Download citation
Download citation
link to html
The title compounds, 2-{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}cyclo­hexa-3,5-dien-1(2H)-one, C11H15NO4, (I), 6-hydroxy-2-{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa-3,5-dien-1(2H)-one, C11H15NO5, (II), and 6-methoxy-2-{[tris­(hydroxy­methyl)­methyl]­amino­methyl­ene}­cyclo­hexa-3,5-dien-1(2H)-one, C12H17NO5, (III), adopt the keto–amine tautomeric form, with the formal hydroxy H atom located on the N atom, and the NH group and oxo O atom display a strong intramolecular N—H...O hydrogen bond. The N—H...O hydrogen-bonded rings are almost planar and coupled with the cyclo­hexa­diene rings. The carbonyl O atoms accept two other H atoms from the alcohol groups of adjacent mol­ecules in (I), and one from the alcohol and one from the phenol group in (II), but from only one alcohol H atom in (III).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103020997/fr1432sup1.cif
Contains datablocks global, II, III, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103020997/fr1432Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103020997/fr1432IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103020997/fr1432IIIsup4.hkl
Contains datablock III

CCDC references: 226122; 226123; 226124

Comment top

There is considerable interest in Schiff base ligands and their complexes with regard to their striking antitumour activities (Zhou et al., 2000). Among them, o-hydroxy Schiff base ligands and their complexes derived from the reaction of o-hydroxy aldehydes with aniline have been extensively studied (Steward & Lingafelter, 1959; Calligaris et al., 1972; Maslen & Waters, 1975) and a number of them have been used as models for biological systems (Costamagna et al., 1992, 1998). o-Hydroxy Schiff bases exist as enol (Yıldız et al., 1998; Elmalı et al., 1998, 1999; Elmalı & Elerman, 1998; Dey et al., 2001; Ünver, Yıldız et al., 2002; Yang & Vittal, 2003) or keto (Ünver, Kabak et al., 2002; Hökelek et al., 2000), or as enol/keto mixtures (Nazır et al., 2000; Szady-Chelmienicecka et al., 2001; Ogawa & Harada, 2003) as a result of H-atom transfer from the hydroxy O atom to the N atom. Such H-atom tautomerism plays an important role in many fields of chemistry and especially biochemistry (Zollinger, 1991; Hem et al., 2002). Molecules giving tautomers by intramolecular H-atom transfer are often used as laser dyes, in high-energy radiation detectors and molecular memory storage devices, as fluorescent probes and as polymer protectors (Sytnik & Del Valle, 1995; Nagaoka et al., 1983). Many o-hydroxyarylidene anilines, being relatively simple in structure and exhibiting intramolecular H-atom transfer, have, therefore, attracted considerable attention from both experimental (Kownacki et al., 1994; Grabowska et al., 1994; Guha et al., 2000; Ogawa et al., 2001) and theoretical (Zgierski & Grabowska, 2000) points of view. N-substituted o-hydroxy imines have been reported to display thermo- and photochromism in the solid state by H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994). In the course of our ongoing studies of the synthesis and structural characterization of polyhydroxyazomethine derivatives, the title compounds, (I), (II) and (III), were synthesized, and we report their crystal structures here. \sch

As shown in Scheme 2, o-hydroxyarylidene Schiff bases display two possible tautomeric forms, namely, the phenol-imine and the keto-amine. In the solid state, the keto-amine tautomer has been found in naphthaldimine (Hökelek et al., 2000; Ünver, Kabak et al., 2002), while phenol-imine is found in salicylaldimine Schiff bases (Kaitner & Pavlović, 1996; Yıldız et al., 1998; Elmalı et al., 1998, 1999; Elmalı & Elerman, 1998; Dey et al., 2001; Yang & Vittal, 2003; Karadayı et al., 2003). Compounds (I), (II) and (III) are polyhydroxysalicylaldimines and the present X-ray investigation indicates that the keto-amine tautomer is favoured over the phenol-imine tautomer. The crystal structure of (I) has been reported several times, most recently by Cungen et al. (2000) at room temperature. Scheme 2

A view of the hydrogen-bonded structure of (I), as determined at 208 K, and its numbering scheme are shown in Fig. 1. Selected bond distances and angles are listed in Table 1. Compound (I) has strong N—H···O intramolecular [N···O 2.6181 (14) Å] and O—H···O [mean O···O 2.700 Å] intermolecular hydrogen bonds. Such strong intramolecular N···O hydrogen bonds are a common feature of o-hydroxysalicylidene systems (Nazır et al., 2000; Yıldız et al., 1998). The sum of the van der Waals radii of O and N is 3.07 Å (Bondi, 1964), and the intramolecular hydrogen bond in (I) is shorter than this. Apart from the intramolecular hydrogen bond, (I) displays strong intermolecular O···O hydrogen bonds (Table 2). It has been reported Please check added text (Pizzala et al., 2000) that these hydrogen bonds are indeed characterized by relatively short O···O distances (shorter than the sum of the van der Waals radii of two O atoms, 3.04 Å).

The salicylidene ring bond lengths in (I) follow the alternating sequence C1—C2 > C2—C3 > C3—C4 < C4—C5 > C5—C6 < C6—C1. Compound (I) exists primarily as the keto-amine tautomer, as indicated by the C2—O1, C1—C7, C7—N and C1—C2 bond lengths (Table 1). These bonds are 1.356 (3), 1.448 (3), 1.270 (3) and 1.288 (4) Å, respectively, in the phenol-imine tautomer of 1,8-bis(N-2-oxyphenylsalicylidene)-3,6-dioxaoctane (Yıldız et al., 1998) and 1.286 (3), 1.441 (3), 1.297 (3) and 1.436 (3) Å, respectively, in the keto-amine tautomer of 4-[(3-chlorophenyl)diazenyl]-2-{[tris(hydroxymethyl)methyl] aminomethylene}cyclohexa-3,5-dien-1(2H)-one (Odabaşoğlu et al., 2003). Our investigation shows that there is an elongation of C7—N1 compared with the normal value of a CN double bond (Reference?), and of C1—C2, C2—C3, C4—C5 and C6—C1 compared with the normal values for a salicylidene ring (Reference?). Furthermore, the formal hydroxyl H atom is located on atom N1, thus confirming a preference for the keto-amine tautomer (the quinoid form) in the solid state. Formation of the quinoid form results in electron-localization distortion and so the C3—C4 and C5—C6 bonds are shortened in comparison with their normal values in a salicylidene ring. The N—H···O hydrogen-bonded ring in (I) is almost planar and coupled with the cyclohexadiene ring, with an N1—C7—C1—C2 torsion angle of 0.3 (2)°.

Molecular views of (II) and (III), and their numbering schemes, are shown in Figs. 2 and 3, respectively, and selected bond distances and angles are listed in Tables 3 and 5, respectively. The structures of (II) and (III) are similar to that of (I), with small differences for some bond lengths due to the OH and CH3O groups attached to the cyclohexadiene ring (Tables 3 and 5). The O1—C2 bond lengths of 1.2968 (17) Å in (II) and 1.2892 (18) Å in (III) are somewhat shorter than the value of 1.3025 (16) Å in (I). Compound (II) has two strong intramolecular hydrogen bonds [N···O 2.5851 (16) and O···O 2.7000 (15) Å; Table 4].

Compounds (II) and (III), like compound (I), have strong intermolecular O···O hydrogen bonds (Tables 4 and 6). Atom O1 in (I) accepts two other H atoms from the alcoholic groups of adjacent molecules, viz. O1···O3iv and O1···O4iv [symmetry code: (iv) x, 1/2 − y, z + 1/2]. In (II), atom O1 accepts one H atom from the alcoholic group, O1···O3ii [symmetry code: (ii) 2 − x, −y, −z], and one from the phenolic group, O1···O5, but in (III), atom O1 accepts only one alcoholic H atom, O1···O4iii [symmetry code: (iii) 1/2 − x, 1/2 + y, z].

The N—H···O hydrogen-bonded rings in (II) and (III) are almost planar-coupled with the cyclohexadiene rings, with N1—C7—C1—C2 torsion angles of 3.63 (1) and 0.8 (2)°, respectively (Tables 3 and 5).

Experimental top

For compound (I), a solution of tris(hydroxymethyl)aminomethane (2.42 g, 20 mmol) in butane-1-ol (75 ml) was added to a solution of salicylaldehyde (2.44 g, 20 mmol) in butane-1-ol (75 ml). The mixture was stirred at reflux temperature, and the water produced in the reaction was distilled out of the reaction mixture. The resulting yellow precipitate was filtered and recrystallized from ethyl alcohol by slow evaporation, and well shaped crystals of (I) were obtained. Compounds (II) and (III) were synthesized and crystallized using exactly the same procedure as for (I) Different starting materials?, but recrystallization was carried out in acetonitrile for (III) instead of ethyl alcohol. Yields: 95%, m.p. 422–423 K for (I), 90%, m.p. 415–417 K for (II) and 95%, m.p. 454–455 K for (III).

Refinement top

All H atoms were freely refined. For (I), C—H distances are in the range 0.938 (19)–1.011 (17) Å and Uiso(H) values are in the range 0.022 (4)–0.056 (6) Å2. For (II), C—H distances are in the range 0.974 (17)–1.007 (18) Å and Uiso(H) values are in the range 0.025 (4)–0.057 (7) Å2. For (III), C—H distances are in the range 0.95 (2)–1.02 (2) Å and Uiso(H) values are in the range 0.021 (4)–0.047 (6) Å2.

Computing details top

For all compounds, data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids [symmetry codes: (ii) −x, y + 1/2, 1/2 − z; (iv) x, 1/2 − y, z + 1/2].
[Figure 2] Fig. 2. A view of the molecule of (II), with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. A view of the molecule of (III), with the atom-numbering scheme and 50% probability displacement ellipsoids.
(I) 2-{[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien-1(2H)-one top
Crystal data top
C11H15NO4F(000) = 480
Mr = 225.24Dx = 1.333 Mg m3
Monoclinic, P21/cMelting point = 422–423 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.4437 (9) ÅCell parameters from 986 reflections
b = 8.7029 (7) Åθ = 2.8–26.6°
c = 12.6147 (11) ŵ = 0.10 mm1
β = 101.801 (2)°T = 208 K
V = 1122.32 (16) Å3Prism, colourless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2226 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
ω scansh = 1313
12824 measured reflectionsk = 1111
2701 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.111All H-atom parameters refined
S = 1.10 w = 1/[σ2(Fo2) + (0.0531P)2 + 0.3161P]
where P = (Fo2 + 2Fc2)/3
2701 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C11H15NO4V = 1122.32 (16) Å3
Mr = 225.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4437 (9) ŵ = 0.10 mm1
b = 8.7029 (7) ÅT = 208 K
c = 12.6147 (11) Å0.30 × 0.30 × 0.30 mm
β = 101.801 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2226 reflections with I > 2σ(I)
12824 measured reflectionsRint = 0.039
2701 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.111All H-atom parameters refined
S = 1.10Δρmax = 0.38 e Å3
2701 reflectionsΔρmin = 0.19 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27644 (10)0.47289 (11)0.65317 (7)0.0278 (2)
O20.53462 (11)0.28376 (13)0.57069 (8)0.0325 (3)
O30.39387 (11)0.00670 (11)0.35914 (8)0.0304 (3)
O40.23193 (12)0.31687 (14)0.21920 (8)0.0363 (3)
N10.29931 (11)0.37796 (12)0.46098 (9)0.0221 (2)
C10.15370 (13)0.57931 (15)0.48991 (10)0.0223 (3)
C20.19332 (13)0.57507 (15)0.60510 (11)0.0236 (3)
C30.13955 (16)0.68809 (19)0.66395 (12)0.0343 (4)
C40.05145 (17)0.79386 (19)0.61230 (13)0.0369 (4)
C50.00882 (15)0.79419 (17)0.49954 (13)0.0307 (3)
C60.06057 (14)0.68829 (16)0.43998 (11)0.0258 (3)
C70.21039 (13)0.47852 (15)0.42278 (11)0.0232 (3)
C80.37286 (13)0.27869 (14)0.39986 (10)0.0215 (3)
C90.51718 (14)0.29251 (17)0.45650 (11)0.0271 (3)
C100.32288 (14)0.11389 (15)0.40903 (11)0.0258 (3)
C110.36008 (15)0.33264 (17)0.28286 (11)0.0276 (3)
H1N0.3223 (16)0.375 (2)0.5350 (14)0.030 (4)*
H2O0.554 (2)0.193 (3)0.5903 (17)0.051 (6)*
H3O0.355 (2)0.005 (2)0.2878 (18)0.049 (6)*
H4O0.228 (2)0.227 (3)0.1896 (18)0.056 (6)*
H30.1679 (18)0.690 (2)0.7424 (15)0.041 (5)*
H40.017 (2)0.869 (3)0.6519 (16)0.054 (6)*
H50.0549 (18)0.864 (2)0.4654 (14)0.039 (5)*
H60.0318 (16)0.6853 (19)0.3639 (13)0.027 (4)*
H70.1814 (15)0.4834 (18)0.3459 (13)0.022 (4)*
H9A0.5507 (16)0.397 (2)0.4396 (13)0.031 (4)*
H9B0.5666 (17)0.216 (2)0.4289 (14)0.032 (4)*
H10A0.2263 (17)0.1103 (19)0.3756 (13)0.027 (4)*
H10B0.3356 (15)0.0895 (19)0.4868 (14)0.028 (4)*
H11A0.3831 (15)0.445 (2)0.2857 (13)0.026 (4)*
H11B0.4242 (15)0.2736 (18)0.2503 (12)0.023 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (5)0.0255 (5)0.0214 (5)0.0064 (4)0.0068 (4)0.0042 (4)
O20.0426 (6)0.0264 (6)0.0252 (5)0.0066 (5)0.0011 (4)0.0022 (4)
O30.0462 (6)0.0203 (5)0.0231 (5)0.0069 (4)0.0036 (4)0.0034 (4)
O40.0464 (7)0.0335 (6)0.0247 (5)0.0086 (5)0.0030 (4)0.0057 (5)
N10.0294 (6)0.0191 (5)0.0183 (5)0.0007 (4)0.0060 (4)0.0015 (4)
C10.0256 (6)0.0196 (6)0.0223 (6)0.0009 (5)0.0065 (5)0.0001 (5)
C20.0281 (7)0.0210 (6)0.0230 (6)0.0001 (5)0.0079 (5)0.0020 (5)
C30.0431 (9)0.0373 (8)0.0229 (7)0.0104 (7)0.0076 (6)0.0031 (6)
C40.0434 (9)0.0332 (8)0.0351 (8)0.0111 (7)0.0100 (7)0.0079 (7)
C50.0331 (8)0.0231 (7)0.0356 (8)0.0067 (6)0.0059 (6)0.0017 (6)
C60.0298 (7)0.0245 (7)0.0227 (6)0.0000 (5)0.0045 (5)0.0022 (5)
C70.0274 (7)0.0216 (6)0.0204 (6)0.0011 (5)0.0047 (5)0.0009 (5)
C80.0273 (6)0.0183 (6)0.0196 (6)0.0007 (5)0.0067 (5)0.0026 (5)
C90.0287 (7)0.0260 (7)0.0268 (7)0.0001 (6)0.0059 (6)0.0035 (6)
C100.0340 (8)0.0197 (6)0.0242 (6)0.0007 (5)0.0074 (5)0.0020 (5)
C110.0380 (8)0.0239 (7)0.0217 (6)0.0014 (6)0.0076 (6)0.0005 (5)
Geometric parameters (Å, º) top
O1—C21.3025 (16)C4—C51.401 (2)
O2—C91.4166 (17)C4—H40.94 (2)
O2—H2O0.84 (2)C5—C61.368 (2)
O3—C101.4166 (16)C5—H50.938 (19)
O3—H3O0.91 (2)C6—H60.945 (16)
O4—C111.4196 (19)C7—H70.957 (16)
O4—H4O0.86 (2)C8—C111.5283 (18)
N1—C71.2952 (18)C8—C91.535 (2)
N1—C81.4741 (16)C8—C101.5387 (19)
N1—H1N0.915 (17)C9—H9A1.009 (17)
C1—C61.4113 (19)C9—H9B0.951 (18)
C1—C21.4276 (18)C10—H10A1.011 (17)
C1—C71.4290 (18)C10—H10B0.986 (17)
C2—C31.4158 (19)C11—H11A1.009 (17)
C3—C41.369 (2)C11—H11B0.997 (16)
C3—H30.973 (19)
C9—O2—H2O108.8 (14)C1—C7—H7119.3 (9)
C10—O3—H3O106.7 (13)N1—C8—C11111.91 (11)
C11—O4—H4O106.8 (15)N1—C8—C9106.12 (10)
C7—N1—C8127.74 (11)C11—C8—C9108.00 (11)
C7—N1—H1N114.8 (11)N1—C8—C10106.61 (10)
C8—N1—H1N117.3 (11)C11—C8—C10113.27 (11)
C6—C1—C2120.10 (12)C9—C8—C10110.72 (11)
C6—C1—C7118.64 (12)O2—C9—C8112.27 (11)
C2—C1—C7121.22 (12)O2—C9—H9A106.6 (9)
O1—C2—C3121.89 (12)C8—C9—H9A108.8 (9)
O1—C2—C1121.22 (12)O2—C9—H9B111.6 (10)
C3—C2—C1116.89 (12)C8—C9—H9B109.2 (10)
C4—C3—C2121.18 (14)H9A—C9—H9B108.2 (14)
C4—C3—H3120.4 (11)O3—C10—C8111.35 (11)
C2—C3—H3118.4 (11)O3—C10—H10A111.2 (9)
C3—C4—C5121.86 (14)C8—C10—H10A108.8 (9)
C3—C4—H4120.6 (12)O3—C10—H10B108.9 (9)
C5—C4—H4117.5 (12)C8—C10—H10B107.3 (10)
C6—C5—C4118.49 (14)H10A—C10—H10B109.2 (13)
C6—C5—H5120.5 (11)O4—C11—C8113.74 (12)
C4—C5—H5121.0 (11)O4—C11—H11A107.7 (9)
C5—C6—C1121.41 (13)C8—C11—H11A106.9 (9)
C5—C6—H6119.8 (10)O4—C11—H11B110.6 (9)
C1—C6—H6118.8 (10)C8—C11—H11B107.8 (9)
N1—C7—C1123.15 (12)H11A—C11—H11B109.9 (13)
N1—C7—H7117.5 (9)
C6—C1—C2—O1178.12 (12)C2—C1—C7—N10.3 (2)
C7—C1—C2—O14.3 (2)C7—N1—C8—C1114.74 (19)
C6—C1—C2—C32.8 (2)C7—N1—C8—C9132.31 (14)
C7—C1—C2—C3174.79 (13)C7—N1—C8—C10109.61 (15)
O1—C2—C3—C4179.43 (15)N1—C8—C9—O244.58 (14)
C1—C2—C3—C41.5 (2)C11—C8—C9—O2164.73 (11)
C2—C3—C4—C51.0 (3)C10—C8—C9—O270.73 (14)
C3—C4—C5—C62.1 (3)N1—C8—C10—O3175.90 (10)
C4—C5—C6—C10.7 (2)C11—C8—C10—O360.59 (15)
C2—C1—C6—C51.7 (2)C9—C8—C10—O360.90 (14)
C7—C1—C6—C5175.90 (13)N1—C8—C11—O467.18 (15)
C8—N1—C7—C1173.88 (12)C9—C8—C11—O4176.38 (11)
C6—C1—C7—N1177.91 (13)C10—C8—C11—O453.38 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.915 (17)1.865 (17)2.6181 (14)138.1 (15)
O2—H2O···O3i0.84 (2)1.89 (2)2.7314 (15)177 (2)
O3—H3O···O1ii0.91 (2)1.74 (2)2.6426 (14)172 (2)
O4—H4O···O1ii0.86 (2)1.90 (2)2.7254 (15)161 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
(II) 6-hydroxy-2-{[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien- 1(2H)-one top
Crystal data top
C11H15NO5F(000) = 512
Mr = 241.24Dx = 1.485 Mg m3
Monoclinic, P21/cMelting point = 415–417 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.6807 (17) ÅCell parameters from 560 reflections
b = 11.793 (2) Åθ = 2.5–29.3°
c = 9.8373 (18) ŵ = 0.12 mm1
β = 106.110 (3)°T = 223 K
V = 1078.9 (3) Å3Prism, colourless
Z = 40.25 × 0.25 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2258 independent reflections
Radiation source: fine-focus sealed tube1972 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1210
Tmin = 0.971, Tmax = 0.988k = 1413
6019 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.103All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.051P)2 + 0.326P]
where P = (Fo2 + 2Fc2)/3
2258 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H15NO5V = 1078.9 (3) Å3
Mr = 241.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6807 (17) ŵ = 0.12 mm1
b = 11.793 (2) ÅT = 223 K
c = 9.8373 (18) Å0.25 × 0.25 × 0.10 mm
β = 106.110 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2258 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
1972 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.988Rint = 0.029
6019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.103All H-atom parameters refined
S = 1.09Δρmax = 0.18 e Å3
2258 reflectionsΔρmin = 0.25 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82522 (11)0.59478 (9)0.55685 (10)0.0271 (3)
O20.95517 (12)0.32126 (9)0.15492 (12)0.0307 (3)
O31.03815 (12)0.59002 (9)0.31064 (12)0.0297 (3)
O40.63913 (12)0.57956 (11)0.01010 (12)0.0347 (3)
O50.74232 (13)0.67352 (9)0.77973 (11)0.0302 (3)
N10.75693 (13)0.53522 (10)0.29369 (12)0.0226 (3)
C10.58362 (15)0.60323 (11)0.40442 (14)0.0224 (3)
C20.69014 (15)0.61847 (11)0.53614 (14)0.0221 (3)
C30.64182 (16)0.66043 (12)0.65118 (14)0.0233 (3)
C40.50029 (17)0.68423 (12)0.63639 (16)0.0267 (3)
C50.39633 (16)0.66842 (12)0.50537 (16)0.0266 (3)
C60.43763 (16)0.62793 (12)0.39208 (16)0.0250 (3)
C70.62428 (15)0.55787 (12)0.28653 (15)0.0233 (3)
C80.81826 (14)0.48586 (12)0.18571 (14)0.0215 (3)
C90.87055 (16)0.36642 (12)0.24005 (16)0.0247 (3)
C100.94335 (16)0.56280 (12)0.17637 (15)0.0261 (3)
C110.70751 (16)0.47559 (14)0.04146 (15)0.0275 (3)
H1N0.820 (2)0.5531 (17)0.376 (2)0.044 (5)*
H2O0.949 (2)0.250 (2)0.158 (2)0.056 (6)*
H3O1.090 (2)0.5297 (19)0.344 (2)0.052 (6)*
H40.4725 (19)0.7116 (15)0.7191 (19)0.032 (4)*
H4O0.683 (2)0.6094 (19)0.063 (2)0.054 (6)*
H50.2955 (19)0.6846 (14)0.4974 (18)0.026 (4)*
H5O0.829 (3)0.6636 (19)0.774 (2)0.057 (7)*
H60.364 (2)0.6157 (15)0.300 (2)0.037 (5)*
H70.553 (2)0.5427 (16)0.196 (2)0.041 (5)*
H9A0.7856 (19)0.3186 (14)0.2350 (18)0.028 (4)*
H9B0.9287 (18)0.3710 (14)0.3382 (19)0.027 (4)*
H10A0.9051 (18)0.6359 (14)0.1348 (18)0.025 (4)*
H10B0.9969 (19)0.5244 (15)0.1148 (18)0.033 (4)*
H11A0.6312 (18)0.4235 (14)0.0471 (17)0.025 (4)*
H11B0.760 (2)0.4438 (16)0.022 (2)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0223 (5)0.0336 (6)0.0242 (5)0.0030 (4)0.0045 (4)0.0016 (4)
O20.0332 (6)0.0231 (6)0.0378 (6)0.0029 (4)0.0133 (5)0.0039 (4)
O30.0253 (6)0.0234 (5)0.0357 (6)0.0010 (4)0.0003 (4)0.0013 (4)
O40.0311 (6)0.0448 (7)0.0293 (6)0.0096 (5)0.0099 (5)0.0114 (5)
O50.0273 (6)0.0400 (6)0.0242 (5)0.0013 (5)0.0084 (4)0.0059 (4)
N10.0233 (6)0.0250 (6)0.0187 (6)0.0009 (5)0.0048 (5)0.0014 (5)
C10.0244 (7)0.0204 (6)0.0226 (7)0.0017 (5)0.0072 (5)0.0036 (5)
C20.0237 (7)0.0186 (6)0.0248 (7)0.0017 (5)0.0077 (5)0.0028 (5)
C30.0276 (7)0.0197 (6)0.0223 (7)0.0014 (5)0.0066 (5)0.0004 (5)
C40.0316 (8)0.0219 (7)0.0304 (8)0.0010 (6)0.0150 (6)0.0017 (6)
C50.0232 (7)0.0234 (7)0.0349 (8)0.0027 (6)0.0111 (6)0.0033 (6)
C60.0238 (7)0.0239 (7)0.0267 (7)0.0004 (6)0.0060 (6)0.0044 (6)
C70.0240 (7)0.0223 (7)0.0228 (7)0.0004 (5)0.0054 (6)0.0024 (5)
C80.0212 (7)0.0233 (7)0.0207 (6)0.0011 (5)0.0066 (5)0.0014 (5)
C90.0252 (7)0.0225 (7)0.0271 (7)0.0001 (6)0.0083 (6)0.0003 (5)
C100.0276 (8)0.0242 (7)0.0269 (7)0.0017 (6)0.0083 (6)0.0009 (6)
C110.0266 (8)0.0329 (8)0.0217 (7)0.0033 (6)0.0048 (6)0.0027 (6)
Geometric parameters (Å, º) top
O1—C21.2968 (17)C3—C41.366 (2)
O2—C91.4271 (18)C4—C51.410 (2)
O2—H2O0.84 (2)C4—H40.979 (19)
O3—C101.4203 (18)C5—C61.370 (2)
O3—H3O0.88 (2)C5—H50.976 (18)
O4—C111.4185 (19)C6—H61.000 (19)
O4—H4O0.84 (2)C7—H70.98 (2)
O5—C31.3737 (18)C8—C111.5276 (19)
O5—H5O0.87 (3)C8—C101.536 (2)
N1—C71.2943 (19)C8—C91.5414 (19)
N1—C81.4730 (17)C9—H9A0.987 (18)
N1—H1N0.89 (2)C9—H9B0.975 (17)
C1—C61.415 (2)C10—H10A0.981 (17)
C1—C21.4258 (19)C10—H10B1.007 (18)
C1—C71.428 (2)C11—H11A0.974 (17)
C2—C31.4277 (19)C11—H11B0.980 (19)
C9—O2—H2O107.0 (16)N1—C7—H7116.7 (12)
C10—O3—H3O108.7 (14)C1—C7—H7121.6 (12)
C11—O4—H4O108.6 (15)N1—C8—C11112.44 (11)
C3—O5—H5O112.1 (16)N1—C8—C10106.97 (11)
C7—N1—C8129.40 (12)C11—C8—C10110.67 (12)
C7—N1—H1N115.0 (13)N1—C8—C9105.68 (11)
C8—N1—H1N115.6 (13)C11—C8—C9109.15 (12)
C6—C1—C2120.36 (13)C10—C8—C9111.84 (12)
C6—C1—C7120.08 (13)O2—C9—C8108.92 (11)
C2—C1—C7119.50 (13)O2—C9—H9A111.3 (10)
O1—C2—C1124.00 (13)C8—C9—H9A108.4 (10)
O1—C2—C3119.21 (13)O2—C9—H9B109.5 (10)
C1—C2—C3116.78 (13)C8—C9—H9B109.7 (10)
C4—C3—O5120.54 (13)H9A—C9—H9B109.0 (14)
C4—C3—C2121.76 (13)O3—C10—C8113.23 (12)
O5—C3—C2117.68 (13)O3—C10—H10A105.1 (10)
C3—C4—C5120.69 (14)C8—C10—H10A109.3 (10)
C3—C4—H4118.5 (11)O3—C10—H10B110.7 (10)
C5—C4—H4120.8 (11)C8—C10—H10B108.4 (10)
C6—C5—C4119.61 (14)H10A—C10—H10B110.0 (14)
C6—C5—H5120.9 (10)O4—C11—C8113.65 (12)
C4—C5—H5119.4 (10)O4—C11—H11A106.2 (10)
C5—C6—C1120.79 (14)C8—C11—H11A110.2 (10)
C5—C6—H6119.6 (11)O4—C11—H11B112.0 (11)
C1—C6—H6119.6 (11)C8—C11—H11B105.6 (11)
N1—C7—C1121.74 (13)H11A—C11—H11B109.2 (15)
C6—C1—C2—O1178.02 (13)C6—C1—C7—N1179.38 (13)
C7—C1—C2—O10.9 (2)C2—C1—C7—N13.5 (2)
C6—C1—C2—C30.75 (19)C7—N1—C8—C118.4 (2)
C7—C1—C2—C3177.88 (12)C7—N1—C8—C10130.12 (15)
O1—C2—C3—C4178.41 (13)C7—N1—C8—C9110.56 (16)
C1—C2—C3—C40.4 (2)N1—C8—C9—O2169.27 (11)
O1—C2—C3—O50.12 (19)C11—C8—C9—O269.58 (15)
C1—C2—C3—O5178.71 (12)C10—C8—C9—O253.22 (15)
O5—C3—C4—C5178.54 (13)N1—C8—C10—O347.88 (15)
C2—C3—C4—C50.3 (2)C11—C8—C10—O3170.69 (12)
C3—C4—C5—C60.5 (2)C9—C8—C10—O367.38 (15)
C4—C5—C6—C10.9 (2)N1—C8—C11—O455.60 (17)
C2—C1—C6—C51.0 (2)C10—C8—C11—O463.97 (16)
C7—C1—C6—C5178.11 (13)C9—C8—C11—O4172.53 (12)
C8—N1—C7—C1178.20 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.89 (2)1.84 (2)2.5851 (16)140.0 (18)
O2—H2O···O3i0.84 (2)1.91 (3)2.7465 (16)171 (2)
O3—H3O···O1ii0.88 (2)1.83 (2)2.6910 (15)167 (2)
O4—H4O···O5iii0.84 (2)1.95 (3)2.7652 (17)167 (2)
O5—H5O···O2ii0.87 (3)2.02 (3)2.8193 (17)153 (2)
O5—H5O···O10.87 (3)2.27 (2)2.7000 (15)110.3 (19)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y, z1.
(III) 6-methoxy-2-{[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien- 1(2H)-one top
Crystal data top
C12H17NO5Dx = 1.418 Mg m3
Mr = 255.27Melting point = 454–455 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 720 reflections
a = 10.6464 (7) Åθ = 2.2–27.6°
b = 10.7749 (7) ŵ = 0.11 mm1
c = 20.8540 (13) ÅT = 213 K
V = 2392.2 (3) Å3Needle, colourless
Z = 80.30 × 0.30 × 0.03 mm
F(000) = 1088
Data collection top
Bruker SMART CCD area-detector
diffractometer
2744 independent reflections
Radiation source: fine-focus sealed tube2241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 613
Tmin = 0.968, Tmax = 0.997k = 1314
12603 measured reflectionsl = 2627
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.105All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.9405P]
where P = (Fo2 + 2Fc2)/3
2744 reflections(Δ/σ)max = 0.004
231 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H17NO5V = 2392.2 (3) Å3
Mr = 255.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.6464 (7) ŵ = 0.11 mm1
b = 10.7749 (7) ÅT = 213 K
c = 20.8540 (13) Å0.30 × 0.30 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2744 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
2241 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.997Rint = 0.036
12603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.105All H-atom parameters refined
S = 1.07Δρmax = 0.27 e Å3
2744 reflectionsΔρmin = 0.21 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59626 (10)0.09299 (10)0.61618 (5)0.0270 (3)
O50.36871 (11)0.09491 (11)0.66751 (6)0.0335 (3)
O20.77267 (10)0.08388 (10)0.47120 (6)0.0268 (3)
H2O0.705 (2)0.100 (2)0.4521 (11)0.055 (7)*
O31.09930 (11)0.13505 (11)0.52213 (6)0.0339 (3)
H3O1.140 (2)0.070 (2)0.5281 (10)0.046 (6)*
O41.03769 (10)0.38666 (11)0.58199 (6)0.0281 (3)
H4O1.010 (2)0.455 (2)0.5969 (9)0.043 (6)*
N10.78960 (11)0.22397 (12)0.57913 (6)0.0214 (3)
H1N0.741 (2)0.1549 (19)0.5784 (9)0.042 (5)*
C10.64296 (14)0.29492 (14)0.65720 (7)0.0226 (3)
C20.56490 (13)0.18755 (14)0.65051 (7)0.0215 (3)
C30.44500 (14)0.19299 (15)0.68238 (7)0.0254 (3)
C40.41485 (16)0.28899 (17)0.72215 (8)0.0328 (4)
H40.333 (2)0.2873 (19)0.7451 (11)0.053 (6)*
C50.49735 (17)0.38915 (17)0.73158 (9)0.0369 (4)
H50.476 (2)0.4539 (19)0.7602 (10)0.046 (6)*
C60.60765 (16)0.39349 (16)0.69873 (8)0.0313 (4)
H60.6633 (18)0.4618 (19)0.7027 (9)0.041 (5)*
C120.23936 (17)0.1071 (2)0.68447 (10)0.0401 (4)
H12A0.203 (2)0.188 (2)0.6663 (10)0.047 (6)*
H12B0.2279 (19)0.1055 (18)0.7307 (10)0.041 (5)*
H12C0.201 (2)0.033 (2)0.6650 (10)0.045 (6)*
C70.75333 (14)0.30753 (14)0.61983 (7)0.0228 (3)
H70.8017 (15)0.3814 (15)0.6239 (8)0.021 (4)*
C80.89788 (13)0.22774 (13)0.53555 (7)0.0205 (3)
C90.85050 (15)0.19195 (15)0.46847 (7)0.0242 (3)
H9A0.8027 (15)0.2610 (16)0.4508 (8)0.022 (4)*
H9B0.9239 (17)0.1733 (16)0.4419 (8)0.028 (4)*
C100.99173 (14)0.13295 (14)0.56173 (8)0.0244 (3)
H10A0.9516 (15)0.0508 (16)0.5619 (8)0.022 (4)*
H10B1.0105 (17)0.1558 (16)0.6056 (9)0.029 (5)*
C110.95707 (14)0.35666 (14)0.52966 (7)0.0232 (3)
H11A0.8904 (17)0.4179 (16)0.5254 (8)0.026 (4)*
H11B1.0061 (17)0.3567 (16)0.4901 (8)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (6)0.0235 (5)0.0347 (6)0.0018 (4)0.0047 (5)0.0051 (4)
O50.0220 (6)0.0349 (7)0.0437 (7)0.0055 (5)0.0054 (5)0.0012 (5)
O20.0185 (5)0.0242 (6)0.0376 (6)0.0006 (4)0.0051 (5)0.0036 (5)
O30.0195 (6)0.0271 (6)0.0551 (8)0.0062 (5)0.0073 (5)0.0035 (6)
O40.0208 (5)0.0224 (6)0.0410 (6)0.0006 (4)0.0000 (5)0.0076 (5)
N10.0164 (6)0.0211 (6)0.0266 (6)0.0017 (5)0.0014 (5)0.0007 (5)
C10.0184 (7)0.0249 (7)0.0245 (7)0.0008 (6)0.0016 (6)0.0020 (6)
C20.0190 (7)0.0249 (7)0.0206 (7)0.0021 (6)0.0012 (5)0.0001 (6)
C30.0208 (7)0.0294 (8)0.0259 (7)0.0006 (6)0.0008 (6)0.0023 (6)
C40.0234 (8)0.0435 (10)0.0316 (8)0.0031 (7)0.0060 (7)0.0042 (7)
C50.0322 (9)0.0412 (10)0.0374 (9)0.0054 (8)0.0036 (8)0.0164 (8)
C60.0262 (8)0.0307 (9)0.0370 (9)0.0004 (7)0.0014 (7)0.0118 (7)
C120.0220 (8)0.0531 (12)0.0453 (11)0.0062 (8)0.0034 (8)0.0057 (9)
C70.0190 (7)0.0222 (7)0.0273 (7)0.0005 (6)0.0029 (6)0.0018 (6)
C80.0149 (6)0.0190 (7)0.0275 (7)0.0001 (5)0.0018 (6)0.0001 (6)
C90.0203 (7)0.0249 (8)0.0275 (7)0.0008 (6)0.0007 (6)0.0004 (6)
C100.0184 (7)0.0211 (7)0.0336 (8)0.0009 (6)0.0006 (6)0.0005 (6)
C110.0203 (7)0.0197 (7)0.0297 (8)0.0008 (6)0.0025 (6)0.0008 (6)
Geometric parameters (Å, º) top
O1—C21.2892 (18)C4—H41.00 (2)
O5—C31.3684 (19)C5—C61.360 (3)
O5—C121.428 (2)C5—H50.95 (2)
O2—C91.4304 (19)C6—H60.95 (2)
O2—H2O0.84 (2)C12—H12A1.02 (2)
O3—C101.4121 (19)C12—H12B0.97 (2)
O3—H3O0.83 (2)C12—H12C0.98 (2)
O4—C111.4254 (19)C7—H70.952 (17)
O4—H4O0.85 (2)C8—C101.529 (2)
N1—C71.2962 (19)C8—C111.530 (2)
N1—C81.4685 (18)C8—C91.536 (2)
N1—H1N0.91 (2)C9—H9A0.974 (17)
C1—C71.417 (2)C9—H9B0.979 (18)
C1—C61.421 (2)C10—H10A0.983 (17)
C1—C21.431 (2)C10—H10B0.969 (18)
C2—C31.440 (2)C11—H11A0.973 (18)
C3—C41.364 (2)C11—H11B0.976 (18)
C4—C51.405 (3)
C3—O5—C12116.44 (14)H12A—C12—H12C112.1 (17)
C9—O2—H2O107.9 (16)H12B—C12—H12C110.2 (17)
C10—O3—H3O108.8 (15)N1—C7—C1122.73 (14)
C11—O4—H4O105.3 (14)N1—C7—H7118.6 (10)
C7—N1—C8128.31 (13)C1—C7—H7118.7 (10)
C7—N1—H1N114.3 (13)N1—C8—C10105.87 (12)
C8—N1—H1N117.4 (13)N1—C8—C11113.45 (12)
C7—C1—C6118.89 (14)C10—C8—C11111.46 (12)
C7—C1—C2120.37 (13)N1—C8—C9107.39 (12)
C6—C1—C2120.66 (14)C10—C8—C9111.83 (12)
O1—C2—C1122.85 (13)C11—C8—C9106.86 (12)
O1—C2—C3121.20 (13)O2—C9—C8111.00 (12)
C1—C2—C3115.89 (13)O2—C9—H9A109.5 (10)
C4—C3—O5125.71 (14)C8—C9—H9A109.0 (10)
C4—C3—C2121.33 (15)O2—C9—H9B108.5 (10)
O5—C3—C2112.95 (13)C8—C9—H9B107.8 (10)
C3—C4—C5121.35 (15)H9A—C9—H9B111.1 (14)
C3—C4—H4119.0 (12)O3—C10—C8108.09 (12)
C5—C4—H4119.7 (12)O3—C10—H10A111.7 (9)
C6—C5—C4119.71 (16)C8—C10—H10A108.6 (10)
C6—C5—H5120.1 (13)O3—C10—H10B112.4 (11)
C4—C5—H5120.2 (13)C8—C10—H10B107.6 (10)
C5—C6—C1120.64 (16)H10A—C10—H10B108.3 (14)
C5—C6—H6121.4 (12)O4—C11—C8113.10 (12)
C1—C6—H6117.9 (12)O4—C11—H11A110.8 (10)
O5—C12—H12A110.4 (12)C8—C11—H11A108.8 (10)
O5—C12—H12B111.4 (12)O4—C11—H11B108.9 (11)
H12A—C12—H12B109.6 (16)C8—C11—H11B106.8 (10)
O5—C12—H12C103.0 (12)H11A—C11—H11B108.2 (14)
C7—C1—C2—O17.3 (2)C8—N1—C7—C1176.92 (13)
C6—C1—C2—O1176.11 (14)C6—C1—C7—N1177.47 (15)
C7—C1—C2—C3169.99 (13)C2—C1—C7—N10.8 (2)
C6—C1—C2—C36.6 (2)C7—N1—C8—C10109.76 (16)
C12—O5—C3—C413.4 (2)C7—N1—C8—C1112.8 (2)
C12—O5—C3—C2165.76 (14)C7—N1—C8—C9130.63 (15)
O1—C2—C3—C4175.58 (15)N1—C8—C9—O246.88 (16)
C1—C2—C3—C47.1 (2)C10—C8—C9—O268.86 (16)
O1—C2—C3—O55.2 (2)C11—C8—C9—O2168.92 (12)
C1—C2—C3—O5172.15 (13)N1—C8—C10—O3178.68 (12)
O5—C3—C4—C5176.39 (16)C11—C8—C10—O354.88 (16)
C2—C3—C4—C52.7 (3)C9—C8—C10—O364.66 (16)
C3—C4—C5—C62.5 (3)N1—C8—C11—O479.70 (15)
C4—C5—C6—C12.9 (3)C10—C8—C11—O439.70 (17)
C7—C1—C6—C5174.82 (16)C9—C8—C11—O4162.15 (12)
C2—C1—C6—C51.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.91 (2)1.85 (2)2.6125 (16)139.7 (18)
O2—H2O···O4i0.84 (2)1.92 (2)2.7549 (16)170 (2)
O3—H3O···O2ii0.83 (2)1.91 (2)2.7280 (17)171 (2)
O4—H4O···O1iii0.85 (2)1.91 (2)2.7359 (16)163 (2)
O4—H4O···O5iii0.85 (2)2.47 (2)3.0346 (16)124.1 (17)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y, z+1; (iii) x+3/2, y+1/2, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC11H15NO4C11H15NO5C12H17NO5
Mr225.24241.24255.27
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cOrthorhombic, Pbca
Temperature (K)208223213
a, b, c (Å)10.4437 (9), 8.7029 (7), 12.6147 (11)9.6807 (17), 11.793 (2), 9.8373 (18)10.6464 (7), 10.7749 (7), 20.8540 (13)
α, β, γ (°)90, 101.801 (2), 9090, 106.110 (3), 9090, 90, 90
V3)1122.32 (16)1078.9 (3)2392.2 (3)
Z448
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.120.11
Crystal size (mm)0.30 × 0.30 × 0.300.25 × 0.25 × 0.100.30 × 0.30 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Multi-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.971, 0.9880.968, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
12824, 2701, 2226 6019, 2258, 1972 12603, 2744, 2241
Rint0.0390.0290.036
(sin θ/λ)max1)0.6600.6300.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.111, 1.10 0.040, 0.103, 1.09 0.046, 0.105, 1.07
No. of reflections270122582744
No. of parameters206214231
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.190.18, 0.250.27, 0.21

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
O1—C21.3025 (16)C1—C71.4290 (18)
N1—C71.2952 (18)C2—C31.4158 (19)
N1—C81.4741 (16)C3—C41.369 (2)
C1—C61.4113 (19)C4—C51.401 (2)
C1—C21.4276 (18)C5—C61.368 (2)
C6—C1—C7118.64 (12)O1—C2—C1121.22 (12)
C2—C1—C7121.22 (12)N1—C7—C1123.15 (12)
O1—C2—C3121.89 (12)
C6—C1—C2—O1178.12 (12)C2—C1—C7—N10.3 (2)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.915 (17)1.865 (17)2.6181 (14)138.1 (15)
O2—H2O···O3i0.84 (2)1.89 (2)2.7314 (15)177 (2)
O3—H3O···O1ii0.91 (2)1.74 (2)2.6426 (14)172 (2)
O4—H4O···O1ii0.86 (2)1.90 (2)2.7254 (15)161 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
O1—C21.2968 (17)C1—C71.428 (2)
O5—C31.3737 (18)C2—C31.4277 (19)
N1—C71.2943 (19)C3—C41.366 (2)
N1—C81.4730 (17)C4—C51.410 (2)
C1—C61.415 (2)C5—C61.370 (2)
C1—C21.4258 (19)
C6—C1—C7120.08 (13)O1—C2—C3119.21 (13)
C2—C1—C7119.50 (13)N1—C7—C1121.74 (13)
O1—C2—C1124.00 (13)
C7—C1—C2—O10.9 (2)C2—C1—C7—N13.5 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.89 (2)1.84 (2)2.5851 (16)140.0 (18)
O2—H2O···O3i0.84 (2)1.91 (3)2.7465 (16)171 (2)
O3—H3O···O1ii0.88 (2)1.83 (2)2.6910 (15)167 (2)
O4—H4O···O5iii0.84 (2)1.95 (3)2.7652 (17)167 (2)
O5—H5O···O2ii0.87 (3)2.02 (3)2.8193 (17)153 (2)
O5—H5O···O10.87 (3)2.27 (2)2.7000 (15)110.3 (19)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y, z1.
Selected geometric parameters (Å, º) for (III) top
O1—C21.2892 (18)C1—C21.431 (2)
O5—C31.3684 (19)C2—C31.440 (2)
N1—C71.2962 (19)C3—C41.364 (2)
N1—C81.4685 (18)C4—C51.405 (3)
C1—C71.417 (2)C5—C61.360 (3)
C1—C61.421 (2)
C7—C1—C6118.89 (14)O1—C2—C3121.20 (13)
C7—C1—C2120.37 (13)N1—C7—C1122.73 (14)
O1—C2—C1122.85 (13)
C7—C1—C2—O17.3 (2)C2—C1—C7—N10.8 (2)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.91 (2)1.85 (2)2.6125 (16)139.7 (18)
O2—H2O···O4i0.84 (2)1.92 (2)2.7549 (16)170 (2)
O3—H3O···O2ii0.83 (2)1.91 (2)2.7280 (17)171 (2)
O4—H4O···O1iii0.85 (2)1.91 (2)2.7359 (16)163 (2)
O4—H4O···O5iii0.85 (2)2.47 (2)3.0346 (16)124.1 (17)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+2, y, z+1; (iii) x+3/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds