Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecule of the former title compound, C13H9ClN2O2, (I), is nearly planar, with an intramolecular O...O hydrogen bond of 2.692 (2) Å. The latter title compound, C17H18ClN3O4, (II), exists in the keto–amine tautomeric form, with a strong intramolecular hydrogen bond of 2.640 (2) Å between the O and N atoms, the H atom being bonded to the N atom. The azo­benzene moieties of both mol­ecules have trans configurations, and the dihedral angle between the planes of the two aromatic rings is 4.1 (1)° in (I) and 9.9 (1)° in (II). The N—H...O hydrogen-bonded rings are almost planar and coupled with the cyclo­hexa­diene rings in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104006122/fr1474sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006122/fr1474Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006122/fr1474IIsup3.hkl
Contains datablock II

CCDC references: 241224; 241225

Comment top

Azo compounds are the most widely used class of dyes, due to their versatile application in various fields, such as the dyeing of textiles and fibres, the colouring of different materials, and high-technology areas, such as electro-optical devices and ink-jet printers (Peters & Freeman, 1991). Schiff bases have been used extensively as ligands in the field of coordination chemistry (Garnovskii et al., 1993). There is considerable interest in Schiff base complexes due to their striking antitumour activities (Zhou et al., 2000). Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). Photochromic compounds are of great interest for the control and measurement of radiation intensity, optical computers and display systems (Dürr & Bouas-Laurent, 1990). Azo-azomethine compounds are also widely used in the textile industry as synthetic colouring materials (Kamel et al., 1971).

2-Hydroxy Schiff base ligands are of interest mainly due to the existence of O—H···N and N—H···O hydrogen bonds and tautomerism between enol and keto forms. In the aldimine compounds made from 2-hydroxy-1-naphthaldehyde, both types of hydrogen bonds were found (Fernández et al., 2001). The structures of Schiff bases derived from salicylaldehyde generally exist in the phenol-imine form (Elmalı et al., 1999; Filarowski et al., 1999). In contrast, the structures of Schiff bases derived from the condensation of salicylaldehyde and substituted salicylaldehyde with tris(hydroxymethyl)aminomethane only exist in the keto-amine form (Odabaşoǧlu, Albayrak, Büyükgüngör & Lönnecke, 2003).

As part of a general study of the crystal chemistry of dyes, and to provide templates for molecular-modelling studies, the crystal structures of the title compounds, (I) and (II), have been determined. The molecular structures of (I) and (II), with the atom-labelling schemes, are shown in Figs. 1 and 2, respectively, and selected bond lengths and angles are shown in Tables 1 and 3, respectively. \sch

In (I), the aromatic rings, which adopt a trans configuration about the NN double bond, are nearly coplanar, with a dihedral angle of 4.1 (1)°. A significant intramolecular interaction is noted, involving the phenolic atom H1 and carbonyl atom O2, such that a six-membered ring is formed (Table 2). The C—Cl bond distance in (I) is consistent with that in 4-[(3-chlorophenyl)diazenyl]-2- {[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien-1(2H)-one (Odabaşoǧlu, Albayrak, Büyükgüngör & Goesmann, 2003). The C13—O2 bond distance in (I) is also consistent with the value of a CO double bond for carbonyl compounds (Loudon, 2002).

In compound (II), the azobenzene moieties of the molecules have the trans configuration, and the dihedral angle between the planes of the two aromatic rings is 9.9 (1)°. In our previous work, the same dihedral angle was 20.47 (10)° in 4-(3-chlorophenyldiazenyl)-2-{[tris (hydroxymethyl)methyl]aminomethylene} cyclohexa-3,5-dien-1(2H)-one (Odabaşoǧlu, Albayrak, Büyükgüngör & Goesmann, 2003). The present X-ray structure determination reveals that, in the solid state, the keto-amine tautomer exists in the molecule of (II). This is evident from the observed contraction of the C10—O1, C9—C13, C7—C8 and C11—C12 distances and the elongation of C8—C9, C9—C10 and C10—C11, relative to the starting material, (I) (Tables 1 and 3). Furthermore, the C13—N3 bond in (II) is elongated relative to the CN bond [1.275 (2) Å] in 2-[2-(hydroxymethyl)phenyliminokethyl]phenol, which exists in the phenol-imine form (Ersanlı et al., 2004). The N1N2, N1—C1 and N2—C7 bond lengths are approximately the same in both (I) and (II). That is to say, transforming to the keto-amine form of the salicylidene ring does not affect bond distances but slightly changes the torsion angle (C1—N1—N2—C7) in the azo moiety.

The intra- and intermolecular hydrogen-bonding for (II) is shown in Fig.3 and the geometric values are given in Table 4. Atom H33 bonded to N3 forms a strong intramolecular hydrogen bond with atom O1 [2.640 (2) Å], as in our previous work (Odabaşoğlu, Albayrak, Büyükgüngör & Goesmann, 2003; Odabaşoğlu, Albayrak, Büyükgüngör & Lönnecke, 2003).

Experimental top

The title compounds were obtained as described in our previous work (Odabaşoǧlu, Albayrak, Büyükgüngör & Goesmann, 2003) using 2-chloroaniline, salicylaldehyde and tris(hydroxymethyl)aminomethane as starting materials. Suitable single crystals of (I) were obtained by slow evaporation from ethyl alcohol (yield 85%; m.p. 424–426 K) and of (II) from acetonitrile (yield 72%; m.p. 479–481 K).

Refinement top

All H atoms were refined freely. For (I), the refined C—H distances are in the range 0.87 (2)–1.00 (2) Å and Uiso(H) values are in the range 0.031 (5)–0.052 (6) Å2. For (II), the refined C—H distances are in the range 0.92 (2)–1.02 (2) Å and Uiso(H) values are in the range 0.024 (4)–0.054 (6) Å2.

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of(II), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. A packing diagram for (II), viewed along the b axis.
(I) 5-(2-chlorophenyldiazenyl)salicylaldehyde top
Crystal data top
C13H9ClN2O2F(000) = 536
Mr = 260.67Dx = 1.490 Mg m3
Monoclinic, P21/nMelting point = 424–426 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.9938 (11) ÅCell parameters from 2275 reflections
b = 21.636 (3) Åθ = 1.9–26.0°
c = 8.1078 (13) ŵ = 0.32 mm1
β = 108.724 (3)°T = 213 K
V = 1161.9 (3) Å3Prism, dark red
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2275 independent reflections
Radiation source: fine-focus sealed tube1783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 88
Tmin = 0.882, Tmax = 0.909k = 1926
6246 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.108All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.066P]
where P = (Fo2 + 2Fc2)/3
2275 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H9ClN2O2V = 1161.9 (3) Å3
Mr = 260.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9938 (11) ŵ = 0.32 mm1
b = 21.636 (3) ÅT = 213 K
c = 8.1078 (13) Å0.40 × 0.40 × 0.30 mm
β = 108.724 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2275 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
1783 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.909Rint = 0.051
6246 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.108All H-atom parameters refined
S = 1.04Δρmax = 0.27 e Å3
2275 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45370 (9)0.73574 (3)0.37535 (7)0.0478 (2)
O20.6761 (3)0.49762 (7)1.42581 (19)0.0538 (5)
O10.3429 (3)0.56209 (8)1.2524 (2)0.0497 (4)
N10.6563 (2)0.64782 (7)0.65391 (19)0.0322 (4)
N20.7496 (3)0.61509 (7)0.7823 (2)0.0339 (4)
C10.7677 (3)0.65952 (8)0.5374 (2)0.0288 (4)
C20.6824 (3)0.69980 (8)0.3986 (2)0.0307 (4)
C30.7794 (3)0.71250 (10)0.2781 (3)0.0376 (5)
C40.9624 (4)0.68577 (11)0.2960 (3)0.0423 (5)
C51.0512 (3)0.64630 (11)0.4339 (3)0.0422 (5)
C60.9541 (3)0.63332 (10)0.5525 (3)0.0357 (5)
C70.6397 (3)0.60346 (8)0.8993 (2)0.0305 (4)
C80.7354 (3)0.56687 (9)1.0417 (2)0.0338 (5)
C90.6395 (3)0.55229 (9)1.1644 (2)0.0332 (5)
C100.4460 (3)0.57486 (9)1.1418 (2)0.0360 (5)
C110.3513 (4)0.61266 (10)0.9987 (3)0.0396 (5)
C120.4476 (3)0.62651 (10)0.8804 (3)0.0354 (5)
C130.7464 (4)0.51422 (10)1.3144 (3)0.0413 (5)
H10.430 (5)0.5356 (14)1.338 (4)0.085 (10)*
H30.715 (4)0.7389 (10)0.183 (3)0.046 (6)*
H41.024 (3)0.6941 (10)0.220 (3)0.047 (6)*
H51.174 (4)0.6275 (10)0.440 (3)0.047 (6)*
H61.005 (3)0.6082 (10)0.639 (3)0.045 (6)*
H80.873 (3)0.5501 (9)1.058 (2)0.031 (5)*
H110.223 (4)0.6258 (10)0.985 (3)0.042 (6)*
H120.383 (3)0.6545 (11)0.788 (3)0.052 (6)*
H130.887 (4)0.5055 (10)1.323 (3)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0455 (4)0.0533 (4)0.0447 (3)0.0163 (3)0.0148 (3)0.0162 (2)
O20.0785 (13)0.0497 (10)0.0362 (8)0.0009 (9)0.0225 (9)0.0148 (7)
O10.0620 (11)0.0554 (10)0.0426 (9)0.0067 (8)0.0319 (9)0.0097 (7)
N10.0356 (10)0.0344 (9)0.0252 (8)0.0013 (7)0.0078 (7)0.0025 (7)
N20.0349 (10)0.0365 (9)0.0283 (9)0.0011 (7)0.0072 (8)0.0056 (7)
C10.0306 (11)0.0291 (10)0.0248 (9)0.0050 (8)0.0062 (8)0.0020 (7)
C20.0312 (11)0.0300 (10)0.0286 (10)0.0016 (8)0.0064 (9)0.0005 (8)
C30.0427 (13)0.0389 (12)0.0285 (10)0.0066 (10)0.0077 (10)0.0024 (9)
C40.0451 (14)0.0527 (14)0.0331 (11)0.0102 (11)0.0180 (10)0.0003 (10)
C50.0332 (13)0.0532 (14)0.0406 (12)0.0014 (11)0.0123 (11)0.0041 (10)
C60.0340 (12)0.0407 (12)0.0290 (10)0.0009 (9)0.0054 (9)0.0016 (9)
C70.0322 (11)0.0316 (10)0.0253 (9)0.0023 (8)0.0060 (8)0.0002 (8)
C80.0370 (12)0.0327 (11)0.0292 (10)0.0017 (9)0.0073 (9)0.0021 (8)
C90.0435 (13)0.0284 (10)0.0258 (10)0.0005 (9)0.0083 (9)0.0014 (8)
C100.0472 (13)0.0343 (11)0.0296 (10)0.0027 (9)0.0166 (10)0.0023 (8)
C110.0363 (13)0.0474 (13)0.0360 (11)0.0074 (10)0.0127 (10)0.0020 (9)
C120.0360 (12)0.0377 (11)0.0286 (10)0.0030 (9)0.0049 (9)0.0046 (9)
C130.0515 (16)0.0360 (12)0.0336 (11)0.0015 (10)0.0096 (11)0.0048 (9)
Geometric parameters (Å, º) top
Cl1—C21.733 (2)C5—C61.373 (3)
O2—C131.213 (2)C5—H50.94 (2)
O1—C101.348 (2)C6—H60.87 (2)
O1—H10.95 (3)C7—C81.383 (3)
N1—N21.255 (2)C7—C121.395 (3)
N1—C11.427 (2)C8—C91.402 (3)
N2—C71.422 (2)C8—H81.00 (2)
C1—C61.391 (3)C9—C101.395 (3)
C1—C21.397 (3)C9—C131.461 (3)
C2—C31.384 (3)C10—C111.400 (3)
C3—C41.369 (3)C11—C121.370 (3)
C3—H30.95 (2)C11—H110.92 (2)
C4—C51.386 (3)C12—H120.96 (2)
C4—H40.88 (2)C13—H130.98 (2)
C10—O1—H1104.6 (17)C8—C7—C12119.2 (2)
N2—N1—C1113.6 (2)C8—C7—N2115.95 (18)
N1—N2—C7113.9 (2)C12—C7—N2124.8 (2)
C6—C1—C2118.1 (2)C7—C8—C9120.5 (2)
C6—C1—N1124.4 (2)C7—C8—H8120.6 (11)
C2—C1—N1117.5 (2)C9—C8—H8119.0 (11)
C3—C2—C1120.87 (18)C10—C9—C8119.55 (18)
C3—C2—Cl1118.6 (2)C10—C9—C13121.49 (18)
C1—C2—Cl1120.5 (1)C8—C9—C13119.0 (2)
C4—C3—C2119.7 (2)O1—C10—C9123.0 (2)
C4—C3—H3121.5 (14)O1—C10—C11117.4 (2)
C2—C3—H3118.8 (14)C9—C10—C11119.6 (2)
C3—C4—C5120.48 (19)C12—C11—C10120.0 (2)
C3—C4—H4119.5 (15)C12—C11—H11122.2 (13)
C5—C4—H4120.0 (15)C10—C11—H11117.8 (13)
C6—C5—C4119.8 (2)C11—C12—C7121.15 (19)
C6—C5—H5121.7 (14)C11—C12—H12118.3 (13)
C4—C5—H5118.4 (14)C7—C12—H12120.4 (13)
C5—C6—C1121.0 (2)O2—C13—C9124.5 (2)
C5—C6—H6122.0 (15)O2—C13—H13121.6 (13)
C1—C6—H6117.0 (15)C9—C13—H13113.8 (13)
C1—N1—N2—C7179.8 (2)C12—C7—C8—C91.0 (3)
N2—N1—C1—C65.5 (3)N2—C7—C8—C9179.56 (17)
N2—N1—C1—C2174.78 (16)C7—C8—C9—C100.1 (3)
C6—C1—C2—C31.0 (3)C7—C8—C9—C13179.17 (19)
N1—C1—C2—C3178.71 (17)C8—C9—C10—O1178.95 (18)
C6—C1—C2—Cl1178.20 (15)C13—C9—C10—O11.8 (3)
N1—C1—C2—Cl12.1 (2)C8—C9—C10—C111.1 (3)
C1—C2—C3—C40.7 (3)C13—C9—C10—C11178.2 (2)
Cl1—C2—C3—C4178.50 (16)O1—C10—C11—C12179.07 (19)
C2—C3—C4—C50.2 (3)C9—C10—C11—C121.0 (3)
C3—C4—C5—C60.7 (3)C10—C11—C12—C70.1 (3)
C4—C5—C6—C10.4 (3)C8—C7—C12—C111.1 (3)
C2—C1—C6—C50.4 (3)N2—C7—C12—C11179.48 (19)
N1—C1—C6—C5179.25 (18)C10—C9—C13—O22.6 (3)
N1—N2—C7—C8179.18 (17)C8—C9—C13—O2178.1 (2)
N1—N2—C7—C121.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.95 (3)1.83 (3)2.692 (2)149 (2)
O1—H1···O2i0.95 (3)2.38 (3)2.952 (2)118 (2)
Symmetry code: (i) x+1, y+1, z+3.
(II) 4-(2-chlorophenyldiazenyl)-2- {[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien-1(2H)-one top
Crystal data top
C17H18ClN3O4F(000) = 760
Mr = 363.79Dx = 1.430 Mg m3
Monoclinic, P21/cMelting point = 479–481 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.122 (3) ÅCell parameters from 3332 reflections
b = 8.3847 (12) Åθ = 1.4–26.0°
c = 13.359 (2) ŵ = 0.25 mm1
β = 110.689 (3)°T = 213 K
V = 1689.4 (5) Å3Prism, orange
Z = 40.35 × 0.25 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3332 independent reflections
Radiation source: fine-focus sealed tube2501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1915
Tmin = 0.916, Tmax = 0.975k = 810
10407 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.109All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.0074P]
where P = (Fo2 + 2Fc2)/3
3332 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H18ClN3O4V = 1689.4 (5) Å3
Mr = 363.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.122 (3) ŵ = 0.25 mm1
b = 8.3847 (12) ÅT = 213 K
c = 13.359 (2) Å0.35 × 0.25 × 0.10 mm
β = 110.689 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3332 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
2501 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.975Rint = 0.026
10407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 1.09Δρmax = 0.22 e Å3
3332 reflectionsΔρmin = 0.33 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60359 (4)0.35489 (7)0.52771 (5)0.0584 (2)
O10.10407 (7)0.35993 (13)0.06417 (9)0.0268 (3)
O20.12329 (9)0.32805 (15)0.06353 (9)0.0319 (3)
O40.13144 (9)0.27918 (16)0.23544 (10)0.0364 (3)
O30.05874 (9)0.11636 (15)0.08949 (10)0.0341 (3)
N10.42847 (9)0.21133 (18)0.47415 (11)0.0314 (3)
N20.34956 (9)0.16842 (18)0.45484 (11)0.0323 (3)
N30.01545 (9)0.20702 (16)0.12104 (10)0.0217 (3)
C10.48879 (11)0.1572 (2)0.57426 (13)0.0303 (4)
C20.57490 (12)0.2178 (2)0.60750 (14)0.0360 (4)
C30.63803 (14)0.1710 (3)0.70347 (16)0.0450 (5)
C40.61604 (14)0.0615 (3)0.76676 (16)0.0482 (5)
C50.53168 (15)0.0016 (3)0.73474 (16)0.0466 (5)
C60.46863 (13)0.0447 (2)0.63908 (15)0.0378 (4)
C70.29029 (11)0.2201 (2)0.35382 (13)0.0278 (4)
C80.20345 (11)0.1748 (2)0.32736 (14)0.0283 (4)
C90.13867 (11)0.21684 (19)0.22878 (13)0.0244 (3)
C100.16284 (11)0.31197 (18)0.15440 (13)0.0240 (3)
C110.25369 (12)0.3535 (2)0.18322 (14)0.0319 (4)
C120.31529 (12)0.3103 (2)0.27925 (14)0.0326 (4)
C130.04935 (11)0.16657 (19)0.20657 (13)0.0248 (4)
C140.10832 (10)0.15382 (18)0.08636 (12)0.0215 (3)
C150.16372 (12)0.2836 (2)0.01114 (13)0.0268 (4)
C170.13889 (12)0.1321 (2)0.18129 (13)0.0255 (4)
C160.11721 (12)0.00217 (19)0.02397 (13)0.0274 (4)
H220.1163 (15)0.430 (3)0.0611 (18)0.055 (7)*
H440.1297 (17)0.259 (3)0.292 (2)0.060 (8)*
H330.0689 (15)0.202 (3)0.0509 (18)0.052 (7)*
H10.0041 (14)0.272 (3)0.0764 (16)0.047 (6)*
H30.6928 (17)0.213 (3)0.7243 (18)0.054 (6)*
H40.6577 (15)0.029 (3)0.8299 (18)0.053 (6)*
H50.5206 (15)0.083 (3)0.7765 (18)0.052 (6)*
H60.4108 (15)0.002 (2)0.6123 (16)0.049 (6)*
H80.1903 (14)0.111 (2)0.3787 (17)0.043 (6)*
H110.2715 (13)0.421 (2)0.1317 (15)0.037 (5)*
H120.3755 (14)0.343 (2)0.2979 (15)0.037 (5)*
H130.0387 (12)0.099 (2)0.2605 (15)0.033 (5)*
H15A0.1704 (11)0.378 (2)0.0528 (14)0.027 (5)*
H15B0.2240 (14)0.242 (2)0.0289 (15)0.037 (5)*
H17A0.2007 (13)0.097 (2)0.1530 (14)0.028 (4)*
H17B0.1059 (12)0.051 (2)0.2260 (14)0.024 (4)*
H16A0.1818 (13)0.037 (2)0.0041 (14)0.033 (5)*
H16B0.1029 (12)0.018 (2)0.0409 (15)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0344 (3)0.0714 (4)0.0619 (4)0.0117 (3)0.0077 (2)0.0179 (3)
O10.0286 (6)0.0264 (6)0.0249 (6)0.0011 (5)0.0087 (5)0.0033 (4)
O20.0483 (8)0.0267 (7)0.0230 (6)0.0023 (6)0.0154 (5)0.0044 (5)
O40.0523 (9)0.0369 (7)0.0241 (7)0.0017 (6)0.0187 (6)0.0041 (5)
O30.0429 (8)0.0259 (7)0.0312 (7)0.0060 (5)0.0100 (6)0.0003 (5)
N10.0246 (8)0.0366 (8)0.0305 (8)0.0021 (6)0.0063 (6)0.0017 (6)
N20.0242 (8)0.0396 (9)0.0313 (8)0.0023 (6)0.0075 (6)0.0012 (6)
N30.0243 (7)0.0231 (7)0.0194 (7)0.0014 (5)0.0097 (6)0.0007 (5)
C10.0246 (9)0.0380 (10)0.0281 (9)0.0048 (7)0.0088 (7)0.0054 (7)
C20.0288 (9)0.0443 (11)0.0334 (10)0.0028 (8)0.0092 (8)0.0015 (8)
C30.0278 (10)0.0608 (14)0.0387 (11)0.0012 (10)0.0024 (9)0.0060 (9)
C40.0408 (12)0.0668 (15)0.0289 (10)0.0147 (11)0.0024 (9)0.0043 (10)
C50.0459 (12)0.0597 (14)0.0346 (10)0.0090 (10)0.0148 (9)0.0105 (9)
C60.0291 (10)0.0495 (12)0.0353 (10)0.0032 (9)0.0120 (8)0.0023 (8)
C70.0247 (8)0.0286 (9)0.0285 (8)0.0025 (7)0.0072 (7)0.0010 (7)
C80.0277 (9)0.0293 (9)0.0273 (9)0.0007 (7)0.0088 (7)0.0043 (7)
C90.0243 (8)0.0235 (8)0.0256 (8)0.0006 (6)0.0092 (7)0.0014 (6)
C100.0269 (8)0.0205 (8)0.0244 (8)0.0009 (6)0.0088 (7)0.0021 (6)
C110.0289 (9)0.0357 (10)0.0337 (9)0.0032 (7)0.0141 (8)0.0043 (8)
C120.0234 (9)0.0367 (10)0.0373 (10)0.0020 (7)0.0104 (8)0.0014 (8)
C130.0270 (9)0.0250 (8)0.0234 (8)0.0015 (7)0.0102 (7)0.0006 (6)
C140.0217 (8)0.0240 (8)0.0185 (7)0.0021 (6)0.0067 (6)0.0008 (6)
C150.0295 (9)0.0278 (9)0.0227 (8)0.0025 (7)0.0087 (7)0.0023 (7)
C170.0256 (9)0.0300 (9)0.0227 (8)0.0017 (7)0.0109 (7)0.0006 (7)
C160.0308 (9)0.0260 (9)0.0234 (8)0.0008 (7)0.0071 (7)0.0023 (6)
Geometric parameters (Å, º) top
Cl1—C21.737 (2)C5—H50.93 (2)
O1—C101.306 (2)C6—H60.96 (2)
O2—C151.421 (2)C7—C81.371 (2)
O2—H220.86 (3)C7—C121.418 (2)
O4—C171.413 (2)C8—C91.406 (2)
O4—H440.77 (3)C8—H80.95 (2)
O3—C161.410 (2)C9—C131.427 (2)
O3—H330.86 (2)C9—C101.431 (2)
N1—N21.258 (2)C10—C111.420 (2)
N1—C11.422 (2)C11—C121.365 (2)
N2—C71.418 (2)C11—H111.01 (2)
N3—C131.292 (2)C12—H120.95 (2)
N3—C141.471 (2)C13—H130.98 (2)
N3—H10.87 (2)C14—C171.525 (2)
C1—C61.394 (3)C14—C161.530 (2)
C1—C21.396 (2)C14—C151.535 (2)
C2—C31.383 (3)C15—H15A0.995 (18)
C3—C41.376 (3)C15—H15B0.99 (2)
C3—H30.90 (2)C17—H17A0.98 (2)
C4—C51.379 (3)C17—H17B0.94 (2)
C4—H40.92 (2)C16—H16A1.02 (2)
C5—C61.378 (3)C16—H16B0.99 (2)
C15—O2—H22108.7 (15)O1—C10—C9121.7 (2)
C17—O4—H44106.3 (19)C11—C10—C9117.14 (15)
C16—O3—H33104.3 (15)C12—C11—C10121.86 (16)
N2—N1—C1114.1 (2)C12—C11—H11120.2 (11)
N1—N2—C7113.6 (1)C10—C11—H11117.9 (11)
C13—N3—C14127.9 (1)C11—C12—C7120.59 (16)
C13—N3—H1117.9 (14)C11—C12—H12120.2 (12)
C14—N3—H1114.2 (14)C7—C12—H12119.2 (12)
C6—C1—C2118.2 (2)N3—C13—C9123.2 (2)
C6—C1—N1124.6 (2)N3—C13—H13120.4 (11)
C2—C1—N1117.1 (2)C9—C13—H13116.4 (11)
C3—C2—C1121.01 (19)N3—C14—C17111.5 (1)
C3—C2—Cl1119.2 (2)N3—C14—C16108.6 (1)
C1—C2—Cl1119.8 (1)C17—C14—C16110.80 (13)
C4—C3—C2119.6 (2)N3—C14—C15106.5 (1)
C4—C3—H3120.5 (15)C17—C14—C15110.17 (13)
C2—C3—H3119.9 (15)C16—C14—C15109.18 (13)
C3—C4—C5120.35 (19)O2—C15—C14109.9 (1)
C3—C4—H4120.2 (14)O2—C15—H15A110.6 (10)
C5—C4—H4119.4 (14)C14—C15—H15A110.5 (10)
C6—C5—C4120.2 (2)O2—C15—H15B108.6 (11)
C6—C5—H5121.6 (14)C14—C15—H15B109.6 (11)
C4—C5—H5118.0 (14)H15A—C15—H15B107.6 (15)
C5—C6—C1120.61 (19)O4—C17—C14109.1 (1)
C5—C6—H6122.3 (13)O4—C17—H17A110.4 (10)
C1—C6—H6117.0 (12)C14—C17—H17A107.4 (10)
C8—C7—C12118.9 (2)O4—C17—H17B112.4 (10)
C8—C7—N2116.4 (2)C14—C17—H17B109.8 (10)
C12—C7—N2124.6 (2)H17A—C17—H17B107.5 (15)
C7—C8—C9121.66 (16)O3—C16—C14109.2 (1)
C7—C8—H8115.9 (13)O3—C16—H16A111.4 (10)
C9—C8—H8122.4 (13)C14—C16—H16A106.0 (10)
C8—C9—C13118.79 (15)O3—C16—H16B110.4 (11)
C8—C9—C10119.70 (15)C14—C16—H16B109.0 (11)
C13—C9—C10121.49 (15)H16A—C16—H16B110.7 (14)
O1—C10—C11121.1 (1)
C1—N1—N2—C7178.7 (1)C8—C9—C10—C112.7 (2)
N2—N1—C1—C610.7 (2)C13—C9—C10—C11178.97 (15)
N2—N1—C1—C2171.56 (15)O1—C10—C11—C12177.08 (16)
C6—C1—C2—C31.7 (3)C9—C10—C11—C122.4 (3)
N1—C1—C2—C3179.62 (17)C10—C11—C12—C70.6 (3)
C6—C1—C2—Cl1178.56 (14)C8—C7—C12—C111.0 (3)
N1—C1—C2—Cl10.6 (2)N2—C7—C12—C11179.33 (17)
C1—C2—C3—C40.7 (3)C14—N3—C13—C9175.38 (14)
Cl1—C2—C3—C4179.51 (16)C8—C9—C13—N3175.93 (15)
C2—C3—C4—C50.2 (3)C10—C9—C13—N32.4 (2)
C3—C4—C5—C60.1 (3)C13—N3—C14—C1736.1 (2)
C4—C5—C6—C10.9 (3)C13—N3—C14—C1686.32 (18)
C2—C1—C6—C51.8 (3)C13—N3—C14—C15156.22 (15)
N1—C1—C6—C5179.51 (17)N3—C14—C15—O246.31 (17)
N1—N2—C7—C8178.97 (15)C17—C14—C15—O2167.32 (13)
N1—N2—C7—C120.6 (2)C16—C14—C15—O270.79 (17)
C12—C7—C8—C90.6 (3)N3—C14—C17—O460.08 (17)
N2—C7—C8—C9179.10 (15)C16—C14—C17—O4178.79 (13)
C7—C8—C9—C13179.63 (15)C15—C14—C17—O457.86 (18)
C7—C8—C9—C101.3 (3)N3—C14—C16—O357.76 (17)
C8—C9—C10—O1176.76 (15)C17—C14—C16—O365.03 (18)
C13—C9—C10—O11.6 (2)C15—C14—C16—O3173.46 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H22···O1i0.86 (3)1.78 (3)2.635 (2)177 (2)
O4—H44···O2ii0.77 (3)2.03 (3)2.791 (2)172 (3)
O3—H33···O1iii0.86 (2)1.96 (2)2.803 (2)167 (2)
N3—H1···O10.87 (2)1.95 (2)2.640 (2)134.6 (19)
N3—H1···O20.87 (2)2.21 (2)2.665 (2)112.4 (18)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H9ClN2O2C17H18ClN3O4
Mr260.67363.79
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)213213
a, b, c (Å)6.9938 (11), 21.636 (3), 8.1078 (13)16.122 (3), 8.3847 (12), 13.359 (2)
β (°) 108.724 (3) 110.689 (3)
V3)1161.9 (3)1689.4 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.320.25
Crystal size (mm)0.40 × 0.40 × 0.300.35 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Multi-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.882, 0.9090.916, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6246, 2275, 1783 10407, 3332, 2501
Rint0.0510.026
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.108, 1.04 0.034, 0.109, 1.09
No. of reflections22753332
No. of parameters199298
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.230.22, 0.33

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Cl1—C21.733 (2)N2—C71.422 (2)
O2—C131.213 (2)C7—C81.383 (3)
O1—C101.348 (2)C9—C101.395 (3)
N1—N21.255 (2)C9—C131.461 (3)
N1—C11.427 (2)C11—C121.370 (3)
N2—N1—C1113.6 (2)O1—C10—C9123.0 (2)
N1—N2—C7113.9 (2)O2—C13—C9124.5 (2)
C1—N1—N2—C7179.8 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.95 (3)1.83 (3)2.692 (2)149 (2)
O1—H1···O2i0.95 (3)2.38 (3)2.952 (2)118 (2)
Symmetry code: (i) x+1, y+1, z+3.
Selected geometric parameters (Å, º) for (II) top
O1—C101.306 (2)C7—C81.371 (2)
N1—N21.258 (2)C9—C131.427 (2)
N1—C11.422 (2)C9—C101.431 (2)
N2—C71.418 (2)C11—C121.365 (2)
N3—C131.292 (2)
N2—N1—C1114.1 (2)O1—C10—C9121.7 (2)
N1—N2—C7113.6 (1)N3—C13—C9123.2 (2)
C8—C7—N2116.4 (2)
C1—N1—N2—C7178.7 (1)C10—C9—C13—N32.4 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H22···O1i0.86 (3)1.78 (3)2.635 (2)177 (2)
O4—H44···O2ii0.77 (3)2.03 (3)2.791 (2)172 (3)
O3—H33···O1iii0.86 (2)1.96 (2)2.803 (2)167 (2)
N3—H1···O10.87 (2)1.95 (2)2.640 (2)134.6 (19)
N3—H1···O20.87 (2)2.21 (2)2.665 (2)112.4 (18)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds