Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Two twisted 1,2-bis(2-pyridyl)­ethyne ligands bridge two Cd2+ centers in the C2-symmetric title complex, [Cd2(NO3)4(μ-C12H8N2)2(H2O)2]. The bridging ligands arch across one another creating a `zigzag loop' molecular geometry. Two nitrate ions and a water mol­ecule complete the irregular seven-coordinate Cd-atom environment. The dihedral angles between the equivalent pyridyl ring planes of the two independent ligands are 67.2 (1)°. Owater—H...Onitrate hydrogen bonding creates two-dimensional layers parallel to the ab plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008904/fr1421sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008904/fr1421Isup2.hkl
Contains datablock I

CCDC reference: 214376

Comment top

Dipyridylacetylene ligands have been used by several groups for the construction of structurally diverse coordination networks (Bosch & Barnes, 2001; Carlucci et al., 1998, 1999a,b; Dong et al., 1999a,b) and as supramolecular synthons (Zaman et al., 2000). Most efforts have employed the 4,4'-dipyridyl species, with comparatively fewer 3,3'- and 2,2'-dipyridyl studies. As part of an exploration of the structural effect of the 2,2'-, 3,3'- and 4,4'-positional orientation of the N atoms in dipyridylacetylene ligands, we report here the structure of [Cd(2,2'-dpa)(H2O)(NO3)2]2, (I), the product of the reaction of 2,2'-dipyridylacetylene [systematic name 1,2-bis(2-pyridyl)ethyne, hereafter 2,2'-dpa) with Cd(NO3)2·4H2O.

Slow evaporation of a 1:1 C d(NO3)2·4H2O/2,2'-dpa mixture from a 1:1 methylene chloride/methanol solvent system deposited plentiful yellow block crystals of (I) after 2 d. The asymmetric unit of the dinuclear title complex consists of half of two independent 2,2'-dpa ligands, two nitrate ions and a coordinated water molecule. The heptacoordinate Cd environment is irregular, but can be described as a distorted trigonal bipyramid (Figure 1) with two additional long Cd—O bonds. The equatorial sites contain two pyridyl N atoms from two ligands and atom O2, with the axial sites occupied by the coordinated water molecule and atom O5. Atoms O1 and O4 complete the coordination sphere at distances greater than 2.5 Å. The nitrate anions are thus intermediate between monodentate and bidentate (the distances and angles around Cd are given in Table 1).

The complex lies on a C2 axis passing through the mid-point of the acetylene units of both ligands (C6—C6i and C12—C12i). Each 2,2'-dpa ligand bridges two equivalent cadmium centers [Cd···Cd = 6.1045 (6) Å], and the ligands arch across one another to create an infinite zigzag cycle molecular geometry (Fig. 1). The ligands crisscross each other in projection along [010], with interligand Cacetylene—Cacetylene distances of 3.422 (2) Å (C6—C12) and 3.280 (2) (C6—C12i) Å [symmetry code: (i) = 1 − x, y, 1/2 − z], the latter indicating a possible alkyne–alkyne interaction (C···C van der Waals sum = 3.40 Å).

Both independent ligands in (I) are significantly distorted as as result of the geometric requirements of bridging two metal centers into a cyclic system. The acetylene units of the ligands show a more pronounced deviation from linearity [C11—C12—C12i = 175.8 (1)° and C5—C6—C6i = 170.7 (1)°), than observed previously (Neenan et al., 1996). Additionally, the pyridyl rings in each independent ligand are rotated with respect to one another by identical values of 67.2 (1) °, whereas in all other published accounts this ligand tends strongly toward planarity, with maximum dihedral angles between pyridyl ring planes of less than 5° (Neenan et al., 1996; Zaman et al., 2000).

Intermolecular O—H···O hydrogen bonding (Table 2) between water atoms H1W and H2W and uncoordinated nitrate atoms O6 and O3, respectively, serves to link the complexes into sheets parallel to the crystallographic ab plane (Fig. 2). All available hydrogen-bonding donor and acceptor atoms are utilized in the crystal, either in coordination to the Cd center or in the O—H···O network. The hydrogen- bonded layers then stack along [001] with no obvious interactions except of the van der Waals type.

Interestingly, an unusually short C—O contact of 2.861 (2) Å, involving atom C11 of a pyridyl ring (adjacent to N2) and the nitrate donor O6 from a neighboring molecule (symmetry code: x, y − 1, z) is present in the crystal structure. Though quite short (C—O van der Waals sum = 3.3 Å), this interaction is most likely a by-product of the strong O1W—H1W···O6 hydrogen bond mentioned above.

The 'zigzag loop' geometry of the title complex represents the third distinct structural motif obtained from the M(NO3)2/2,2'-dpa system (M = transition metal), after the unusual non-cyclic Cu2(NO3)2(µ-2,2'-dpa)(2,2'-dpa)2 zigzag complex and the infinite one-dimensional zigzag chain [Co(NO3)2(2,2'-dpa)] polymer, both reported by Neenan et al. (1996). Besides demonstrating the structural unpredictability of this ligand, these results show how the 2,2'-position of the pyridyl N atoms necessarily results in zigzag motifs rather than more orthogonal systems. For example, the reported 4,4'-dpa coordination network structures tend to adopt ladder, brick-wall, 'parquet' and more complex structural motifs, with N—M—N angles near 90°. Also, there is increased steric difficulty in coordinating more than two 2,2'-dpa ligands around a metal center due to the 'bending back' of the ligand toward the metal and therefore toward any other coordinated ligands, instead of stretching outward as with 4,4'-dpa. However, higher 2,2'-dpa ligand coordination and increased structure dimensionality might be more likely with a non-coordinating anion.

Experimental top

The ligand 1,2-bis(2-pyridyl)ethyne was prepared according to the method described by Teitei et al. (1972). A methanol solution (5 ml) of Cd(NO3)2·4H2O (30.8 mg, 0.1 mmol) was slowly added to a methylene chloride (5 ml) solution of 2,2'-dpa (18.2 mg, 0.1 mmol). After one week, the yellow–orange solution was slowly evaporated (at room temperature over a period of two weeks) to saturation. Large yellow block-like crystals grew at the bottom of the test tube after 2 d.

Refinement top

H atoms attached to C atoms were idealized and treated as riding [C—H = 0.95 A and Uiso(H) = 1.2 Uiso(C)]. Water H atoms were located in a Fourier map and refined freely.

Computing details top

Data collection: SMART-NT (Bruker, 1999); cell refinement: SAINT-Plus-NT (Bruker, 1999); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: ATOMS (Dowty, 2001) & SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. (a) A view of (I), slightly off the C2 axis. (b) A view of (I), perpendicular to the above. In both cases, displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. [001] view perpendicular to one layer of the extended two-dimensional hydrogen-bonding network. [Symmetry codes: (i) x, y − 1, z; (ii) 1/2 − x, y − 1/2, z.]
Bis[µ-1,2-bis(2-pyridyl)ethyne-κ2N:N']bis[aquadinitratocadmium(II)] top
Crystal data top
[Cd2(NO3)4(C12H8N2)2(H2O)2]F(000) = 1712
Mr = 869.28Dx = 1.916 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 5750 reflections
a = 19.910 (3) Åθ = 2.6–26.4°
b = 7.8559 (8) ŵ = 1.50 mm1
c = 19.263 (2) ÅT = 173 K
V = 3013.0 (6) Å3Block, yellow
Z = 40.48 × 0.44 × 0.32 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3074 independent reflections
Radiation source: fine-focus sealed tube2697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2414
Tmin = 0.515, Tmax = 0.647k = 89
14574 measured reflectionsl = 2124
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0321P)2 + 0.0456P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3074 reflectionsΔρmax = 0.40 e Å3
234 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00294 (13)
Crystal data top
[Cd2(NO3)4(C12H8N2)2(H2O)2]V = 3013.0 (6) Å3
Mr = 869.28Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 19.910 (3) ŵ = 1.50 mm1
b = 7.8559 (8) ÅT = 173 K
c = 19.263 (2) Å0.48 × 0.44 × 0.32 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3074 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2697 reflections with I > 2σ(I)
Tmin = 0.515, Tmax = 0.647Rint = 0.019
14574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.40 e Å3
3074 reflectionsΔρmin = 0.43 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.375080 (7)0.233543 (16)0.158156 (6)0.01963 (7)
C10.49270 (11)0.2478 (2)0.04658 (11)0.0280 (4)
H10.46110.18160.02140.042 (6)*
C20.55109 (10)0.2989 (3)0.01329 (11)0.0336 (5)
H20.55950.26710.03350.038 (6)*
C30.59648 (10)0.3964 (3)0.04948 (11)0.0349 (5)
H30.63660.43440.02770.035 (6)*
C40.58330 (10)0.4388 (2)0.11790 (10)0.0295 (4)
H40.61430.50550.14370.033 (6)*
C50.52409 (9)0.3821 (2)0.14806 (9)0.0220 (4)
C60.50804 (9)0.4105 (2)0.21998 (9)0.0223 (4)
C70.30083 (9)0.1170 (2)0.29482 (10)0.0262 (4)
H70.26680.18050.27190.031 (5)*
C80.28641 (10)0.0447 (3)0.35847 (11)0.0336 (5)
H80.24320.05820.37870.042 (6)*
C90.33526 (11)0.0469 (3)0.39227 (10)0.0356 (5)
H90.32630.09740.43610.032 (5)*
C100.39732 (11)0.0646 (2)0.36167 (10)0.0299 (4)
H100.43180.12770.38410.030 (5)*
C110.40889 (9)0.0107 (2)0.29768 (9)0.0219 (4)
C120.47307 (8)0.0023 (2)0.26376 (9)0.0232 (4)
N10.47884 (8)0.28748 (18)0.11247 (8)0.0218 (3)
N20.36103 (7)0.10118 (18)0.26397 (8)0.0211 (3)
N30.27536 (9)0.3079 (2)0.05851 (9)0.0318 (4)
N40.35745 (8)0.58649 (19)0.19734 (8)0.0244 (3)
O10.33331 (7)0.28351 (16)0.03544 (7)0.0313 (3)
O20.26403 (7)0.27369 (17)0.12142 (8)0.0336 (3)
O30.23002 (8)0.3656 (2)0.02124 (8)0.0511 (4)
O40.37963 (7)0.5586 (2)0.13786 (8)0.0338 (3)
O50.33949 (7)0.46129 (16)0.23400 (7)0.0314 (3)
O60.35314 (8)0.73257 (15)0.22109 (8)0.0320 (3)
O1W0.37703 (8)0.03747 (18)0.11165 (9)0.0290 (3)
H1W0.3742 (14)0.104 (4)0.1440 (17)0.065 (11)*
H2W0.3468 (13)0.055 (3)0.0848 (14)0.051 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.02036 (10)0.01888 (9)0.01966 (10)0.00015 (5)0.00178 (5)0.00147 (4)
C10.0291 (11)0.0315 (11)0.0234 (10)0.0039 (8)0.0009 (8)0.0013 (7)
C20.0353 (12)0.0412 (12)0.0243 (11)0.0069 (9)0.0089 (9)0.0034 (9)
C30.0276 (11)0.0422 (12)0.0348 (12)0.0014 (9)0.0107 (9)0.0114 (9)
C40.0256 (10)0.0308 (10)0.0322 (11)0.0046 (8)0.0026 (8)0.0058 (8)
C50.0223 (9)0.0201 (9)0.0235 (9)0.0028 (7)0.0014 (7)0.0041 (7)
C60.0192 (9)0.0191 (9)0.0285 (9)0.0008 (7)0.0012 (7)0.0008 (7)
C70.0234 (10)0.0270 (9)0.0282 (10)0.0035 (7)0.0014 (8)0.0011 (7)
C80.0306 (11)0.0397 (12)0.0303 (11)0.0050 (9)0.0085 (9)0.0001 (9)
C90.0482 (13)0.0373 (11)0.0214 (10)0.0062 (10)0.0065 (9)0.0055 (8)
C100.0372 (11)0.0280 (10)0.0247 (10)0.0003 (9)0.0046 (9)0.0038 (8)
C110.0254 (10)0.0174 (8)0.0228 (9)0.0027 (7)0.0016 (8)0.0013 (6)
C120.0275 (10)0.0169 (8)0.0251 (10)0.0004 (7)0.0049 (7)0.0009 (7)
N10.0207 (8)0.0219 (8)0.0227 (8)0.0019 (6)0.0035 (6)0.0020 (6)
N20.0231 (8)0.0182 (7)0.0220 (8)0.0025 (6)0.0012 (6)0.0002 (6)
N30.0349 (10)0.0348 (9)0.0258 (9)0.0048 (8)0.0041 (7)0.0030 (7)
N40.0242 (8)0.0193 (8)0.0296 (9)0.0015 (6)0.0043 (7)0.0005 (6)
O10.0307 (8)0.0341 (7)0.0290 (8)0.0013 (6)0.0028 (6)0.0024 (6)
O20.0281 (8)0.0504 (9)0.0223 (8)0.0045 (6)0.0014 (6)0.0046 (6)
O30.0459 (10)0.0779 (12)0.0297 (8)0.0245 (9)0.0111 (7)0.0043 (8)
O40.0375 (9)0.0317 (8)0.0321 (8)0.0046 (6)0.0080 (6)0.0044 (6)
O50.0349 (8)0.0214 (7)0.0380 (8)0.0015 (6)0.0006 (6)0.0061 (6)
O60.0431 (9)0.0193 (7)0.0337 (8)0.0011 (6)0.0004 (7)0.0067 (5)
O1W0.0364 (9)0.0214 (7)0.0292 (8)0.0033 (6)0.0018 (7)0.0007 (6)
Geometric parameters (Å, º) top
Cd—N12.2852 (15)C7—C81.381 (3)
Cd—N22.3052 (15)C7—H70.9500
Cd—O1W2.3102 (14)C8—C91.374 (3)
Cd—O22.3429 (15)C8—H80.9500
Cd—O52.4162 (14)C9—C101.376 (3)
Cd—O12.5364 (14)C9—H90.9500
Cd—O42.5848 (16)C10—C111.387 (3)
Cd—Cdi6.1045 (6)C10—H100.9500
C1—N11.336 (3)C11—N21.355 (2)
C1—C21.387 (3)C11—C121.439 (2)
C1—H10.9500C11—O6ii2.861 (2)
C2—C31.375 (3)C12—C12i1.196 (3)
C2—H20.9500N3—O31.239 (2)
C3—C41.384 (3)N3—O11.251 (2)
C3—H30.9500N3—O21.262 (2)
C4—C51.388 (3)N4—O61.2383 (18)
C4—H40.9500N4—O41.247 (2)
C5—N11.354 (2)N4—O51.2625 (19)
C5—C61.439 (2)O1W—H1W0.81 (3)
C6—C6i1.200 (4)O1W—H2W0.81 (3)
C7—N21.344 (2)
N1—Cd—N2122.27 (5)C6i—C6—C5170.74 (11)
N1—Cd—O1W90.36 (5)C6i—C6—C12i86.48 (5)
N2—Cd—O1W85.94 (5)C5—C6—C12i85.01 (10)
N1—Cd—O2135.39 (6)C6i—C6—C1273.04 (5)
N2—Cd—O2102.31 (5)C5—C6—C1297.78 (11)
O1W—Cd—O291.31 (5)N2—C7—C8122.68 (18)
N1—Cd—O5111.14 (5)N2—C7—H7118.7
N2—Cd—O576.34 (5)C8—C7—H7118.7
O1W—Cd—O5157.20 (5)C9—C8—C7119.27 (18)
O2—Cd—O578.82 (5)C9—C8—H8120.4
N1—Cd—O184.77 (5)C7—C8—H8120.4
N2—Cd—O1148.65 (5)C8—C9—C10119.04 (18)
O1W—Cd—O177.69 (5)C8—C9—H9120.5
O2—Cd—O152.28 (5)C10—C9—H9120.5
O5—Cd—O1110.66 (4)C9—C10—C11119.14 (18)
N1—Cd—O474.15 (5)C9—C10—H10120.4
N2—Cd—O4125.71 (5)C11—C10—H10120.4
O1W—Cd—O4148.34 (5)N2—C11—C10122.22 (17)
O2—Cd—O481.63 (5)N2—C11—C12116.38 (16)
O5—Cd—O450.97 (5)C10—C11—C12121.40 (17)
O1—Cd—O473.60 (5)C12i—C12—C11175.85 (11)
N1—Cd—Cdi59.11 (4)C12i—C12—C673.05 (5)
N2—Cd—Cdi65.57 (4)C11—C12—C6103.02 (11)
O1W—Cd—Cdi102.18 (4)C1—N1—C5118.14 (16)
O2—Cd—Cdi160.75 (4)C1—N1—Cd120.62 (13)
O5—Cd—Cdi83.60 (3)C5—N1—Cd120.55 (12)
O1—Cd—Cdi143.84 (3)C7—N2—C11117.65 (15)
O4—Cd—Cdi93.39 (3)C7—N2—Cd117.24 (12)
N1—C1—C2123.03 (19)C11—N2—Cd125.11 (12)
N1—C1—H1118.5O3—N3—O1121.47 (17)
C2—C1—H1118.5O3—N3—O2120.26 (17)
C3—C2—C1118.53 (19)O1—N3—O2118.27 (16)
C3—C2—H2120.7O6—N4—O4121.79 (15)
C1—C2—H2120.7O6—N4—O5119.72 (16)
C2—C3—C4119.49 (18)O4—N4—O5118.50 (15)
C2—C3—H3120.3N3—O1—Cd89.72 (10)
C4—C3—H3120.3N3—O2—Cd98.62 (11)
C3—C4—C5118.84 (18)N4—O4—Cd91.28 (10)
C3—C4—H4120.6N4—O5—Cd98.95 (11)
C5—C4—H4120.6Cd—O1W—H1W107 (2)
N1—C5—C4121.96 (17)Cd—O1W—H2W113.4 (19)
N1—C5—C6115.14 (15)H1W—O1W—H2W109 (3)
C4—C5—C6122.81 (17)
N1—C1—C2—C30.8 (3)O2—Cd—N2—C719.60 (13)
C1—C2—C3—C40.9 (3)O5—Cd—N2—C755.49 (12)
C2—C3—C4—C50.4 (3)O1—Cd—N2—C751.89 (17)
C3—C4—C5—N10.3 (3)O4—Cd—N2—C768.87 (14)
C3—C4—C5—C6175.97 (17)Cdi—Cd—N2—C7144.60 (13)
N1—C5—C6—C12i65.01 (14)N1—Cd—N2—C1117.08 (15)
C4—C5—C6—C12i111.51 (17)O1W—Cd—N2—C1170.78 (14)
N1—C5—C6—C1249.03 (16)O2—Cd—N2—C11161.24 (13)
C4—C5—C6—C12127.49 (16)O5—Cd—N2—C11123.67 (14)
N2—C7—C8—C90.2 (3)O1—Cd—N2—C11128.95 (13)
C7—C8—C9—C100.1 (3)O4—Cd—N2—C11110.29 (13)
C8—C9—C10—C110.1 (3)Cdi—Cd—N2—C1134.57 (12)
C9—C10—C11—N20.2 (3)O3—N3—O1—Cd169.19 (18)
C9—C10—C11—C12179.33 (18)O2—N3—O1—Cd10.07 (16)
N2—C11—C12—C649.04 (16)N1—Cd—O1—N3161.03 (11)
C10—C11—C12—C6130.49 (16)N2—Cd—O1—N347.30 (14)
C6i—C6—C12—C12i129.4 (2)O1W—Cd—O1—N3107.45 (11)
C5—C6—C12—C12i51.8 (2)O2—Cd—O1—N36.02 (10)
C6i—C6—C12—C1149.20 (19)O5—Cd—O1—N350.38 (11)
C5—C6—C12—C11129.57 (14)O4—Cd—O1—N386.03 (10)
C12i—C6—C12—C11178.6 (3)Cdi—Cd—O1—N3158.67 (8)
C2—C1—N1—C50.1 (3)O3—N3—O2—Cd168.23 (16)
C2—C1—N1—Cd170.62 (14)O1—N3—O2—Cd11.04 (17)
C4—C5—N1—C10.5 (3)N1—Cd—O2—N312.51 (14)
C6—C5—N1—C1176.09 (15)N2—Cd—O2—N3165.47 (10)
C4—C5—N1—Cd170.08 (13)O1W—Cd—O2—N379.34 (11)
C6—C5—N1—Cd13.4 (2)O5—Cd—O2—N3121.37 (11)
N2—Cd—N1—C1132.13 (13)O1—Cd—O2—N36.03 (10)
O1W—Cd—N1—C146.71 (14)O4—Cd—O2—N369.67 (11)
O2—Cd—N1—C145.52 (16)Cdi—Cd—O2—N3145.77 (10)
O5—Cd—N1—C1141.04 (12)O6—N4—O4—Cd174.16 (15)
O1—Cd—N1—C130.89 (13)O5—N4—O4—Cd5.37 (16)
O4—Cd—N1—C1105.30 (14)N1—Cd—O4—N4132.30 (11)
Cdi—Cd—N1—C1150.72 (14)N2—Cd—O4—N413.65 (12)
N2—Cd—N1—C557.56 (14)O1W—Cd—O4—N4164.31 (11)
O1W—Cd—N1—C5142.98 (13)O2—Cd—O4—N485.53 (10)
O2—Cd—N1—C5124.78 (13)O5—Cd—O4—N43.17 (9)
O5—Cd—N1—C529.27 (14)O1—Cd—O4—N4138.57 (11)
O1—Cd—N1—C5139.41 (13)Cdi—Cd—O4—N475.77 (10)
O4—Cd—N1—C565.01 (13)O6—N4—O5—Cd173.72 (14)
Cdi—Cd—N1—C538.97 (12)O4—N4—O5—Cd5.82 (17)
C8—C7—N2—C110.3 (3)N1—Cd—O5—N443.16 (11)
C8—C7—N2—Cd179.50 (15)N2—Cd—O5—N4162.83 (11)
C10—C11—N2—C70.3 (3)O1W—Cd—O5—N4157.20 (14)
C12—C11—N2—C7179.28 (15)O2—Cd—O5—N491.40 (11)
C10—C11—N2—Cd179.41 (13)O1—Cd—O5—N449.21 (11)
C12—C11—N2—Cd0.1 (2)O4—Cd—O5—N43.17 (9)
N1—Cd—N2—C7162.08 (12)Cdi—Cd—O5—N496.48 (10)
O1W—Cd—N2—C7110.06 (13)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O6ii0.81 (3)2.01 (3)2.817 (2)172 (3)
O1W—H2W···O3iii0.81 (3)2.06 (3)2.856 (2)172 (3)
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Cd2(NO3)4(C12H8N2)2(H2O)2]
Mr869.28
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)19.910 (3), 7.8559 (8), 19.263 (2)
V3)3013.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.48 × 0.44 × 0.32
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.515, 0.647
No. of measured, independent and
observed [I > 2σ(I)] reflections
14574, 3074, 2697
Rint0.019
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.06
No. of reflections3074
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.43

Computer programs: SMART-NT (Bruker, 1999), SAINT-Plus-NT (Bruker, 1999), SAINT-Plus-NT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), ATOMS (Dowty, 2001) & SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cd—N12.2852 (15)Cd—O52.4162 (14)
Cd—N22.3052 (15)Cd—O12.5364 (14)
Cd—O1W2.3102 (14)Cd—O42.5848 (16)
Cd—O22.3429 (15)
N1—Cd—N2122.27 (5)N2—Cd—O1148.65 (5)
N1—Cd—O1W90.36 (5)O1W—Cd—O177.69 (5)
N2—Cd—O1W85.94 (5)O5—Cd—O1110.66 (4)
N1—Cd—O2135.39 (6)N1—Cd—O474.15 (5)
N2—Cd—O2102.31 (5)N2—Cd—O4125.71 (5)
O1W—Cd—O291.31 (5)O1W—Cd—O4148.34 (5)
N1—Cd—O5111.14 (5)O2—Cd—O481.63 (5)
N2—Cd—O576.34 (5)O1—Cd—O473.60 (5)
O1W—Cd—O5157.20 (5)C6i—C6—C5170.74 (11)
O2—Cd—O578.82 (5)C12i—C12—C11175.85 (11)
N1—Cd—O184.77 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O6ii0.81 (3)2.01 (3)2.817 (2)172 (3)
O1W—H2W···O3iii0.81 (3)2.06 (3)2.856 (2)172 (3)
Symmetry codes: (ii) x, y1, z; (iii) x+1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds