)
C3—H30.95 (2)C11—O31.3342 (17)
C4—O11.3568 (18)C11—C121.378 (2)
C4—C51.385 (2)C12—C131.396 (2)
C5—C61.376 (2)C12—H120.975 (19)
C5—H51.022 (18)C13—O21.3101 (17)
C6—H60.982 (19)N1—H10.967 (19)
C7—N11.305 (2)O1—H111.01 (3)
C7—C81.398 (2)O3—H330.947 (17)
C7—H70.961 (19)
C6—C1—C2119.33 (14)C7—C8—C13121.79 (13)
C6—C1—N1118.02 (13)C9—C8—C13118.59 (13)
C2—C1—N1122.65 (14)C10—C9—C8122.08 (14)
C3—C2—C1119.76 (15)C10—C9—H9119.4 (11)
C3—C2—H2120.5 (9)C8—C9—H9118.5 (11)
C1—C2—H2119.7 (9)C9—C10—C11119.03 (14)
C2—C3—C4120.91 (14)C9—C10—H10123.8 (9)
C2—C3—H3119.5 (11)C11—C10—H10117.1 (9)
C4—C3—H3119.6 (11)O3—C11—C12121.73 (13)
O1—C4—C3117.49 (14)O3—C11—C10117.74 (13)
O1—C4—C5123.04 (14)C12—C11—C10120.53 (13)
C3—C4—C5119.46 (14)C11—C12—C13121.26 (13)
C6—C5—C4119.70 (14)C11—C12—H12119.5 (10)
C6—C5—H5123.3 (10)C13—C12—H12119.2 (10)
C4—C5—H5117.0 (10)O2—C13—C12122.19 (12)
C5—C6—C1120.81 (14)O2—C13—C8119.33 (12)
C5—C6—H6121.6 (11)C12—C13—C8118.49 (13)
C1—C6—H6117.6 (11)C7—N1—C1128.54 (13)
N1—C7—C8124.24 (14)C7—N1—H1110.8 (12)
N1—C7—H7116.9 (10)C1—N1—H1120.7 (12)
C8—C7—H7118.9 (10)C4—O1—H11109.4 (14)
C7—C8—C9119.60 (13)C11—O3—H33113.2 (15)
C6—C1—C2—C30.2 (3)C8—C9—C10—C111.2 (3)
N1—C1—C2—C3179.49 (16)C9—C10—C11—O3177.56 (16)
C1—C2—C3—C41.0 (3)C9—C10—C11—C121.7 (2)
C2—C3—C4—O1179.79 (17)O3—C11—C12—C13178.35 (15)
C2—C3—C4—C50.7 (3)C10—C11—C12—C130.9 (2)
O1—C4—C5—C6178.68 (17)C11—C12—C13—O2179.53 (15)
C3—C4—C5—C60.4 (3)C11—C12—C13—C80.4 (2)
C4—C5—C6—C11.2 (3)C7—C8—C13—O22.3 (2)
C2—C1—C6—C50.9 (3)C9—C8—C13—O2179.06 (15)
N1—C1—C6—C5178.47 (16)C7—C8—C13—C12177.80 (16)
N1—C7—C8—C9178.70 (16)C9—C8—C13—C120.9 (2)
N1—C7—C8—C130.0 (3)C8—C7—N1—C1179.09 (16)
C7—C8—C9—C10178.65 (17)C6—C1—N1—C7167.43 (17)
C13—C8—C9—C100.1 (2)C2—C1—N1—C713.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.967 (19)1.77 (2)2.5976 (16)141.0 (17)
O1—H11···O3i1.01 (3)1.68 (3)2.6619 (16)165 (2)
O3—H33···O2ii0.95 (2)1.53 (2)2.4775 (14)178 (3)
Symmetry codes: (i) x1/2, y3/2, z; (ii) x+3/2, y+1/2, z+1/2.
(II) 2-Hydroxy-6-[(4-hydroxyphenylamino)methylene]cyclohexa-2,4-dienone top
Crystal data top
C13H11NO3F(000) = 960
Mr = 229.23Dx = 1.441 Mg m3
Monoclinic, P21/cMelting point = 464–466 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.6440 (8) ÅCell parameters from 22130 reflections
b = 8.3499 (3) Åθ = 1.6–27.1°
c = 20.1529 (12) ŵ = 0.10 mm1
β = 96.693 (5)°T = 293 K
V = 2113.2 (2) Å3Shapeless, dark red
Z = 80.50 × 0.45 × 0.21 mm
Data collection top
Stoe IPDS 2
diffractometer
4610 independent reflections
Radiation source: fine-focus sealed tube3305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 1.6°
ω scansh = 1616
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 1010
Tmin = 0.950, Tmax = 0.985l = 2525
32250 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0592P)2]
where P = (Fo2 + 2Fc2)/3
4610 reflections(Δ/σ)max < 0.001
339 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C13H11NO3V = 2113.2 (2) Å3
Mr = 229.23Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.6440 (8) ŵ = 0.10 mm1
b = 8.3499 (3) ÅT = 293 K
c = 20.1529 (12) Å0.50 × 0.45 × 0.21 mm
β = 96.693 (5)°
Data collection top
Stoe IPDS 2
diffractometer
4610 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
3305 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.985Rint = 0.033
32250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.21 e Å3
4610 reflectionsΔρmin = 0.15 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0008 (2)0.3052 (4)0.62303 (14)0.0369 (6)
C20.0798 (3)0.1913 (4)0.61224 (15)0.0421 (7)
H20.09360.14260.57060.051*
C30.1385 (3)0.1494 (4)0.66353 (16)0.0428 (7)
H30.19130.07180.65640.051*
C40.1189 (2)0.2224 (4)0.72512 (15)0.0393 (7)
C50.0382 (3)0.3334 (4)0.73661 (16)0.0464 (8)
H50.02320.38030.77850.056*
C60.0202 (3)0.3746 (4)0.68545 (16)0.0456 (8)
H60.07430.45000.69310.055*
C70.0655 (3)0.2914 (4)0.51594 (15)0.0412 (7)
C80.1307 (2)0.3521 (4)0.46839 (14)0.0387 (7)
C90.1352 (3)0.2697 (4)0.40780 (15)0.0472 (8)
H90.09290.17960.39800.057*
C100.2014 (3)0.3213 (4)0.36333 (16)0.0502 (8)
H100.20360.26670.32330.060*
C110.2656 (3)0.4555 (4)0.37768 (15)0.0461 (8)
H110.31130.48870.34740.055*
C120.2621 (2)0.5391 (4)0.43600 (15)0.0413 (7)
C130.1930 (2)0.4912 (4)0.48274 (14)0.0388 (7)
C140.4561 (2)0.1462 (4)0.40719 (14)0.0384 (7)
C150.5280 (3)0.2697 (4)0.40289 (15)0.0436 (7)
H150.53960.34420.43720.052*
C160.5825 (3)0.2822 (4)0.34782 (16)0.0440 (7)
H160.63150.36450.34530.053*
C170.5646 (2)0.1726 (4)0.29609 (15)0.0406 (7)
C180.4926 (3)0.0501 (4)0.30019 (15)0.0470 (8)
H180.48000.02320.26540.056*
C190.4394 (3)0.0362 (4)0.35565 (16)0.0461 (8)
H190.39190.04780.35860.055*
C200.4032 (3)0.2071 (4)0.51721 (16)0.0441 (7)
C210.3415 (3)0.1677 (4)0.56900 (15)0.0407 (7)
C220.3480 (3)0.2610 (4)0.62764 (17)0.0515 (8)
H220.39250.35000.63190.062*
C230.2899 (3)0.2224 (4)0.67815 (17)0.0537 (9)
H230.29420.28590.71630.064*
C240.2241 (3)0.0878 (4)0.67287 (16)0.0486 (8)
H240.18460.06180.70750.058*
C250.2175 (2)0.0057 (4)0.61718 (15)0.0424 (7)
C260.2743 (2)0.0304 (4)0.56259 (14)0.0391 (7)
N10.0604 (2)0.3593 (3)0.57287 (12)0.0401 (6)
N20.3989 (2)0.1228 (3)0.46264 (12)0.0414 (6)
O10.18331 (19)0.1816 (3)0.77327 (12)0.0491 (6)
O20.1889 (2)0.5753 (3)0.53811 (11)0.0508 (6)
O30.3262 (2)0.6695 (3)0.44918 (13)0.0561 (7)
O40.6154 (2)0.1805 (3)0.24005 (12)0.0532 (6)
O50.2637 (2)0.0606 (3)0.50998 (10)0.0493 (6)
O60.1550 (2)0.1422 (3)0.61175 (12)0.0540 (6)
H10.098 (5)0.448 (7)0.580 (3)0.14 (2)*
H40.343 (4)0.031 (6)0.464 (2)0.083 (14)*
H70.025 (3)0.192 (4)0.5044 (17)0.046 (9)*
H200.452 (3)0.298 (5)0.5241 (18)0.057 (10)*
H330.301 (4)0.733 (7)0.481 (3)0.103 (18)*
H440.676 (4)0.240 (7)0.249 (2)0.097 (17)*
H660.169 (4)0.198 (7)0.577 (3)0.101 (18)*
H770.164 (4)0.243 (6)0.810 (2)0.089 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0394 (15)0.0364 (15)0.0360 (15)0.0018 (13)0.0097 (12)0.0025 (11)
C20.0467 (17)0.0448 (17)0.0358 (15)0.0044 (14)0.0085 (13)0.0039 (12)
C30.0427 (16)0.0421 (17)0.0451 (17)0.0051 (14)0.0111 (13)0.0005 (13)
C40.0407 (15)0.0399 (16)0.0394 (15)0.0077 (13)0.0137 (12)0.0065 (12)
C50.0501 (18)0.0535 (19)0.0368 (16)0.0020 (16)0.0106 (13)0.0078 (14)
C60.0462 (17)0.0482 (18)0.0438 (17)0.0096 (15)0.0114 (14)0.0081 (13)
C70.0462 (17)0.0379 (16)0.0406 (16)0.0003 (14)0.0101 (13)0.0001 (13)
C80.0438 (16)0.0382 (16)0.0352 (14)0.0025 (13)0.0093 (12)0.0030 (12)
C90.059 (2)0.0423 (18)0.0412 (16)0.0030 (15)0.0115 (14)0.0036 (13)
C100.068 (2)0.0482 (19)0.0370 (16)0.0052 (17)0.0168 (15)0.0023 (14)
C110.0513 (18)0.052 (2)0.0382 (15)0.0062 (15)0.0178 (14)0.0073 (14)
C120.0409 (16)0.0428 (17)0.0412 (16)0.0013 (13)0.0082 (13)0.0061 (13)
C130.0436 (16)0.0405 (16)0.0330 (14)0.0030 (13)0.0079 (12)0.0026 (12)
C140.0393 (15)0.0411 (16)0.0353 (15)0.0019 (13)0.0071 (12)0.0026 (12)
C150.0512 (18)0.0401 (17)0.0406 (16)0.0024 (14)0.0105 (13)0.0036 (13)
C160.0478 (17)0.0396 (17)0.0462 (17)0.0045 (14)0.0126 (14)0.0016 (13)
C170.0408 (16)0.0451 (17)0.0367 (15)0.0059 (13)0.0087 (12)0.0032 (12)
C180.0491 (18)0.052 (2)0.0398 (16)0.0042 (15)0.0071 (13)0.0100 (14)
C190.0457 (17)0.0473 (19)0.0460 (17)0.0087 (14)0.0076 (14)0.0039 (14)
C200.0489 (18)0.0416 (17)0.0429 (17)0.0022 (15)0.0099 (14)0.0004 (13)
C210.0459 (17)0.0386 (16)0.0388 (15)0.0024 (13)0.0095 (13)0.0019 (12)
C220.062 (2)0.0424 (18)0.0523 (19)0.0047 (16)0.0154 (16)0.0083 (15)
C230.067 (2)0.051 (2)0.0460 (18)0.0019 (17)0.0177 (16)0.0104 (15)
C240.0543 (19)0.0517 (19)0.0424 (17)0.0051 (16)0.0173 (14)0.0022 (14)
C250.0432 (17)0.0430 (17)0.0418 (16)0.0015 (14)0.0079 (13)0.0059 (13)
C260.0437 (16)0.0408 (16)0.0326 (14)0.0038 (13)0.0042 (12)0.0035 (12)
N10.0450 (14)0.0398 (14)0.0372 (13)0.0025 (12)0.0118 (11)0.0012 (11)
N20.0447 (14)0.0430 (14)0.0377 (13)0.0027 (12)0.0104 (11)0.0029 (11)
O10.0546 (14)0.0513 (14)0.0459 (13)0.0041 (11)0.0242 (11)0.0048 (11)
O20.0658 (15)0.0485 (13)0.0409 (12)0.0134 (11)0.0181 (10)0.0081 (10)
O30.0578 (15)0.0611 (16)0.0526 (14)0.0166 (13)0.0207 (12)0.0046 (12)
O40.0561 (15)0.0641 (16)0.0424 (13)0.0000 (13)0.0190 (11)0.0017 (11)
O50.0640 (15)0.0481 (13)0.0365 (11)0.0123 (11)0.0080 (10)0.0028 (10)
O60.0624 (15)0.0569 (15)0.0457 (13)0.0154 (12)0.0190 (11)0.0013 (11)
Geometric parameters (Å, º) top
C1—C21.378 (4)C15—C161.377 (4)
C1—C61.382 (4)C15—H150.9300
C1—N11.416 (4)C16—C171.386 (5)
C2—C31.386 (4)C16—H160.9300
C2—H20.9300C17—O41.364 (4)
C3—C41.379 (4)C17—C181.378 (5)
C3—H30.9300C18—C191.375 (4)
C4—C51.378 (5)C18—H180.9300
C4—O11.381 (3)C19—H190.9300
C5—C61.380 (4)C20—N21.301 (4)
C5—H50.9300C20—C211.413 (4)
C6—H60.9300C20—H200.98 (4)
C7—N11.288 (4)C21—C221.410 (4)
C7—C81.428 (4)C21—C261.423 (4)
C7—H70.99 (4)C22—C231.361 (5)
C8—C91.409 (4)C22—H220.9300
C8—C131.415 (4)C23—C241.396 (5)
C9—C101.365 (5)C23—H230.9300
C9—H90.9300C24—C251.362 (5)
C10—C111.394 (5)C24—H240.9300
C10—H100.9300C25—O61.384 (4)
C11—C121.372 (4)C25—C261.415 (4)
C11—H110.9300C26—O51.298 (4)
C12—O31.365 (4)N1—H10.88 (5)
C12—C131.415 (4)N2—H41.04 (5)
C13—O21.324 (4)O1—H770.90 (5)
C14—C151.384 (4)O3—H330.92 (5)
C14—C191.384 (4)O4—H440.91 (5)
C14—N21.414 (4)O6—H660.88 (5)
C2—C1—C6119.4 (3)C14—C15—H15120.0
C2—C1—N1123.6 (3)C15—C16—C17120.2 (3)
C6—C1—N1116.9 (3)C15—C16—H16119.9
C1—C2—C3119.9 (3)C17—C16—H16119.9
C1—C2—H2120.1O4—C17—C18117.6 (3)
C3—C2—H2120.1O4—C17—C16122.6 (3)
C4—C3—C2120.3 (3)C18—C17—C16119.8 (3)
C4—C3—H3119.9C19—C18—C17120.0 (3)
C2—C3—H3119.9C19—C18—H18120.0
C5—C4—C3120.0 (3)C17—C18—H18120.0
C5—C4—O1122.3 (3)C18—C19—C14120.5 (3)
C3—C4—O1117.7 (3)C18—C19—H19119.7
C4—C5—C6119.5 (3)C14—C19—H19119.7
C4—C5—H5120.3N2—C20—C21121.7 (3)
C6—C5—H5120.3N2—C20—H20120 (2)
C5—C6—C1120.9 (3)C21—C20—H20118 (2)
C5—C6—H6119.6C22—C21—C20120.5 (3)
C1—C6—H6119.6C22—C21—C26119.8 (3)
N1—C7—C8122.3 (3)C20—C21—C26119.7 (3)
N1—C7—H7120 (2)C23—C22—C21120.8 (3)
C8—C7—H7118 (2)C23—C22—H22119.6
C9—C8—C13120.0 (3)C21—C22—H22119.6
C9—C8—C7119.5 (3)C22—C23—C24120.2 (3)
C13—C8—C7120.4 (3)C22—C23—H23119.9
C10—C9—C8120.3 (3)C24—C23—H23119.9
C10—C9—H9119.9C25—C24—C23120.2 (3)
C8—C9—H9119.9C25—C24—H24119.9
C9—C10—C11120.3 (3)C23—C24—H24119.9
C9—C10—H10119.9C24—C25—O6121.1 (3)
C11—C10—H10119.9C24—C25—C26122.0 (3)
C12—C11—C10120.7 (3)O6—C25—C26116.8 (3)
C12—C11—H11119.7O5—C26—C25119.8 (3)
C10—C11—H11119.7O5—C26—C21123.3 (3)
O3—C12—C11119.6 (3)C25—C26—C21116.9 (3)
O3—C12—C13119.7 (3)C7—N1—C1125.7 (3)
C11—C12—C13120.7 (3)C7—N1—H1115 (4)
O2—C13—C12120.0 (3)C1—N1—H1119 (4)
O2—C13—C8122.1 (3)C20—N2—C14128.2 (3)
C12—C13—C8117.9 (3)C20—N2—H4110 (2)
C15—C14—C19119.4 (3)C14—N2—H4122 (2)
C15—C14—N2123.6 (3)C4—O1—H77107 (3)
C19—C14—N2117.0 (3)C12—O3—H33111 (3)
C16—C15—C14120.1 (3)C17—O4—H44109 (3)
C16—C15—H15120.0C25—O6—H66110 (4)
C6—C1—C2—C31.1 (5)C15—C16—C17—O4179.2 (3)
N1—C1—C2—C3177.6 (3)C15—C16—C17—C180.5 (5)
C1—C2—C3—C40.6 (5)O4—C17—C18—C19179.8 (3)
C2—C3—C4—C52.2 (5)C16—C17—C18—C190.5 (5)
C2—C3—C4—O1176.9 (3)C17—C18—C19—C141.2 (5)
C3—C4—C5—C62.1 (5)C15—C14—C19—C180.8 (5)
O1—C4—C5—C6177.0 (3)N2—C14—C19—C18179.6 (3)
C4—C5—C6—C10.4 (5)N2—C20—C21—C22179.8 (3)
C2—C1—C6—C51.2 (5)N2—C20—C21—C261.4 (5)
N1—C1—C6—C5177.6 (3)C20—C21—C22—C23179.1 (3)
N1—C7—C8—C9178.2 (3)C26—C21—C22—C230.6 (5)
N1—C7—C8—C130.2 (5)C21—C22—C23—C241.0 (6)
C13—C8—C9—C101.4 (5)C22—C23—C24—C250.1 (5)
C7—C8—C9—C10176.5 (3)C23—C24—C25—O6178.2 (3)
C8—C9—C10—C110.4 (5)C23—C24—C25—C261.2 (5)
C9—C10—C11—C121.1 (5)C24—C25—C26—O5178.6 (3)
C10—C11—C12—O3179.5 (3)O6—C25—C26—O52.0 (4)
C10—C11—C12—C130.2 (5)C24—C25—C26—C211.5 (5)
O3—C12—C13—O21.8 (5)O6—C25—C26—C21177.9 (3)
C11—C12—C13—O2178.5 (3)C22—C21—C26—O5179.5 (3)
O3—C12—C13—C8177.7 (3)C20—C21—C26—O52.0 (5)
C11—C12—C13—C82.0 (5)C22—C21—C26—C250.6 (5)
C9—C8—C13—O2177.9 (3)C20—C21—C26—C25177.9 (3)
C7—C8—C13—O24.1 (5)C8—C7—N1—C1178.9 (3)
C9—C8—C13—C122.6 (5)C2—C1—N1—C713.9 (5)
C7—C8—C13—C12175.4 (3)C6—C1—N1—C7167.4 (3)
C19—C14—C15—C160.2 (5)C21—C20—N2—C14179.3 (3)
N2—C14—C15—C16178.5 (3)C15—C14—N2—C200.5 (5)
C14—C15—C16—C170.8 (5)C19—C14—N2—C20178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O51.04 (5)1.64 (5)2.561 (3)145 (4)
N1—H1···O20.88 (5)1.84 (4)2.578 (3)141 (6)
O6—H66···O50.88 (5)2.22 (5)2.686 (3)112 (4)
O1—H77···O6i0.90 (5)1.85 (5)2.733 (4)167 (4)
O6—H66···O2ii0.88 (5)2.07 (6)2.846 (4)146 (5)
O4—H44···O1iii0.91 (5)1.90 (5)2.803 (4)167 (5)
O3—H33···O5iv0.92 (5)1.89 (6)2.727 (4)150 (5)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y+1/2, z1/2; (iv) x, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H11NO3C13H11NO3
Mr229.23229.23
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)13.2579 (11), 7.8772 (8), 20.4502 (15)12.6440 (8), 8.3499 (3), 20.1529 (12)
β (°) 91.369 (6) 96.693 (5)
V3)2135.1 (3)2113.2 (2)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.45 × 0.35 × 0.210.50 × 0.45 × 0.21
Data collection
DiffractometerStoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Integration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.965, 0.9820.950, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
10511, 2486, 1563 32250, 4610, 3305
Rint0.0580.033
(sin θ/λ)max1)0.6550.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 0.94 0.034, 0.093, 0.98
No. of reflections24864610
No. of parameters199339
No. of restraints22
H-atom treatmentAll H-atom parameters refinedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.160.21, 0.15

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
C1—N11.4174 (19)C7—C81.398 (2)
C4—O11.3568 (18)C11—O31.3342 (17)
C7—N11.305 (2)C13—O21.3101 (17)
C7—C8—C9119.60 (13)O2—C13—C12122.19 (12)
C7—C8—C13121.79 (13)O2—C13—C8119.33 (12)
N1—C7—C8—C130.0 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.967 (19)1.77 (2)2.5976 (16)141.0 (17)
O1—H11···O3i1.01 (3)1.68 (3)2.6619 (16)165 (2)
O3—H33···O2ii0.947 (17)1.531 (17)2.4775 (14)178 (3)
Symmetry codes: (i) x1/2, y3/2, z; (ii) x+3/2, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
C1—N11.416 (4)C7—C81.428 (4)
C4—O11.381 (3)C12—O31.365 (4)
C7—N11.288 (4)C13—O21.324 (4)
C9—C8—C7119.5 (3)O2—C13—C12120.0 (3)
C13—C8—C7120.4 (3)O2—C13—C8122.1 (3)
N1—C7—C8—C130.2 (5)N2—C20—C21—C261.4 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H4···O51.04 (5)1.64 (5)2.561 (3)145 (4)
N1—H1···O20.88 (5)1.84 (4)2.578 (3)141 (6)
O6—H66···O50.88 (5)2.22 (5)2.686 (3)112 (4)
O1—H77···O6i0.90 (5)1.85 (5)2.733 (4)167 (4)
O6—H66···O2ii0.88 (5)2.07 (6)2.846 (4)146 (5)
O4—H44···O1iii0.91 (5)1.90 (5)2.803 (4)167 (5)
O3—H33···O5iv0.92 (5)1.89 (6)2.727 (4)150 (5)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y+1/2, z1/2; (iv) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds