Download citation
Download citation
link to html
The title compound is a polymeric complex bridged by a phthalate dianion, {[Cd(C8H4O4)(C7H6N2)2(H2O)]·0.5H2O}n. The asymmetric unit contains two Cd complex units, and both CdII atoms have the same distorted octahedral coordination geometry. Each phthalate dianion bridges two Cd atoms through the two terminal carboxy groups, one in a monodentate fashion and the other in a chelating mode, thus forming zigzag polymeric chains; π–π stacking occurs between neighboring chains. The bond angle involving the chelating carboxy group is large, but the corresponding bond distance is normal. This implies the existence of an electrostatic interaction between the CdII atoms and the carboxy groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104005529/fr1465sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104005529/fr1465Isup2.hkl
Contains datablock I

CCDC reference: 237917

Comment top

The consequences of non-covalent interaction in chemistry and structural biology have stimulated interest in exploring a variety of intermolecular forces. The aromatic ππ stacking interaction is correlated with electron transfer in some biological systems (Deisenhofer & Michel, 1989), and several structure determinations have revealed that the ππ stacking interaction commonly occurs in metal complexes with aromatic heteropolycyclic ligands (Nie et al., 2001). We present here the structure of the polymeric CdII complex, (I), of benzimidazole, in which ππ stacking occurs between adjacent polymeric chains.

The asymmetric unit of (I) contains two complex CdII units and one lattice water molecule, as shown in Fig. 1. The two independent Cd atoms have the same distorted octahedral coordination geometry, formed by two benzimidazole groups (BZIM) in a cis configuration, a coordinated water molecule and two phthalate dianions. Each phthalate dianion coordinates to two independent Cd atoms with both terminal carboxy groups, one in a monodentate fashion and the other in a chelating mode.

In the Cd1 complex unit, the O2—Cd1—N13 and O2—Cd1—O9i [symmetry code: (i) −1 + x,y,1 + z] angles (Table 1) are close to expected values, implying significant overlap of the Cd1 and O2 atomic orbitals, whereas the O1—Cd1—O9i angle [122.66 (7)°] suggests poor overlap of the Cd1 and O1 atomic orbitals. However, the Cd1—O1 bond distance is essentially the same as the Cd1—O2 bond distance. Likewise, in the Cd2 complex unit, the O6—Cd2—N43 and O6—Cd2—O3 angles imply significant overlap of the Cd2 and O6 atomic orbitals, whereas the O7—Cd2—O3 angle [119.72 (7)°] suggests poor overlap of the Cd2 and O7 atomic orbitals. However, the Cd2—O7 bond is shorter than the Cd2—O6 bond. These facts imply the existence of electrostatic interaction between the Cd atom and the coordinated carboxy group.

The Cd1—O9i and Cd2—O3 bonds for monodentate carboxy groups are significantly shorter than the chelating Cd—O bonds. The uncoordinated carboxy atoms O4 and O8 are hydrogen bonded to the neighboring coordinated water molecules O10 and O5. In addition, lattice water molecules O1W and O1Wii interact with carboxy groups bonded to the Cd2 complex unit via hydrogen bonding (Fig. 1), but there are no lattice water interactions with carboxy groups bonded to the Cd1 complex unit. Thus the Cd1 and Cd2 complex units are distinctly different.

Carboxy atoms O1, O2 and O9i, and BZIM atom N13, form an equatorial coordination plane around atom Cd1, with a maximum atomic deviation of 0.0339 (10) Å (for O2), while atoms O6, O7, O3 and N43 form another equatorial coordination plane around atom Cd2, with a maximum atomic deviation of 0.0759 (12) Å (for O6). The C31 phthalate dianion bridging the two Cd complex units is nearly parallel to both equatorial planes, the dihedral angles being 4.71 (11) and 2.71 (11)°, respectively. Thus the two equatorial coordinate planes are also nearly parallel, the dihedral angle being 3.80 (14)°.

Phthalate dianions bridge the adjacent Cd atoms to form zigzag polymeric chains, as shown in Fig. 2, along the [10–1] direction. ππ stacking interactions occur between neighboring polymeric chains related by an inversion center. The parallel N43–BZIM and N43iv–BZIM rings [symmetry code (iv): 1 − x,1 − y,1 − z] overlap one another, as do the parallel C62–phthalate and C62vi–phthalate rings [symmetry code (vi): 2 − x,1 − y,-z], as shown in Fig. 2. The separations between the neighboring parallel aromatic rings are 3.427 (14) (BZIM rings) and 3.298 (19) Å (phthalate rings).

Besides the hydrogen bonding between the carboxy and water O atoms mentioned above, hydrogen bonding is also observed between the BZIM and water molecules and between the BZIM and carboxyl groups (Table 2).

Experimental top

An aqueous solution (20 ml) of benzimidazole (0.12 g, 1 mmol) and CdCl2·2H2O (0.22 g, 1 mmol) was mixed with an aqueous solution (15 ml) of phthalic acid (0.17 g, 1 mmol) and NaOH (0.08 g, 2 mmol) at room temperature. The mixture was refluxed for 3 h and filtered twice. Single crystals were obtained from the filtrate after four weeks.

Refinement top

H atoms on water molecules were located in a difference Fourier map and included with fixed positional and isotropic displacement parameters [Uiso(H) = 0.05 Å2]. Other H atoms were placed in calculated positions (C—H = 0.93 Å and N—H = 0.86 Å) and were included in the final cycles of refinement in riding mode, with Uiso(H) equal to 1.2Ueq of the bonded atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids, dashed lines showing hydrogen bonding. [Symmetry codes: (i)x − 1,y,z + 1; (ii)1 − x,1 − y,-z; (iii)-x,1 − y,1 − z].
[Figure 2] Fig. 2. A diagram showing the zigzag polymeric chains and the overlapped arrangement of aromatic rings from adjacent chains. [Symmetry codes: (iv)1 − x,1 − y,1 − z; (vi)2 − x,1 − y,-z.]
catena-Poly[[[aquabis(1H-benzimidazole-κN3)cadmium(II)]-µ-phthalato- κ3O,O':O''] hemihydrate] top
Crystal data top
[Cd(C8H4O4)(C7H6N2)2(H2O)]·0.5H2OZ = 2
Mr = 1079.62F(000) = 1084
Triclinic, P1Dx = 1.707 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.2779 (12) ÅCell parameters from 7404 reflections
b = 13.9092 (12) Åθ = 1.7–25.1°
c = 14.2565 (13) ŵ = 1.09 mm1
α = 61.140 (1)°T = 295 K
β = 80.629 (2)°Prism, colorless
γ = 88.464 (1)°0.32 × 0.21 × 0.11 mm
V = 2100.1 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7404 independent reflections
Radiation source: fine-focus sealed tube6572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 1.7°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.702, Tmax = 0.895l = 1716
16098 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0279P)2 + 1.7003P]
where P = (Fo2 + 2Fc2)/3
7404 reflections(Δ/σ)max = 0.002
586 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Cd(C8H4O4)(C7H6N2)2(H2O)]·0.5H2Oγ = 88.464 (1)°
Mr = 1079.62V = 2100.1 (3) Å3
Triclinic, P1Z = 2
a = 12.2779 (12) ÅMo Kα radiation
b = 13.9092 (12) ŵ = 1.09 mm1
c = 14.2565 (13) ÅT = 295 K
α = 61.140 (1)°0.32 × 0.21 × 0.11 mm
β = 80.629 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7404 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6572 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.895Rint = 0.017
16098 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
7404 reflectionsΔρmin = 0.41 e Å3
586 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.078142 (14)0.307363 (16)0.679410 (14)0.03158 (6)
Cd20.550413 (14)0.455306 (15)0.192041 (14)0.03038 (6)
O10.07370 (14)0.32424 (15)0.54107 (14)0.0354 (4)
O20.07428 (13)0.22181 (15)0.56940 (14)0.0348 (4)
O30.38339 (15)0.37370 (18)0.24636 (17)0.0464 (5)
O40.37898 (15)0.28312 (16)0.15442 (15)0.0430 (5)
O50.14597 (14)0.45657 (15)0.52653 (14)0.0346 (4)
O60.71989 (15)0.56487 (16)0.09835 (15)0.0411 (4)
O70.67126 (14)0.44490 (16)0.05169 (15)0.0392 (4)
O81.06513 (17)0.5184 (2)0.33076 (17)0.0552 (6)
O90.90252 (18)0.42500 (18)0.25629 (18)0.0532 (5)
O100.47785 (14)0.60802 (16)0.04273 (14)0.0395 (4)
N110.40868 (19)0.2290 (2)0.87925 (19)0.0446 (6)
H110.45740.24600.91860.054*
N130.24884 (17)0.23122 (18)0.78053 (17)0.0353 (5)
N210.1323 (2)0.1468 (3)0.9335 (2)0.0618 (8)
H210.16640.15050.97990.074*
N230.02512 (19)0.1954 (2)0.80876 (19)0.0450 (6)
N410.38445 (17)0.57871 (19)0.40469 (18)0.0367 (5)
H410.32300.58200.44150.044*
N430.50188 (16)0.53318 (18)0.29992 (17)0.0336 (5)
N510.75440 (17)0.24907 (19)0.44032 (19)0.0399 (5)
H510.79960.24530.48200.048*
N530.64488 (17)0.32138 (18)0.31696 (17)0.0362 (5)
C120.3060 (2)0.2741 (2)0.8363 (2)0.0407 (6)
H120.27760.33010.84480.049*
C140.3062 (2)0.0801 (2)0.7454 (2)0.0416 (6)
H140.23880.07970.70490.050*
C150.3942 (3)0.0095 (3)0.7654 (3)0.0529 (8)
H150.38610.03950.73810.063*
C160.4957 (3)0.0106 (3)0.8262 (3)0.0584 (9)
H160.55360.03790.83820.070*
C170.5121 (2)0.0804 (3)0.8683 (3)0.0521 (8)
H170.57990.08120.90790.063*
C180.4226 (2)0.1506 (2)0.8494 (2)0.0380 (6)
C190.3214 (2)0.1517 (2)0.7877 (2)0.0333 (5)
C220.0662 (3)0.2209 (3)0.8731 (3)0.0621 (9)
H220.05090.28500.87660.075*
C240.0584 (4)0.0308 (3)0.7798 (3)0.0758 (12)
H240.01430.05060.72680.091*
C250.1156 (5)0.0628 (3)0.8126 (4)0.1082 (19)
H250.11120.10610.77990.130*
C260.1806 (4)0.0950 (3)0.8942 (4)0.0923 (15)
H260.21720.15980.91550.111*
C270.1908 (3)0.0331 (3)0.9427 (3)0.0629 (9)
H270.23320.05450.99720.075*
C280.1354 (2)0.0639 (3)0.9077 (2)0.0469 (7)
C290.0686 (2)0.0953 (2)0.8285 (2)0.0443 (7)
C310.02340 (19)0.2608 (2)0.52073 (19)0.0281 (5)
C320.07841 (19)0.22905 (19)0.43898 (19)0.0272 (5)
C330.0260 (2)0.1509 (2)0.4241 (2)0.0318 (5)
H330.04160.11650.46700.038*
C340.0743 (2)0.1246 (2)0.3458 (2)0.0359 (6)
H340.03940.07210.33640.043*
C350.1745 (2)0.1759 (2)0.2809 (2)0.0321 (5)
H350.20530.15940.22670.039*
C360.22907 (19)0.25192 (19)0.29632 (19)0.0274 (5)
C370.18073 (19)0.2776 (2)0.37604 (19)0.0280 (5)
H370.21720.32780.38740.034*
C380.33954 (19)0.3072 (2)0.2258 (2)0.0317 (5)
C420.3999 (2)0.5232 (2)0.3497 (2)0.0362 (6)
H420.34380.48150.34680.043*
C440.6698 (2)0.6363 (2)0.2983 (2)0.0389 (6)
H440.71960.61770.25400.047*
C450.7029 (2)0.7002 (3)0.3386 (2)0.0475 (7)
H450.77710.72360.32290.057*
C460.6278 (3)0.7308 (3)0.4028 (3)0.0512 (8)
H460.65330.77520.42780.061*
C470.5178 (2)0.6975 (2)0.4302 (2)0.0441 (7)
H470.46790.71900.47210.053*
C480.4846 (2)0.6298 (2)0.3920 (2)0.0320 (5)
C490.55859 (19)0.6003 (2)0.32596 (19)0.0294 (5)
C520.7130 (2)0.3407 (2)0.3692 (2)0.0397 (6)
H520.73040.41050.35800.048*
C540.5867 (3)0.1422 (3)0.3293 (3)0.0576 (9)
H540.54090.17180.27730.069*
C550.6014 (3)0.0309 (3)0.3830 (4)0.0742 (12)
H550.56520.01540.36650.089*
C560.6695 (3)0.0137 (3)0.4615 (3)0.0694 (10)
H560.67680.08930.49640.083*
C570.7258 (3)0.0496 (3)0.4889 (3)0.0542 (8)
H570.77130.01920.54110.065*
C580.7116 (2)0.1625 (2)0.4345 (2)0.0392 (6)
C590.6430 (2)0.2083 (2)0.3562 (2)0.0388 (6)
C610.7374 (2)0.5185 (2)0.0405 (2)0.0326 (5)
C620.84094 (19)0.5510 (2)0.04178 (19)0.0287 (5)
C630.85983 (19)0.5081 (2)0.11240 (19)0.0301 (5)
H630.80700.45940.10900.036*
C640.95627 (19)0.5369 (2)0.18807 (19)0.0293 (5)
C651.0354 (2)0.6080 (2)0.1904 (2)0.0360 (6)
H651.10090.62740.24030.043*
C661.0179 (2)0.6500 (2)0.1197 (2)0.0384 (6)
H661.07170.69700.12160.046*
C670.9209 (2)0.6227 (2)0.0465 (2)0.0349 (6)
H670.90880.65230.00010.042*
C680.9774 (2)0.4903 (2)0.2658 (2)0.0352 (6)
O1W0.6857 (2)0.7905 (2)0.0032 (2)0.0737 (7)
H1A0.70330.71530.03640.050*
H1B0.66010.78890.06020.050*
H5A0.11170.46540.46690.050*
H5B0.13150.52570.52490.050*
H10A0.42240.59050.02160.050*
H10B0.52090.63730.01960.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03025 (10)0.04030 (11)0.02969 (10)0.00030 (7)0.00138 (7)0.02227 (9)
Cd20.02589 (9)0.03907 (11)0.02827 (10)0.00062 (7)0.00033 (7)0.01931 (9)
O10.0319 (9)0.0441 (10)0.0383 (10)0.0007 (8)0.0035 (7)0.0267 (9)
O20.0267 (9)0.0457 (11)0.0336 (10)0.0022 (7)0.0026 (7)0.0228 (9)
O30.0304 (10)0.0629 (13)0.0539 (12)0.0141 (9)0.0067 (8)0.0380 (11)
O40.0406 (10)0.0516 (12)0.0381 (11)0.0027 (9)0.0077 (8)0.0269 (10)
O50.0329 (9)0.0397 (10)0.0308 (9)0.0009 (7)0.0029 (7)0.0191 (8)
O60.0417 (10)0.0524 (12)0.0363 (10)0.0016 (9)0.0030 (8)0.0299 (10)
O70.0314 (9)0.0527 (12)0.0344 (10)0.0047 (8)0.0028 (7)0.0239 (9)
O80.0448 (12)0.0897 (17)0.0446 (12)0.0008 (11)0.0057 (9)0.0469 (12)
O90.0587 (13)0.0615 (14)0.0544 (13)0.0111 (11)0.0073 (10)0.0443 (12)
O100.0336 (9)0.0564 (12)0.0328 (10)0.0019 (8)0.0044 (7)0.0254 (9)
N110.0439 (13)0.0492 (14)0.0377 (13)0.0072 (11)0.0048 (10)0.0225 (12)
N130.0357 (11)0.0367 (12)0.0307 (11)0.0000 (9)0.0013 (9)0.0152 (10)
N210.0739 (19)0.076 (2)0.0512 (17)0.0170 (15)0.0335 (14)0.0374 (16)
N230.0399 (13)0.0604 (16)0.0383 (13)0.0057 (11)0.0089 (10)0.0262 (12)
N410.0280 (11)0.0482 (13)0.0370 (12)0.0037 (9)0.0012 (9)0.0251 (11)
N430.0298 (11)0.0407 (12)0.0336 (12)0.0013 (9)0.0013 (9)0.0217 (10)
N510.0310 (11)0.0512 (14)0.0408 (13)0.0001 (10)0.0112 (9)0.0232 (12)
N530.0309 (11)0.0425 (13)0.0337 (12)0.0045 (9)0.0044 (9)0.0176 (10)
C120.0486 (16)0.0392 (15)0.0349 (15)0.0006 (12)0.0027 (12)0.0197 (13)
C140.0384 (15)0.0457 (16)0.0416 (16)0.0018 (12)0.0028 (12)0.0229 (14)
C150.0543 (19)0.0550 (19)0.056 (2)0.0026 (15)0.0096 (15)0.0314 (17)
C160.0466 (18)0.063 (2)0.056 (2)0.0179 (15)0.0061 (15)0.0210 (18)
C170.0343 (15)0.063 (2)0.0452 (18)0.0055 (14)0.0026 (12)0.0183 (16)
C180.0351 (14)0.0442 (16)0.0270 (13)0.0054 (11)0.0043 (10)0.0117 (12)
C190.0303 (13)0.0340 (14)0.0296 (13)0.0020 (10)0.0044 (10)0.0110 (11)
C220.077 (2)0.078 (2)0.055 (2)0.0258 (19)0.0292 (18)0.046 (2)
C240.114 (3)0.047 (2)0.076 (3)0.006 (2)0.057 (2)0.0250 (19)
C250.181 (5)0.048 (2)0.119 (4)0.023 (3)0.093 (4)0.039 (3)
C260.130 (4)0.046 (2)0.103 (4)0.019 (2)0.066 (3)0.025 (2)
C270.068 (2)0.050 (2)0.054 (2)0.0036 (16)0.0275 (17)0.0060 (17)
C280.0435 (16)0.0514 (18)0.0369 (16)0.0069 (13)0.0089 (12)0.0132 (14)
C290.0414 (15)0.0437 (16)0.0374 (16)0.0094 (12)0.0079 (12)0.0106 (13)
C310.0285 (12)0.0298 (12)0.0261 (12)0.0036 (10)0.0049 (9)0.0137 (11)
C320.0263 (12)0.0288 (12)0.0237 (12)0.0036 (9)0.0038 (9)0.0107 (10)
C330.0277 (12)0.0314 (13)0.0359 (14)0.0031 (10)0.0021 (10)0.0168 (11)
C340.0387 (14)0.0337 (14)0.0414 (15)0.0022 (11)0.0067 (11)0.0229 (12)
C350.0353 (13)0.0351 (14)0.0298 (13)0.0058 (10)0.0047 (10)0.0192 (11)
C360.0267 (12)0.0293 (12)0.0259 (12)0.0025 (9)0.0048 (9)0.0130 (10)
C370.0257 (12)0.0299 (13)0.0291 (13)0.0005 (9)0.0047 (9)0.0148 (11)
C380.0278 (12)0.0339 (14)0.0303 (13)0.0043 (10)0.0032 (10)0.0138 (11)
C420.0302 (13)0.0443 (15)0.0365 (15)0.0002 (11)0.0040 (11)0.0219 (13)
C440.0328 (13)0.0459 (16)0.0381 (15)0.0015 (11)0.0013 (11)0.0224 (13)
C450.0384 (15)0.0539 (18)0.0497 (18)0.0115 (13)0.0031 (13)0.0254 (15)
C460.0578 (19)0.0544 (19)0.0539 (19)0.0088 (15)0.0080 (15)0.0360 (16)
C470.0527 (17)0.0468 (17)0.0430 (16)0.0035 (13)0.0028 (13)0.0315 (14)
C480.0312 (13)0.0364 (14)0.0273 (13)0.0051 (10)0.0044 (10)0.0149 (11)
C490.0311 (12)0.0303 (13)0.0253 (12)0.0021 (10)0.0036 (10)0.0128 (11)
C520.0284 (13)0.0473 (16)0.0415 (16)0.0011 (11)0.0023 (11)0.0210 (14)
C540.066 (2)0.056 (2)0.065 (2)0.0171 (16)0.0385 (17)0.0326 (18)
C550.094 (3)0.055 (2)0.099 (3)0.017 (2)0.056 (2)0.046 (2)
C560.090 (3)0.0417 (19)0.084 (3)0.0165 (18)0.044 (2)0.0279 (19)
C570.0568 (19)0.0510 (19)0.0522 (19)0.0139 (15)0.0266 (15)0.0184 (16)
C580.0316 (13)0.0488 (16)0.0363 (15)0.0052 (11)0.0082 (11)0.0194 (13)
C590.0353 (14)0.0458 (16)0.0381 (15)0.0074 (11)0.0096 (11)0.0218 (13)
C610.0312 (13)0.0409 (15)0.0248 (13)0.0066 (11)0.0039 (10)0.0157 (11)
C620.0302 (12)0.0320 (13)0.0253 (12)0.0035 (10)0.0045 (9)0.0152 (11)
C630.0299 (12)0.0324 (13)0.0285 (13)0.0000 (10)0.0048 (10)0.0151 (11)
C640.0295 (12)0.0338 (13)0.0238 (12)0.0037 (10)0.0031 (9)0.0140 (11)
C650.0314 (13)0.0410 (15)0.0308 (14)0.0020 (11)0.0015 (10)0.0156 (12)
C660.0378 (14)0.0367 (15)0.0416 (15)0.0067 (11)0.0050 (11)0.0197 (13)
C670.0407 (14)0.0378 (14)0.0335 (14)0.0031 (11)0.0062 (11)0.0231 (12)
C680.0360 (14)0.0414 (15)0.0271 (13)0.0051 (11)0.0058 (11)0.0158 (12)
O1W0.115 (2)0.0642 (16)0.0637 (16)0.0202 (15)0.0428 (15)0.0403 (14)
Geometric parameters (Å, º) top
Cd1—O12.4083 (17)C24—C291.392 (5)
Cd1—O22.3774 (17)C24—H240.9300
Cd1—O52.4255 (18)C25—C261.404 (6)
Cd1—O9i2.2203 (19)C25—H250.9300
Cd1—N132.292 (2)C26—C271.358 (6)
Cd1—N232.306 (2)C26—H260.9300
Cd2—O32.2028 (17)C27—C281.394 (5)
Cd2—O62.3950 (19)C27—H270.9300
Cd2—O72.3511 (17)C28—C291.395 (4)
Cd2—O102.4471 (19)C31—C321.495 (3)
Cd2—N432.273 (2)C32—C371.390 (3)
Cd2—N532.311 (2)C32—C331.395 (3)
O1—C311.256 (3)C33—C341.378 (3)
O2—C311.271 (3)C33—H330.9300
O3—C381.254 (3)C34—C351.384 (4)
O4—C381.241 (3)C34—H340.9300
O5—H5A0.837C35—C361.387 (3)
O5—H5B0.9717C35—H350.9300
O6—C611.261 (3)C36—C371.390 (3)
O7—C611.257 (3)C36—C381.519 (3)
O8—C681.232 (3)C37—H370.9300
O9—C681.254 (3)C42—H420.9300
O10—H10A0.872C44—C451.369 (4)
O10—H10B0.863C44—C491.393 (3)
N11—C121.333 (4)C44—H440.9300
N11—C181.372 (4)C45—C461.396 (4)
N11—H110.8600C45—H450.9300
N13—C121.316 (3)C46—C471.372 (4)
N13—C191.394 (3)C46—H460.9300
N21—C221.338 (4)C47—C481.390 (4)
N21—C281.368 (4)C47—H470.9300
N21—H210.8600C48—C491.399 (3)
N23—C221.302 (4)C52—H520.9300
N23—C291.390 (4)C54—C551.378 (5)
N41—C421.333 (3)C54—C591.390 (4)
N41—C481.378 (3)C54—H540.9300
N41—H410.8600C55—C561.394 (5)
N43—C421.310 (3)C55—H550.9300
N43—C491.396 (3)C56—C571.363 (5)
N51—C521.340 (4)C56—H560.9300
N51—C581.370 (4)C57—C581.396 (4)
N51—H510.8600C57—H570.9300
N53—C521.317 (3)C58—C591.398 (4)
N53—C591.392 (4)C61—C621.493 (3)
C12—H120.9300C62—C631.385 (3)
C14—C151.378 (4)C62—C671.389 (3)
C14—C191.387 (4)C63—C641.385 (3)
C14—H140.9300C63—H630.9300
C15—C161.401 (5)C64—C651.390 (3)
C15—H150.9300C64—C681.520 (3)
C16—C171.364 (5)C65—C661.376 (4)
C16—H160.9300C65—H650.9300
C17—C181.392 (4)C66—C671.374 (4)
C17—H170.9300C66—H660.9300
C18—C191.396 (3)C67—H670.9300
C22—H220.9300O1W—H1A0.958
C24—C251.369 (6)O1W—H1B0.928
O1—Cd1—O254.72 (6)C26—C27—H27121.2
O1—Cd1—O582.97 (6)C28—C27—H27121.2
O1—Cd1—O9i122.66 (7)N21—C28—C27132.9 (3)
O1—Cd1—N13150.05 (7)N21—C28—C29105.2 (3)
O1—Cd1—N2388.60 (7)C27—C28—C29121.8 (3)
O2—Cd1—O581.87 (6)N23—C29—C24130.6 (3)
O2—Cd1—O9i164.37 (8)N23—C29—C28109.4 (3)
O2—Cd1—N1395.42 (7)C24—C29—C28120.0 (3)
O2—Cd1—N23102.75 (8)O1—C31—O2121.0 (2)
O5—Cd1—O9i82.50 (7)O1—C31—C32120.2 (2)
O5—Cd1—N1396.00 (7)O2—C31—C32118.7 (2)
O5—Cd1—N23165.58 (7)C37—C32—C33119.3 (2)
O9i—Cd1—N1386.59 (8)C37—C32—C31120.9 (2)
O9i—Cd1—N2392.34 (9)C33—C32—C31119.8 (2)
N13—Cd1—N2397.13 (8)C34—C33—C32120.0 (2)
O3—Cd2—O6168.42 (7)C34—C33—H33120.0
O3—Cd2—O7119.72 (7)C32—C33—H33120.0
O3—Cd2—O1087.49 (7)C33—C34—C35120.4 (2)
O3—Cd2—N4388.68 (7)C33—C34—H34119.8
O3—Cd2—N53100.62 (8)C35—C34—H34119.8
O6—Cd2—O755.21 (6)C34—C35—C36120.4 (2)
O6—Cd2—O1081.70 (6)C34—C35—H35119.8
O6—Cd2—N4395.52 (7)C36—C35—H35119.8
O6—Cd2—N5389.99 (7)C35—C36—C37119.1 (2)
O7—Cd2—O1084.10 (6)C35—C36—C38120.2 (2)
O7—Cd2—N43150.69 (7)C37—C36—C38120.7 (2)
O7—Cd2—N5389.20 (7)C36—C37—C32120.8 (2)
O10—Cd2—N4390.56 (7)C36—C37—H37119.6
O10—Cd2—N53171.35 (7)C32—C37—H37119.6
N43—Cd2—N5392.62 (8)O4—C38—O3125.7 (2)
C31—O1—Cd191.57 (14)O4—C38—C36118.6 (2)
C31—O2—Cd192.62 (14)O3—C38—C36115.7 (2)
C38—O3—Cd2131.75 (16)N43—C42—N41113.3 (2)
Cd1—O5—H5A112.08N43—C42—H42123.4
Cd1—O5—H5B109.64N41—C42—H42123.4
H5A—O5—H5B104.10C45—C44—C49117.6 (2)
C61—O6—Cd290.45 (15)C45—C44—H44121.2
C61—O7—Cd292.60 (14)C49—C44—H44121.2
C68—O9—Cd1ii125.43 (18)C44—C45—C46121.5 (3)
Cd2—O10—H10A115.50C44—C45—H45119.3
Cd2—O10—H10B115.91C46—C45—H45119.3
H10A—O10—H10B96.45C47—C46—C45122.0 (3)
C12—N11—C18107.6 (2)C47—C46—H46119.0
C12—N11—H11126.2C45—C46—H46119.0
C18—N11—H11126.2C46—C47—C48116.6 (3)
C12—N13—C19104.8 (2)C46—C47—H47121.7
C12—N13—Cd1120.80 (18)C48—C47—H47121.7
C19—N13—Cd1133.71 (17)N41—C48—C47133.2 (2)
C22—N21—C28107.0 (3)N41—C48—C49104.9 (2)
C22—N21—H21126.5C47—C48—C49121.9 (2)
C28—N21—H21126.5C44—C49—N43130.6 (2)
C22—N23—C29104.3 (3)C44—C49—C48120.4 (2)
C22—N23—Cd1125.3 (2)N43—C49—C48109.0 (2)
C29—N23—Cd1130.03 (19)N53—C52—N51112.9 (3)
C42—N41—C48107.8 (2)N53—C52—H52123.6
C42—N41—H41126.1N51—C52—H52123.6
C48—N41—H41126.1C55—C54—C59117.3 (3)
C42—N43—C49105.0 (2)C55—C54—H54121.4
C42—N43—Cd2121.07 (17)C59—C54—H54121.4
C49—N43—Cd2133.85 (16)C54—C55—C56121.5 (3)
C52—N51—C58107.6 (2)C54—C55—H55119.3
C52—N51—H51126.2C56—C55—H55119.3
C58—N51—H51126.2C57—C56—C55122.2 (3)
C52—N53—C59105.2 (2)C57—C56—H56118.9
C52—N53—Cd2124.11 (19)C55—C56—H56118.9
C59—N53—Cd2130.68 (17)C56—C57—C58116.6 (3)
N13—C12—N11113.2 (2)C56—C57—H57121.7
N13—C12—H12123.4C58—C57—H57121.7
N11—C12—H12123.4N51—C58—C57132.6 (3)
C15—C14—C19117.8 (3)N51—C58—C59105.6 (2)
C15—C14—H14121.1C57—C58—C59121.8 (3)
C19—C14—H14121.1C54—C59—N53130.6 (3)
C14—C15—C16120.9 (3)C54—C59—C58120.6 (3)
C14—C15—H15119.5N53—C59—C58108.8 (2)
C16—C15—H15119.5O7—C61—O6121.7 (2)
C17—C16—C15122.1 (3)O7—C61—C62119.5 (2)
C17—C16—H16119.0O6—C61—C62118.7 (2)
C15—C16—H16119.0C63—C62—C67119.1 (2)
C16—C17—C18117.0 (3)C63—C62—C61120.6 (2)
C16—C17—H17121.5C67—C62—C61120.2 (2)
C18—C17—H17121.5C62—C63—C64120.9 (2)
N11—C18—C17132.9 (3)C62—C63—H63119.5
N11—C18—C19105.4 (2)C64—C63—H63119.5
C17—C18—C19121.7 (3)C63—C64—C65118.7 (2)
C14—C19—N13130.5 (2)C63—C64—C68121.2 (2)
C14—C19—C18120.5 (2)C65—C64—C68120.1 (2)
N13—C19—C18109.0 (2)C66—C65—C64120.7 (2)
N23—C22—N21114.1 (3)C66—C65—H65119.6
N23—C22—H22123.0C64—C65—H65119.6
N21—C22—H22123.0C67—C66—C65120.0 (2)
C25—C24—C29117.8 (3)C67—C66—H66120.0
C25—C24—H24121.1C65—C66—H66120.0
C29—C24—H24121.1C66—C67—C62120.4 (2)
C24—C25—C26121.8 (4)C66—C67—H67119.8
C24—C25—H25119.1C62—C67—H67119.8
C26—C25—H25119.1O8—C68—O9126.2 (3)
C27—C26—C25121.0 (4)O8—C68—C64118.1 (2)
C27—C26—H26119.5O9—C68—C64115.7 (2)
C25—C26—H26119.5H1A—O1W—H1B99.6
C26—C27—C28117.6 (3)
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O60.961.862.804 (4)169
O1W—H1B···O4iii0.932.143.010 (4)156
O5—H5A···O8iii0.841.842.660 (3)168
O5—H5B···O1iv0.971.932.836 (3)155
O10—H10A···O7iii0.871.892.745 (3)166
O10—H10B···O4iii0.861.922.776 (3)173
N11—H11···O10iv0.862.343.020 (4)136
N21—H21···O1Wv0.862.152.899 (4)145
N41—H41···O5iv0.862.172.907 (3)143
N51—H51···O2vi0.862.072.915 (3)170
Symmetry codes: (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C8H4O4)(C7H6N2)2(H2O)]·0.5H2O
Mr1079.62
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)12.2779 (12), 13.9092 (12), 14.2565 (13)
α, β, γ (°)61.140 (1), 80.629 (2), 88.464 (1)
V3)2100.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.32 × 0.21 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.702, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
16098, 7404, 6572
Rint0.017
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.07
No. of reflections7404
No. of parameters586
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.41

Computer programs: PROCESS-AUTO (Rigaku Corporation, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC and Rigaku Corporation, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd1—O12.4083 (17)Cd2—O32.2028 (17)
Cd1—O22.3774 (17)Cd2—O62.3950 (19)
Cd1—O52.4255 (18)Cd2—O72.3511 (17)
Cd1—O9i2.2203 (19)Cd2—O102.4471 (19)
Cd1—N132.292 (2)Cd2—N432.273 (2)
Cd1—N232.306 (2)Cd2—N532.311 (2)
O1—Cd1—O254.72 (6)O3—Cd2—O6168.42 (7)
O1—Cd1—O9i122.66 (7)O3—Cd2—O7119.72 (7)
O1—Cd1—N13150.05 (7)O3—Cd2—N4388.68 (7)
O2—Cd1—O9i164.37 (8)O6—Cd2—O755.21 (6)
O2—Cd1—N1395.42 (7)O6—Cd2—N4395.52 (7)
O9i—Cd1—N1386.59 (8)O7—Cd2—N43150.69 (7)
Symmetry code: (i) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O60.961.862.804 (4)169
O1W—H1B···O4ii0.932.143.010 (4)156
O5—H5A···O8ii0.841.842.660 (3)168
O5—H5B···O1iii0.971.932.836 (3)155
O10—H10A···O7ii0.871.892.745 (3)166
O10—H10B···O4ii0.861.922.776 (3)173
N11—H11···O10iii0.862.343.020 (4)136
N21—H21···O1Wiv0.862.152.899 (4)145
N41—H41···O5iii0.862.172.907 (3)143
N51—H51···O2v0.862.072.915 (3)170
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds