Download citation
Download citation
link to html
In the title compound, [ZrCl2(C14H12N)2(C4H8O)2]·1.5C6H6, the Zr atom is pseudo-octahedral, with two Cl atoms in trans positions and two tetra­hydro­furan mol­ecules in cis positions. The two 3,6-di­methyl­carbazolyl ligands are in cis positions and are canted with respect to one another. The two Zr-N distances are 2.1148 (18) and 2.1236 (18) Å, and the N-Zr-N angle is 95.08 (7)°. The title compound crystallizes as the benzene solvate, with one of the benzene mol­ecules positioned on an inversion center.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103026258/fr1455sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103026258/fr1455Isup2.hkl
Contains datablock I

CCDC reference: 231030

Comment top

Amide complexes of transition metals are known to display interesting reactivity that is often unusual. This fact has been highlighted recently by the reduction of N2 to NH3, using a tris amide complex of Mo, by Schrock and co-workers (Yandulov et al., 2002, 2003). The accomplishment of one of the holy grails of inorganic chemistry is the culmination of the application of the electronic properties of hard amide ligands, an area that has been reviewed recently (Cummins, 1998; Schrock, 1997a,b). In contrast to these hard electronic ligands, recent work by ourselves (Nygren et al., 2003a,b) and others (Riley et al., 1998, 1999, 2001; Tanski & Parkin, 2003) has been based on the exploration of the chemistry of amide ligands in which the π interaction is uncertain with respect to the donation to the metal center. These amides with a lower π basicity (Tanski & Parkin, 2003) form a class of non-innocent ligands in coordination chemistry that differ from the non-innocent ligands described by Gray et al. (1967) in that the oxidation state is not uncertain, only the degree of electronic coupling between the π-donating ligating atom and the metal center. Although formally an LX ligand (Green, 1995), we note that the carbazolyl ligand is related to the N-heterocyclic carbenes (Tulloch et al., 2003; Arduengo, 1999; Herrmann, 2002), which are known to be almost pure σ donors, though in the case of carbazolyl, there is some π basicity. In this structure report, we describe a neutral bis-carbazolyl zirconium dichloride that will serve as a useful synthetic entrance into this area.

Carbazolyl complexes of transition metals that are σ-bound are rare (Lopez et al., 2002); most of the known examples (Riley et al., 1998, 1999, 2001) involve group 4B and 5B metals. A few bis-carbazolyl structures are known for the group 4B metals, most of which contain titanium (Riley et al., 2001). There are also a few known complexes for the group 5B metals (Riley et al., 1999).

Recently, the crystal structures of (tetrahydrofuran)potassium mer-[tris(carbazolyl)-trans-dichloro-(tetrahydrofurano)zirconate] and the tetrakis-(tetrahydrofurano)lithium mer-[tris(carbazolyl)-trans-dichloro-(tetrahydrofurano)zirconate] have been reported. (Nygren et al., 2003a,b).

The molecular structure of (I) is shown in Fig. 1 and consists of a pseudo-octahedral zirconium center bearing trans chloro ligands, cis carbazolyl moieties and cis-coordinated tetrahydrofuran molecules. Examination of the Cambridge Structural Database (Allen, 2002; Bruno et al., 2002) reveals that this composition of the first coordination sphere, consisting of two N atoms, two O atoms and two chloro ligands, is quite common for the group 4B metals, and all bond lengths and angles of the title structure are typical of those observed in zirconium complexes.

Examination of the intermolecular correlations reveals several interactions that are shorter than the sum of the van der Waals radii. Interestingly, the benzene molecules located at the cell corners do not show any of these short contacts, whereas the internal benzene molecules bridge between the carbazolyl of one molecule and the thf molecule coordinated to the Zr atom in another, using atoms H10, C38 and H35A. Another long-range interaction pairs two molecules together through mutually cis interactions between atoms Cl2 and H27B. Although this does not constitute a strongly bonded dimer, the pairs of these molecules then interact through shorter-range interactions between the coordinated thf and the mutually cis aromatic systems of the carbazolyl moieties. A similar structural disposition is seen in the tetrakis(tetrahydrofurano)lithium mer-[tris(carbazolyl)-trans-dichloro]tetrahydrofurano)zirconate (Nygren et al., 2003a). The final set of interactions occur between the methyl group (C14) and the aromatic ring of the neighboring molecule (atoms C21 and C26). The opposite methyl group on the same carbazolyl ligand has a strong interaction with a carbazolyl ligand on a different zirconium center of a neighboring molecule [2.7420 (14) Å; Allen, 2002; Bruno et al., 2002]. The range of distances for the intermolecular interactions is approximately 2.372–3.811 Å (Allen, 2002; Bruno et al., 2002). Thus a zigzag chain is formed in the bc plane throughout the extended lattice.

Experimental top

Dropwise addition of dry tetrahydrofuran to a mixture of ZrCl4(s) (0.43 g, 0.0018 mol) and previously prepared carbazolyl tetrahydrofuran lithium(s) (1.01 g, 0.0037 mol) at 195 K, resulted in a slow reaction that, on warming to room temperature, afforded an orange–yellow solution. After filtration, tetrahydrofuran was evacuated and the product was washed with pentane. Benzene was added to the compound and large orange–yellow block-like crystals formed spontaneously at room temperature over a period of one week. This compound has been characterized by one- and two-dimensional 1H and 13C NMR spectroscopy at variable temperature in solution. The spectroscopic data fully support formation of this compound.

Refinement top

All H atoms were introduced at calculated positions and treated using a riding model [Uiso(H)=1.2Ueq(C), C—H (CH3) = 0.98 Å, C—H (CH2) = 0.99 Å and C—H (aromatic CH) = 0.95 Å].

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atomic numbering. All H atoms and solvent molecules have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I), viewed along a. All H atoms have been omitted for clarity.
trans-dichloro-cis-Bis(3,6-dimethylcarbazolyl)-cis- bis(tetrahydrofuran)zirconium(IV) benzene sesquisolvate top
Crystal data top
[ZrCl2(C14H12N)2(C4H8O)2]·1.5C6H6F(000) = 1692
Mr = 811.98Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 21512 reflections
a = 10.200 (3) Åθ = 2.3–26.5°
b = 17.594 (5) ŵ = 0.45 mm1
c = 22.760 (7) ÅT = 173 K
β = 100.200 (5)°Fragment, yellow
V = 4020 (2) Å30.30 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
8342 independent reflections
Radiation source: fine-focus sealed tube6645 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: not measured pixels mm-1θmax = 26.5°, θmin = 1.5°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2222
Tmin = 0.891, Tmax = 0.927l = 2828
39916 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0347P)2 + 2.6992P]
where P = (Fo2 + 2Fc2)/3
8342 reflections(Δ/σ)max = 0.041
473 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[ZrCl2(C14H12N)2(C4H8O)2]·1.5C6H6V = 4020 (2) Å3
Mr = 811.98Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.200 (3) ŵ = 0.45 mm1
b = 17.594 (5) ÅT = 173 K
c = 22.760 (7) Å0.30 × 0.18 × 0.17 mm
β = 100.200 (5)°
Data collection top
Bruker SMART CCD
diffractometer
8342 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6645 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.927Rint = 0.041
39916 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
8342 reflectionsΔρmin = 0.31 e Å3
473 parameters
Special details top

Experimental. Data were collected using a Bruker AXS SMART 1000 diffractometer equipped with a CCD area detector and graphite monochromated Mo source operating with a Nicolet liquid nitrogen cooling system at 173 K. Data were measured using phi–omega scans of 0.3 degrees with an integration time of 20 s. A total of 2424 frames were collected, with the initial 606 frames recollected in the final run.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4659 (2)0.89192 (12)0.17262 (10)0.0214 (4)
C20.3716 (2)0.91914 (12)0.12549 (10)0.0251 (5)
H20.28820.93810.13210.030*
C30.4029 (2)0.91778 (13)0.06851 (10)0.0276 (5)
H30.33940.93660.03620.033*
C40.5245 (2)0.88976 (13)0.05682 (10)0.0287 (5)
C50.6154 (2)0.86063 (13)0.10413 (10)0.0271 (5)
H50.69730.84000.09710.033*
C60.5870 (2)0.86146 (12)0.16182 (10)0.0233 (5)
C70.6631 (2)0.83996 (12)0.21919 (10)0.0226 (5)
C80.7902 (2)0.80943 (13)0.23657 (11)0.0262 (5)
H80.84230.79650.20730.031*
C90.8402 (2)0.79805 (13)0.29644 (11)0.0277 (5)
C100.7606 (2)0.81740 (14)0.33812 (11)0.0294 (5)
H100.79500.80970.37930.035*
C110.6339 (2)0.84737 (13)0.32218 (10)0.0280 (5)
H110.58170.85930.35160.034*
C120.5846 (2)0.85954 (12)0.26179 (10)0.0226 (4)
C130.5543 (3)0.89104 (15)0.00555 (11)0.0361 (6)
H13A0.64850.90350.00410.043*
H13B0.49860.92950.02920.043*
H13C0.53530.84100.02400.043*
C140.9791 (2)0.76743 (14)0.31718 (12)0.0328 (6)
H14A1.00520.73600.28560.039*
H14B0.98060.73650.35310.039*
H14C1.04160.80990.32630.039*
C150.3208 (2)0.84825 (12)0.40328 (9)0.0205 (4)
C160.3361 (2)0.90844 (13)0.44364 (10)0.0243 (5)
H160.34530.95910.43050.029*
C170.3378 (2)0.89278 (13)0.50352 (10)0.0279 (5)
H170.34960.93360.53130.033*
C180.3226 (2)0.81894 (14)0.52464 (10)0.0282 (5)
C190.3059 (2)0.75964 (13)0.48401 (10)0.0255 (5)
H190.29460.70920.49730.031*
C200.3054 (2)0.77369 (12)0.42376 (10)0.0216 (4)
C210.2932 (2)0.72475 (12)0.37210 (9)0.0212 (4)
C220.2707 (2)0.64663 (12)0.36406 (10)0.0251 (5)
H220.26310.61540.39730.030*
C230.2593 (2)0.61472 (12)0.30770 (11)0.0259 (5)
C240.2747 (2)0.66227 (12)0.26004 (10)0.0250 (5)
H240.26940.64040.22150.030*
C250.2973 (2)0.73980 (12)0.26656 (10)0.0227 (5)
H250.30800.77040.23340.027*
C260.3040 (2)0.77174 (12)0.32332 (9)0.0201 (4)
C270.3247 (3)0.80463 (16)0.59030 (11)0.0422 (7)
H27A0.23680.81590.59990.051*
H27B0.39160.83740.61400.051*
H27C0.34690.75130.59950.051*
C280.2318 (3)0.53096 (13)0.29798 (12)0.0369 (6)
H28A0.27840.50230.33240.044*
H28B0.26340.51440.26180.044*
H28C0.13580.52170.29340.044*
C290.1924 (2)1.08382 (15)0.18600 (12)0.0339 (6)
H29A0.15921.12500.20910.041*
H29B0.11911.04730.17300.041*
C300.2444 (3)1.11541 (15)0.13323 (12)0.0367 (6)
H30A0.19671.16260.11850.044*
H30B0.23481.07800.10030.044*
C310.3895 (3)1.1313 (2)0.15750 (16)0.0671 (11)
H31A0.44551.11440.12860.081*
H31B0.40351.18650.16450.081*
C320.4255 (3)1.08971 (16)0.21354 (12)0.0393 (6)
H32A0.45131.12550.24720.047*
H32B0.50151.05530.21170.047*
C330.1831 (3)1.08688 (14)0.34367 (12)0.0337 (6)
H33A0.22821.11770.31680.040*
H33B0.23281.09170.38500.040*
C340.0398 (3)1.11117 (16)0.33974 (13)0.0438 (7)
H34A0.00171.12350.29810.053*
H34B0.03241.15570.36550.053*
C350.0231 (3)1.04095 (16)0.36210 (13)0.0428 (7)
H35A0.00801.03980.40630.051*
H35B0.12011.03940.34670.051*
C360.0471 (2)0.97537 (15)0.33771 (12)0.0333 (5)
H36A0.06530.93400.36750.040*
H36B0.00800.95490.30090.040*
C370.1585 (3)0.41791 (17)0.02178 (13)0.0465 (7)
H370.15210.47000.03180.056*
C380.0462 (3)0.37257 (18)0.01387 (13)0.0468 (7)
H380.03720.39350.01850.056*
C390.0552 (3)0.29698 (18)0.00076 (13)0.0476 (7)
H390.02190.26570.00610.057*
C400.1761 (3)0.26690 (18)0.00755 (13)0.0501 (7)
H400.18250.21480.01770.060*
C410.2885 (3)0.31253 (18)0.00043 (13)0.0483 (7)
H410.37200.29170.00430.058*
C420.2794 (3)0.38791 (17)0.01514 (13)0.0431 (7)
H420.35650.41920.02070.052*
C431.0435 (3)0.5026 (3)0.44678 (16)0.0689 (11)
H431.07360.50440.40960.083*
C440.9926 (3)0.4360 (2)0.46506 (18)0.0689 (10)
H440.98780.39190.44080.083*
C450.9491 (3)0.4339 (2)0.51847 (19)0.0704 (10)
H450.91360.38810.53140.084*
Cl10.12403 (5)0.89868 (3)0.21157 (2)0.02728 (13)
Cl20.48740 (6)1.01537 (3)0.34798 (3)0.03082 (13)
N10.46165 (17)0.89218 (10)0.23456 (8)0.0214 (4)
N20.31897 (17)0.84922 (10)0.34076 (8)0.0203 (4)
O10.30721 (14)1.04568 (8)0.22171 (7)0.0256 (3)
O20.17284 (15)1.00721 (9)0.32473 (7)0.0273 (3)
Zr10.321098 (19)0.941763 (11)0.281043 (9)0.01926 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (11)0.0201 (10)0.0222 (11)0.0017 (8)0.0044 (9)0.0002 (8)
C20.0243 (11)0.0255 (11)0.0245 (12)0.0019 (9)0.0019 (9)0.0003 (9)
C30.0309 (12)0.0272 (12)0.0225 (12)0.0015 (9)0.0013 (10)0.0006 (9)
C40.0357 (13)0.0266 (12)0.0247 (12)0.0041 (10)0.0075 (10)0.0027 (9)
C50.0262 (12)0.0307 (12)0.0259 (12)0.0011 (9)0.0086 (10)0.0037 (10)
C60.0218 (11)0.0221 (11)0.0257 (12)0.0017 (8)0.0039 (9)0.0014 (9)
C70.0205 (11)0.0222 (10)0.0257 (11)0.0014 (8)0.0055 (9)0.0026 (9)
C80.0210 (11)0.0277 (12)0.0311 (12)0.0005 (9)0.0080 (9)0.0010 (10)
C90.0190 (11)0.0272 (12)0.0358 (13)0.0002 (9)0.0014 (10)0.0013 (10)
C100.0236 (12)0.0380 (13)0.0249 (12)0.0053 (10)0.0002 (9)0.0039 (10)
C110.0226 (11)0.0374 (13)0.0244 (12)0.0046 (10)0.0055 (9)0.0025 (10)
C120.0183 (10)0.0232 (11)0.0264 (12)0.0006 (8)0.0039 (9)0.0014 (9)
C130.0433 (15)0.0420 (15)0.0238 (13)0.0006 (12)0.0082 (11)0.0019 (11)
C140.0209 (12)0.0348 (13)0.0415 (15)0.0021 (10)0.0024 (10)0.0010 (11)
C150.0159 (10)0.0258 (11)0.0195 (11)0.0043 (8)0.0024 (8)0.0037 (8)
C160.0252 (11)0.0222 (11)0.0249 (12)0.0024 (9)0.0027 (9)0.0005 (9)
C170.0307 (12)0.0296 (12)0.0232 (12)0.0029 (10)0.0044 (10)0.0041 (9)
C180.0284 (12)0.0337 (13)0.0227 (12)0.0038 (10)0.0050 (10)0.0031 (10)
C190.0269 (12)0.0245 (11)0.0251 (12)0.0016 (9)0.0043 (9)0.0052 (9)
C200.0169 (10)0.0250 (11)0.0225 (11)0.0027 (8)0.0021 (8)0.0012 (9)
C210.0157 (10)0.0247 (11)0.0229 (11)0.0031 (8)0.0021 (8)0.0014 (9)
C220.0224 (11)0.0240 (11)0.0282 (12)0.0006 (9)0.0030 (9)0.0040 (9)
C230.0209 (11)0.0226 (11)0.0332 (13)0.0010 (9)0.0022 (9)0.0006 (10)
C240.0220 (11)0.0273 (11)0.0248 (12)0.0015 (9)0.0016 (9)0.0057 (9)
C250.0193 (11)0.0254 (11)0.0233 (11)0.0026 (8)0.0037 (9)0.0014 (9)
C260.0149 (10)0.0221 (10)0.0229 (11)0.0027 (8)0.0024 (8)0.0003 (9)
C270.0611 (18)0.0423 (15)0.0235 (13)0.0036 (13)0.0090 (12)0.0013 (11)
C280.0442 (15)0.0246 (12)0.0413 (15)0.0023 (11)0.0061 (12)0.0040 (11)
C290.0248 (12)0.0373 (13)0.0386 (14)0.0075 (10)0.0031 (11)0.0148 (11)
C300.0373 (14)0.0364 (14)0.0361 (14)0.0039 (11)0.0060 (11)0.0119 (11)
C310.0372 (16)0.088 (3)0.073 (2)0.0141 (16)0.0012 (16)0.051 (2)
C320.0313 (13)0.0438 (15)0.0417 (15)0.0153 (11)0.0038 (11)0.0121 (12)
C330.0402 (14)0.0283 (12)0.0329 (13)0.0035 (10)0.0070 (11)0.0067 (10)
C340.0448 (16)0.0405 (15)0.0483 (17)0.0134 (12)0.0143 (13)0.0057 (13)
C350.0374 (15)0.0528 (17)0.0417 (16)0.0088 (12)0.0166 (12)0.0041 (13)
C360.0257 (12)0.0387 (14)0.0380 (14)0.0026 (10)0.0126 (11)0.0028 (11)
C370.0533 (18)0.0428 (16)0.0448 (17)0.0076 (13)0.0131 (14)0.0043 (13)
C380.0357 (15)0.066 (2)0.0393 (16)0.0151 (14)0.0075 (12)0.0078 (14)
C390.0393 (16)0.064 (2)0.0387 (16)0.0057 (14)0.0034 (13)0.0033 (14)
C400.0544 (19)0.0488 (17)0.0486 (18)0.0001 (14)0.0134 (15)0.0085 (14)
C410.0395 (16)0.0604 (19)0.0482 (18)0.0111 (14)0.0161 (13)0.0065 (15)
C420.0395 (15)0.0484 (17)0.0418 (16)0.0012 (13)0.0081 (12)0.0092 (13)
C430.047 (2)0.108 (3)0.050 (2)0.010 (2)0.0056 (16)0.016 (2)
C440.050 (2)0.084 (3)0.066 (2)0.0049 (19)0.0075 (18)0.010 (2)
C450.049 (2)0.080 (3)0.078 (3)0.0065 (18)0.0012 (19)0.016 (2)
Cl10.0217 (3)0.0323 (3)0.0266 (3)0.0023 (2)0.0007 (2)0.0017 (2)
Cl20.0288 (3)0.0331 (3)0.0285 (3)0.0054 (2)0.0007 (2)0.0019 (2)
N10.0195 (9)0.0238 (9)0.0207 (9)0.0022 (7)0.0028 (7)0.0017 (7)
N20.0203 (9)0.0216 (9)0.0189 (9)0.0016 (7)0.0029 (7)0.0000 (7)
O10.0201 (8)0.0269 (8)0.0299 (9)0.0007 (6)0.0046 (6)0.0072 (7)
O20.0263 (8)0.0257 (8)0.0312 (9)0.0023 (6)0.0086 (7)0.0018 (7)
Zr10.01721 (11)0.02080 (11)0.01970 (11)0.00123 (8)0.00307 (8)0.00188 (8)
Geometric parameters (Å, º) top
C1—C21.393 (3)C28—H28A0.9800
C1—C61.407 (3)C28—H28B0.9800
C1—N11.418 (3)C28—H28C0.9800
C2—C31.389 (3)C29—O11.465 (3)
C2—H20.9500C29—C301.503 (3)
C3—C41.404 (3)C29—H29A0.9900
C3—H30.9500C29—H29B0.9900
C4—C51.388 (3)C30—C311.511 (4)
C4—C131.504 (3)C30—H30A0.9900
C5—C61.394 (3)C30—H30B0.9900
C5—H50.9500C31—C321.460 (4)
C6—C71.446 (3)C31—H31A0.9900
C7—C81.394 (3)C31—H31B0.9900
C7—C121.405 (3)C32—O11.473 (3)
C8—C91.382 (3)C32—H32A0.9900
C8—H80.9500C32—H32B0.9900
C9—C101.395 (3)C33—O21.465 (3)
C9—C141.512 (3)C33—C341.511 (4)
C10—C111.384 (3)C33—H33A0.9900
C10—H100.9500C33—H33B0.9900
C11—C121.394 (3)C34—C351.521 (4)
C11—H110.9500C34—H34A0.9900
C12—N11.419 (3)C34—H34B0.9900
C13—H13A0.9800C35—C361.514 (3)
C13—H13B0.9800C35—H35A0.9900
C13—H13C0.9800C35—H35B0.9900
C14—H14A0.9800C36—O21.477 (3)
C14—H14B0.9800C36—H36A0.9900
C14—H14C0.9800C36—H36B0.9900
C15—C161.392 (3)C37—C421.374 (4)
C15—C201.410 (3)C37—C381.381 (4)
C15—N21.420 (3)C37—H370.9500
C16—C171.388 (3)C38—C391.378 (4)
C16—H160.9500C38—H380.9500
C17—C181.403 (3)C39—C401.376 (4)
C17—H170.9500C39—H390.9500
C18—C191.385 (3)C40—C411.385 (4)
C18—C271.512 (3)C40—H400.9500
C19—C201.392 (3)C41—C421.375 (4)
C19—H190.9500C41—H410.9500
C20—C211.445 (3)C42—H420.9500
C21—C221.400 (3)C43—C45i1.364 (6)
C21—C261.404 (3)C43—C441.375 (5)
C22—C231.386 (3)C43—H430.9500
C22—H220.9500C44—C451.366 (5)
C23—C241.401 (3)C44—H440.9500
C23—C281.509 (3)C45—C43i1.364 (6)
C24—C251.387 (3)C45—H450.9500
C24—H240.9500Cl1—Zr12.4473 (7)
C25—C261.399 (3)Cl2—Zr12.4413 (7)
C25—H250.9500N1—Zr12.1148 (18)
C26—N21.420 (3)N2—Zr12.1236 (18)
C27—H27A0.9800O1—Zr12.2624 (15)
C27—H27B0.9800O2—Zr12.2659 (15)
C27—H27C0.9800
C2—C1—C6120.3 (2)O1—C29—H29B110.8
C2—C1—N1128.8 (2)C30—C29—H29B110.8
C6—C1—N1110.93 (18)H29A—C29—H29B108.9
C3—C2—C1118.1 (2)C29—C30—C31103.7 (2)
C3—C2—H2120.9C29—C30—H30A111.0
C1—C2—H2120.9C31—C30—H30A111.0
C2—C3—C4122.7 (2)C29—C30—H30B111.0
C2—C3—H3118.7C31—C30—H30B111.0
C4—C3—H3118.7H30A—C30—H30B109.0
C5—C4—C3118.3 (2)C32—C31—C30107.8 (2)
C5—C4—C13121.3 (2)C32—C31—H31A110.1
C3—C4—C13120.5 (2)C30—C31—H31A110.1
C4—C5—C6120.3 (2)C32—C31—H31B110.1
C4—C5—H5119.8C30—C31—H31B110.1
C6—C5—H5119.8H31A—C31—H31B108.5
C5—C6—C1120.3 (2)C31—C32—O1106.8 (2)
C5—C6—C7132.8 (2)C31—C32—H32A110.4
C1—C6—C7106.80 (19)O1—C32—H32A110.4
C8—C7—C12120.9 (2)C31—C32—H32B110.4
C8—C7—C6132.9 (2)O1—C32—H32B110.4
C12—C7—C6106.19 (19)H32A—C32—H32B108.6
C9—C8—C7119.8 (2)O2—C33—C34103.6 (2)
C9—C8—H8120.1O2—C33—H33A111.0
C7—C8—H8120.1C34—C33—H33A111.0
C8—C9—C10118.5 (2)O2—C33—H33B111.0
C8—C9—C14121.4 (2)C34—C33—H33B111.0
C10—C9—C14120.0 (2)H33A—C33—H33B109.0
C11—C10—C9122.9 (2)C33—C34—C35102.2 (2)
C11—C10—H10118.5C33—C34—H34A111.3
C9—C10—H10118.5C35—C34—H34A111.3
C10—C11—C12118.3 (2)C33—C34—H34B111.3
C10—C11—H11120.9C35—C34—H34B111.3
C12—C11—H11120.9H34A—C34—H34B109.2
C11—C12—C7119.5 (2)C36—C35—C34104.0 (2)
C11—C12—N1129.0 (2)C36—C35—H35A111.0
C7—C12—N1111.44 (19)C34—C35—H35A111.0
C4—C13—H13A109.5C36—C35—H35B111.0
C4—C13—H13B109.5C34—C35—H35B111.0
H13A—C13—H13B109.5H35A—C35—H35B109.0
C4—C13—H13C109.5O2—C36—C35105.6 (2)
H13A—C13—H13C109.5O2—C36—H36A110.6
H13B—C13—H13C109.5C35—C36—H36A110.6
C9—C14—H14A109.5O2—C36—H36B110.6
C9—C14—H14B109.5C35—C36—H36B110.6
H14A—C14—H14B109.5H36A—C36—H36B108.8
C9—C14—H14C109.5C42—C37—C38120.2 (3)
H14A—C14—H14C109.5C42—C37—H37119.9
H14B—C14—H14C109.5C38—C37—H37119.9
C16—C15—C20119.7 (2)C39—C38—C37120.0 (3)
C16—C15—N2129.20 (19)C39—C38—H38120.0
C20—C15—N2111.09 (18)C37—C38—H38120.0
C17—C16—C15118.5 (2)C40—C39—C38119.9 (3)
C17—C16—H16120.7C40—C39—H39120.1
C15—C16—H16120.7C38—C39—H39120.1
C16—C17—C18122.5 (2)C39—C40—C41120.0 (3)
C16—C17—H17118.8C39—C40—H40120.0
C18—C17—H17118.8C41—C40—H40120.0
C19—C18—C17118.5 (2)C42—C41—C40120.0 (3)
C19—C18—C27120.9 (2)C42—C41—H41120.0
C17—C18—C27120.6 (2)C40—C41—H41120.0
C18—C19—C20120.2 (2)C37—C42—C41119.9 (3)
C18—C19—H19119.9C37—C42—H42120.0
C20—C19—H19119.9C41—C42—H42120.0
C19—C20—C15120.6 (2)C45i—C43—C44120.5 (4)
C19—C20—C21132.9 (2)C45i—C43—H43119.7
C15—C20—C21106.50 (19)C44—C43—H43119.7
C22—C21—C26120.6 (2)C45—C44—C43119.5 (4)
C22—C21—C20132.8 (2)C45—C44—H44120.3
C26—C21—C20106.56 (19)C43—C44—H44120.3
C23—C22—C21120.2 (2)C43i—C45—C44120.0 (4)
C23—C22—H22119.9C43i—C45—H45120.0
C21—C22—H22119.9C44—C45—H45120.0
C22—C23—C24118.2 (2)C1—N1—C12104.63 (17)
C22—C23—C28120.9 (2)C1—N1—Zr1129.90 (14)
C24—C23—C28120.9 (2)C12—N1—Zr1125.02 (14)
C25—C24—C23122.9 (2)C15—N2—C26104.50 (16)
C25—C24—H24118.5C15—N2—Zr1130.60 (14)
C23—C24—H24118.5C26—N2—Zr1124.73 (14)
C24—C25—C26118.3 (2)C29—O1—C32106.36 (17)
C24—C25—H25120.9C29—O1—Zr1131.35 (13)
C26—C25—H25120.9C32—O1—Zr1122.28 (14)
C25—C26—C21119.7 (2)C33—O2—C36108.89 (17)
C25—C26—N2128.95 (19)C33—O2—Zr1126.65 (14)
C21—C26—N2111.33 (18)C36—O2—Zr1124.46 (13)
C18—C27—H27A109.5N1—Zr1—N295.08 (7)
C18—C27—H27B109.5N1—Zr1—O190.64 (6)
H27A—C27—H27B109.5N2—Zr1—O1174.27 (6)
C18—C27—H27C109.5N1—Zr1—O2173.40 (6)
H27A—C27—H27C109.5N2—Zr1—O291.46 (6)
H27B—C27—H27C109.5O1—Zr1—O282.83 (6)
C23—C28—H28A109.5N1—Zr1—Cl294.21 (5)
C23—C28—H28B109.5N2—Zr1—Cl295.28 (5)
H28A—C28—H28B109.5O1—Zr1—Cl284.66 (5)
C23—C28—H28C109.5O2—Zr1—Cl284.29 (5)
H28A—C28—H28C109.5N1—Zr1—Cl195.80 (5)
H28B—C28—H28C109.5N2—Zr1—Cl194.34 (5)
O1—C29—C30104.60 (19)O1—Zr1—Cl184.68 (4)
O1—C29—H29A110.8O2—Zr1—Cl184.57 (5)
C30—C29—H29A110.8Cl2—Zr1—Cl1165.44 (2)
C6—C1—C2—C32.3 (3)C34—C35—C36—O221.0 (3)
N1—C1—C2—C3175.1 (2)C42—C37—C38—C390.0 (4)
C1—C2—C3—C40.5 (3)C37—C38—C39—C400.1 (4)
C2—C3—C4—C51.6 (3)C38—C39—C40—C410.1 (5)
C2—C3—C4—C13178.8 (2)C39—C40—C41—C420.0 (5)
C3—C4—C5—C61.8 (3)C38—C37—C42—C410.2 (4)
C13—C4—C5—C6178.6 (2)C40—C41—C42—C370.1 (4)
C4—C5—C6—C10.1 (3)C45i—C43—C44—C450.1 (6)
C4—C5—C6—C7175.8 (2)C43—C44—C45—C43i0.1 (6)
C2—C1—C6—C52.2 (3)C2—C1—N1—C12178.5 (2)
N1—C1—C6—C5175.72 (19)C6—C1—N1—C120.8 (2)
C2—C1—C6—C7178.89 (19)C2—C1—N1—Zr16.0 (3)
N1—C1—C6—C71.0 (2)C6—C1—N1—Zr1171.64 (14)
C5—C6—C7—C81.6 (4)C11—C12—N1—C1178.7 (2)
C1—C6—C7—C8177.7 (2)C7—C12—N1—C10.3 (2)
C5—C6—C7—C12175.4 (2)C11—C12—N1—Zr15.7 (3)
C1—C6—C7—C120.8 (2)C7—C12—N1—Zr1172.65 (14)
C12—C7—C8—C90.1 (3)C16—C15—N2—C26178.5 (2)
C6—C7—C8—C9176.7 (2)C20—C15—N2—C260.9 (2)
C7—C8—C9—C100.3 (3)C16—C15—N2—Zr16.2 (3)
C7—C8—C9—C14178.0 (2)C20—C15—N2—Zr1174.36 (14)
C8—C9—C10—C110.1 (4)C25—C26—N2—C15179.4 (2)
C14—C9—C10—C11178.4 (2)C21—C26—N2—C151.6 (2)
C9—C10—C11—C120.8 (4)C25—C26—N2—Zr14.9 (3)
C10—C11—C12—C71.2 (3)C21—C26—N2—Zr1174.09 (13)
C10—C11—C12—N1177.1 (2)C30—C29—O1—C3232.9 (3)
C8—C7—C12—C110.9 (3)C30—C29—O1—Zr1147.95 (16)
C6—C7—C12—C11178.2 (2)C31—C32—O1—C2922.5 (3)
C8—C7—C12—N1177.71 (19)C31—C32—O1—Zr1158.2 (2)
C6—C7—C12—N10.3 (2)C34—C33—O2—C3626.5 (3)
C20—C15—C16—C170.9 (3)C34—C33—O2—Zr1152.48 (16)
N2—C15—C16—C17178.4 (2)C35—C36—O2—C333.4 (3)
C15—C16—C17—C180.9 (3)C35—C36—O2—Zr1175.66 (15)
C16—C17—C18—C190.2 (4)C1—N1—Zr1—N2139.67 (18)
C16—C17—C18—C27179.8 (2)C12—N1—Zr1—N249.26 (17)
C17—C18—C19—C200.6 (3)C1—N1—Zr1—O139.95 (18)
C27—C18—C19—C20179.4 (2)C12—N1—Zr1—O1131.12 (16)
C18—C19—C20—C150.5 (3)C1—N1—Zr1—Cl2124.64 (17)
C18—C19—C20—C21178.5 (2)C12—N1—Zr1—Cl246.43 (16)
C16—C15—C20—C190.2 (3)C1—N1—Zr1—Cl144.77 (18)
N2—C15—C20—C19179.26 (18)C12—N1—Zr1—Cl1144.17 (16)
C16—C15—C20—C21179.47 (19)C15—N2—Zr1—N1136.55 (17)
N2—C15—C20—C210.0 (2)C26—N2—Zr1—N148.98 (16)
C19—C20—C21—C223.9 (4)C15—N2—Zr1—O242.56 (18)
C15—C20—C21—C22176.9 (2)C26—N2—Zr1—O2131.91 (16)
C19—C20—C21—C26178.2 (2)C15—N2—Zr1—Cl241.84 (17)
C15—C20—C21—C260.9 (2)C26—N2—Zr1—Cl2143.69 (15)
C26—C21—C22—C230.3 (3)C15—N2—Zr1—Cl1127.22 (17)
C20—C21—C22—C23177.9 (2)C26—N2—Zr1—Cl147.25 (16)
C21—C22—C23—C241.8 (3)C29—O1—Zr1—N1126.9 (2)
C21—C22—C23—C28178.6 (2)C32—O1—Zr1—N154.14 (18)
C22—C23—C24—C251.7 (3)C29—O1—Zr1—O254.07 (19)
C28—C23—C24—C25178.6 (2)C32—O1—Zr1—O2124.93 (18)
C23—C24—C25—C260.5 (3)C29—O1—Zr1—Cl2138.97 (19)
C24—C25—C26—C212.6 (3)C32—O1—Zr1—Cl240.03 (17)
C24—C25—C26—N2176.4 (2)C29—O1—Zr1—Cl131.10 (19)
C22—C21—C26—C252.5 (3)C32—O1—Zr1—Cl1149.90 (18)
C20—C21—C26—C25179.30 (18)C33—O2—Zr1—N2132.17 (17)
C22—C21—C26—N2176.60 (18)C36—O2—Zr1—N248.97 (17)
C20—C21—C26—N21.6 (2)C33—O2—Zr1—O148.30 (17)
O1—C29—C30—C3130.1 (3)C36—O2—Zr1—O1130.56 (17)
C29—C30—C31—C3216.6 (4)C33—O2—Zr1—Cl237.01 (17)
C30—C31—C32—O13.2 (4)C36—O2—Zr1—Cl2144.13 (16)
O2—C33—C34—C3538.7 (3)C33—O2—Zr1—Cl1133.60 (17)
C33—C34—C35—C3636.7 (3)C36—O2—Zr1—Cl145.26 (16)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[ZrCl2(C14H12N)2(C4H8O)2]·1.5C6H6
Mr811.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.200 (3), 17.594 (5), 22.760 (7)
β (°) 100.200 (5)
V3)4020 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.30 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.891, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
39916, 8342, 6645
Rint0.041
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.08
No. of reflections8342
No. of parameters473
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: SMART (Bruker 1997), SAINT (Bruker 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cl1—Zr12.4473 (7)N2—Zr12.1236 (18)
Cl2—Zr12.4413 (7)O1—Zr12.2624 (15)
N1—Zr12.1148 (18)O2—Zr12.2659 (15)
N1—Zr1—N295.08 (7)Cl2—Zr1—Cl1165.44 (2)
O1—Zr1—O282.83 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds