Download citation
Download citation
link to html
The asymmetric unit of the title compound, {[Ni(C12H6N2O4)(H2O)3]·H2O}n, is composed of a lattice water mol­ecule and a nickel(II) ion that is coordinated by three water mol­ecules and the two N atoms of a 2,2′-bi­pyridine-3,3′-di­carboxyl­ate ligand. The twist of the 2,2′-bi­pyridine-3,3′-di­carboxyl­ate unit and the coordination of one carboxyl­ate group to a symmetry-related NiII atom generate a helical chain that runs along the b axis. Intrahelical hydrogen bonds participate in controlling the orientation of the helices, and both right-handed and left-handed helices are connected by interhelical hydrogen bonds into two-dimensional sheets.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103010163/fr1420sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103010163/fr1420Isup2.hkl
Contains datablock I

CCDC reference: 217121

Comment top

Helical structures have attracted considerable attention in diverse fields, including biochemistry and materials science (Engelkamp et al., 1999; Seo et al., 2000; Gangopadhyay et al., 2001). In artificial supramolecular architectures, helicity can be introduced by conformational restrictions of inter- or intramolecular hydrogen bonds and coordination to metal ions (Piguet et al., 1997). For supramolecular coordination compounds, the formation of helices depends on the nature of the metal and ligands. It is well known that a chiral structure can often lead to the formation of a helical structure (Albrecht, 2001). Some 2,2',6,6'-substituted biphenyl compounds and 1,1'-binaphthalene derivatives can be twisted; in a chiral structure, because of the steric effect of substituting groups, these compounds can also form a helical structure when the molecules are connected in an appropriate way (Minuti et al., 1999; Hamblin et al., 2002). The same is true of some 2,2'-bipyridine derivatives when they are coordinated to metal ions (Tynan et al., 2003; Kaes et al., 2000). We report here the structure of a one-dimensional helical coordination polymer, the title compound, (I).

As shown in Fig. 1, the asymmetric unit of (I) consists of an NiII ion, a 2,2'-bipyridine-3,3'-dicarboxylate dianion, three coordinated water molecules and a non-coordinated water molecule. The coordination sphere of atom Ni1 can be described as a slightly distorted octahedron, involving three water O atoms (O1W, O2W and O3W), a fourth oxygen atom, O3i [symmetry code: (i) 1.5 − x, 0.5 + y, 1.5 − z], from a coordinated carboxyl group, and two N atoms (N1 and N2) from 2,2'-bipyridine unit, which acts as a chelating ligand. The Ni1—O bond distances are in the range 2.037 (3)–2.092 (3) Å. The 2,2-bipyridine unit is twisted with an N1—C5—C6—N2 torsion angle of 29.0 (4)°, such that the two carboxylate groups are located trans to each other. The C12/O3/O4 and C11/O1/O2 carboxyl groups are also twisted from the pyridyl plane, with dihedral angles of 37.4 (5) and 42.3 (3)°, respectively, between the N1/C1/C2/C3/C4/C5 and N2/C6/C7/C8/C9/C10 pyridyl and the carboxyl planes. Similar distortions of the ligand molecule are observed in some transition metal complexes (Ravixumar et al., 1995; Zhang et al., 2002).

One of the two carboxylate groups is bound to the nickel(II) ion in a monodentate fashion in the axial direction of the distorted octahedron, while the base plane defined by atoms O1W/O3W/N1/N2 is an equatorial plane. Furthermore, the twisted 2,2'-bipyridine-Ni chelating units (C5/C1/C2/C3/C4/N1/Ni1/N2/C6/C7/C8/C9/C10) pack in an alternate reverse order with one another. Therefore, the connections of the coordinated carboxyl O atoms generate a helix that propagates along the b axis. There are two types of helices, viz. right-handed and left-handed, which are related by an inversion center.

All uncoordinated carboxylate O atoms are linked to water molecules. The same types of helices are connected by five hydrogen bonds, viz. O1W—H1WA···O4Wi, O4W—H4WA···O1ii, O4W—H4WB···O4ii, O3W—H3WA···O2ii and O2W_H2WA···O4ii [symmetry codes: (i) x, y, z; (ii) x − 1, y, z]. Thus, the lattice water molecule serves as a bridge, together with another two direct interhelical hydrogen bonds, that joins adjacent helices of the same type, so forming a two-dimensional layer that runs along the a axis. Moreover, there are three intrahelical hydrogen bonds, viz. O3W–H3WB···O4iii, O1W—H1WB···O2iii and O2W—H2WB···O1iv [symmetry codes: (iii) 1.5 − x, 0.5 + y, 1.5 − z; (iv) 1.5 − x, −0.5 + y, 1.5 − z], which connect the main asymmetric units (without the lattice water molecule) and particpate in controlling the orientation of the helix. In the lattice, the right-handed layers and the left-handed layers alternate along the c axis via the intermolecular interactions, as shown in Fig. 2.

Experimental top

Ni(ClO4)2·6H2O (83.9 mg, 0.23 mmol), 2,2'-bipryidine-3,3'-dicarboxylic acid (24.3 mg, 0.10 mmol) and pyridine (0.2 ml) were dissolved in a mixture of water (7 ml) and ethanol (2.5 ml), and the mixture was placed in a Teflon-lined stainless steel vessel (25 ml). The vessel was sealed and heated at 413 K for 72 h under autogeneous pressure and then cooled to room temperature. Large blue rod-like crystals were collected by filtration, followed by washing with water and ethanol (yield ca 46%).

Refinement top

H atoms bonded to C atoms were introduced at calculated positions and treated as riding, with Uiso(H) values equal to 1.2 Ueq(C) and C—H distances of 0.93 Å. All water H atoms were located from difference maps at the final stages of the refinement and were refined freely.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Bruker SHELXTL (Sheldrick, 2000); software used to prepare material for publication: Bruker SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the asymmetric unit (solid line portion), with displacement ellipsoids at the 30% probability level. [Symmetry code: (i) 1.5 − x, 0.5 + y, 1.5 − z]
[Figure 2] Fig. 2. The crystal packing of the two types of two-dimensional sheet formed by the hydrogen-bond connections to the helices. H atoms have been omitted for clarity.
catena-Poly[[[triaquanickel(II)]-µ-2,2'-bipyridine-3,3'- dicarboxylato-κ3N,N':O)] monohydrate] top
Crystal data top
[Ni(C12H6N2O4)(H2O)3]·H2OF(000) = 768
Mr = 372.96Dx = 1.714 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.931 (2) Åθ = 2.2–14.5°
b = 9.1780 (18) ŵ = 1.39 mm1
c = 15.970 (3) ÅT = 298 K
β = 96.71 (3)°Rod, blue
V = 1445.6 (5) Å30.32 × 0.15 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1795 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω scansh = 011
Absorption correction: ψ scan
XCAD4 (Harms & Wocadlo, 1995)
k = 010
Tmin = 0.583, Tmax = 0.870l = 1818
2672 measured reflections3 standard reflections every 200 reflections
2518 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0201P)2 + 2.1522P]
where P = (Fo2 + 2Fc2)/3
2518 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Ni(C12H6N2O4)(H2O)3]·H2OV = 1445.6 (5) Å3
Mr = 372.96Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.931 (2) ŵ = 1.39 mm1
b = 9.1780 (18) ÅT = 298 K
c = 15.970 (3) Å0.32 × 0.15 × 0.10 mm
β = 96.71 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1795 reflections with I > 2σ(I)
Absorption correction: ψ scan
XCAD4 (Harms & Wocadlo, 1995)
Rint = 0.047
Tmin = 0.583, Tmax = 0.8703 standard reflections every 200 reflections
2672 measured reflections intensity decay: 1.0%
2518 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.61 e Å3
2518 reflectionsΔρmin = 0.37 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.46848 (4)0.67859 (5)0.74223 (3)0.02550 (15)
O10.9869 (3)0.7579 (4)0.7542 (2)0.0524 (9)
O21.1053 (2)0.5967 (3)0.8365 (2)0.0468 (8)
O30.9243 (2)0.3620 (3)0.71758 (15)0.0284 (6)
O41.0402 (3)0.4612 (4)0.6212 (2)0.0668 (11)
N10.6030 (3)0.6493 (3)0.65512 (17)0.0243 (7)
N20.6256 (3)0.5668 (3)0.81322 (18)0.0237 (7)
C10.5721 (4)0.6659 (4)0.5721 (2)0.0337 (9)
H10.48740.70300.55170.040*
C20.6611 (5)0.6299 (5)0.5156 (3)0.0461 (11)
H20.63960.64730.45820.055*
C30.7832 (4)0.5675 (5)0.5465 (3)0.0416 (11)
H30.84440.54070.50940.050*
C40.8152 (4)0.5444 (4)0.6316 (2)0.0286 (9)
C50.7236 (3)0.5930 (4)0.6860 (2)0.0220 (8)
C60.7440 (3)0.5836 (4)0.7796 (2)0.0215 (8)
C70.8660 (3)0.5948 (4)0.8309 (2)0.0254 (8)
C80.8661 (4)0.5670 (4)0.9163 (2)0.0350 (10)
H80.94740.56920.95170.042*
C90.7472 (4)0.5361 (5)0.9493 (2)0.0404 (10)
H90.74740.51171.00580.048*
C100.6284 (4)0.5427 (4)0.8960 (2)0.0342 (9)
H100.54680.52980.91830.041*
C110.9963 (4)0.6525 (4)0.8029 (3)0.0327 (9)
C120.9375 (4)0.4481 (4)0.6590 (3)0.0332 (9)
O1W0.3435 (3)0.8071 (4)0.6634 (2)0.0513 (9)
H1WA0.266 (5)0.794 (5)0.646 (3)0.044 (14)*
H1WB0.363 (5)0.897 (6)0.663 (3)0.069 (18)*
O2W0.3574 (3)0.4942 (4)0.6993 (2)0.0397 (7)
H2WA0.276 (5)0.479 (6)0.708 (3)0.068 (18)*
H2WB0.400 (5)0.423 (6)0.719 (3)0.063 (18)*
O3W0.3568 (3)0.6930 (4)0.8421 (2)0.0400 (8)
H3WA0.279 (5)0.676 (6)0.832 (3)0.062 (17)*
H3WB0.373 (6)0.777 (7)0.862 (4)0.09 (2)*
O4W0.0888 (4)0.7629 (5)0.5948 (3)0.0615 (11)
H4WA0.049 (6)0.766 (7)0.642 (4)0.10 (3)*
H4WB0.092 (7)0.680 (8)0.579 (5)0.12 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0181 (2)0.0243 (3)0.0342 (3)0.0004 (2)0.00356 (18)0.0029 (2)
O10.0380 (17)0.0426 (18)0.077 (2)0.0069 (14)0.0075 (17)0.0191 (18)
O20.0209 (14)0.0366 (17)0.080 (2)0.0014 (13)0.0053 (14)0.0018 (17)
O30.0282 (13)0.0266 (15)0.0321 (14)0.0053 (11)0.0110 (11)0.0055 (12)
O40.060 (2)0.061 (2)0.090 (3)0.0338 (18)0.054 (2)0.041 (2)
N10.0243 (15)0.0254 (18)0.0225 (15)0.0024 (13)0.0000 (12)0.0003 (13)
N20.0218 (15)0.0241 (17)0.0260 (17)0.0006 (13)0.0059 (13)0.0016 (13)
C10.037 (2)0.035 (2)0.027 (2)0.0047 (19)0.0024 (17)0.0041 (19)
C20.062 (3)0.052 (3)0.024 (2)0.010 (2)0.005 (2)0.006 (2)
C30.054 (3)0.043 (3)0.032 (2)0.014 (2)0.019 (2)0.003 (2)
C40.033 (2)0.023 (2)0.031 (2)0.0040 (16)0.0106 (17)0.0073 (17)
C50.0233 (18)0.0202 (19)0.0231 (18)0.0006 (15)0.0058 (15)0.0024 (15)
C60.0212 (17)0.0166 (17)0.0271 (19)0.0010 (14)0.0038 (15)0.0011 (15)
C70.0244 (18)0.0203 (19)0.031 (2)0.0027 (15)0.0003 (16)0.0009 (16)
C80.029 (2)0.042 (2)0.031 (2)0.0013 (18)0.0075 (17)0.0011 (19)
C90.048 (3)0.053 (3)0.021 (2)0.006 (2)0.0069 (18)0.006 (2)
C100.034 (2)0.042 (3)0.029 (2)0.0019 (19)0.0114 (17)0.0010 (19)
C110.026 (2)0.026 (2)0.046 (2)0.0057 (17)0.0054 (18)0.0051 (19)
C120.036 (2)0.026 (2)0.040 (2)0.0078 (18)0.0169 (19)0.0004 (19)
O1W0.0316 (18)0.036 (2)0.080 (3)0.0014 (16)0.0180 (16)0.0047 (19)
O2W0.0295 (17)0.0335 (18)0.055 (2)0.0044 (15)0.0003 (15)0.0047 (15)
O3W0.0233 (16)0.0378 (18)0.061 (2)0.0074 (14)0.0152 (14)0.0147 (17)
O4W0.042 (2)0.057 (3)0.085 (3)0.0080 (18)0.003 (2)0.015 (2)
Geometric parameters (Å, º) top
Ni1—O1W2.037 (3)C3—H30.9300
Ni1—O3W2.051 (3)C4—C51.403 (5)
Ni1—O3i2.055 (3)C4—C121.524 (5)
Ni1—N12.056 (3)C5—C61.487 (5)
Ni1—N22.088 (3)C6—C71.385 (5)
Ni1—O2W2.092 (3)C7—C81.388 (5)
O1—C111.239 (5)C7—C111.513 (5)
O2—C111.259 (4)C8—C91.377 (6)
O3—C121.244 (4)C8—H80.9300
O3—Ni1ii2.055 (2)C9—C101.373 (5)
O4—C121.250 (4)C9—H90.9300
N1—C11.334 (5)C10—H100.9300
N1—C51.344 (4)O1W—H1WA0.80 (4)
N2—C101.338 (5)O1W—H1WB0.85 (6)
N2—C61.357 (4)O2W—H2WA0.85 (5)
C1—C21.375 (6)O2W—H2WB0.83 (5)
C1—H10.9300O3W—H3WA0.78 (5)
C2—C31.379 (6)O3W—H3WB0.84 (6)
C2—H20.9300O4W—H4WA0.89 (7)
C3—C41.377 (5)O4W—H4WB0.81 (7)
O1W—Ni1—O3W95.58 (14)N1—C5—C4120.7 (3)
O1W—Ni1—O3i88.56 (13)N1—C5—C6113.7 (3)
O3W—Ni1—O3i90.69 (12)C4—C5—C6125.6 (3)
O1W—Ni1—N193.15 (13)N2—C6—C7120.9 (3)
O3W—Ni1—N1171.13 (12)N2—C6—C5112.4 (3)
O3i—Ni1—N187.96 (11)C7—C6—C5126.7 (3)
O1W—Ni1—N2169.32 (13)C6—C7—C8117.8 (3)
O3W—Ni1—N292.71 (12)C6—C7—C11124.8 (3)
O3i—Ni1—N284.60 (11)C8—C7—C11116.9 (3)
N1—Ni1—N278.44 (11)C9—C8—C7120.8 (4)
O1W—Ni1—O2W90.33 (15)C9—C8—H8119.6
O3W—Ni1—O2W89.70 (14)C7—C8—H8119.6
O3i—Ni1—O2W178.85 (12)C10—C9—C8117.9 (4)
N1—Ni1—O2W91.82 (12)C10—C9—H9121.1
N2—Ni1—O2W96.46 (13)C8—C9—H9121.1
C12—O3—Ni1ii131.2 (2)N2—C10—C9122.5 (4)
C1—N1—C5120.0 (3)N2—C10—H10118.8
C1—N1—Ni1124.4 (2)C9—C10—H10118.8
C5—N1—Ni1115.0 (2)O1—C11—O2125.7 (4)
C10—N2—C6119.4 (3)O1—C11—C7117.0 (3)
C10—N2—Ni1123.1 (2)O2—C11—C7117.0 (4)
C6—N2—Ni1110.9 (2)O3—C12—O4126.1 (4)
N1—C1—C2122.2 (4)O3—C12—C4115.7 (3)
N1—C1—H1118.9O4—C12—C4118.3 (4)
C2—C1—H1118.9Ni1—O1W—H1WA129 (3)
C1—C2—C3118.1 (4)Ni1—O1W—H1WB116 (3)
C1—C2—H2121.0H1WA—O1W—H1WB111 (5)
C3—C2—H2121.0Ni1—O2W—H2WA124 (4)
C4—C3—C2120.6 (4)Ni1—O2W—H2WB107 (4)
C4—C3—H3119.7H2WA—O2W—H2WB105 (5)
C2—C3—H3119.7Ni1—O3W—H3WA115 (4)
C3—C4—C5118.1 (3)Ni1—O3W—H3WB105 (4)
C3—C4—C12117.2 (3)H3WA—O3W—H3WB113 (5)
C5—C4—C12124.1 (3)H4WA—O4W—H4WB109 (7)
O1W—Ni1—N1—C122.0 (3)C3—C4—C5—C6177.1 (4)
O3i—Ni1—N1—C1110.4 (3)C12—C4—C5—C612.4 (6)
N2—Ni1—N1—C1164.7 (3)C10—N2—C6—C78.3 (5)
O2W—Ni1—N1—C168.5 (3)Ni1—N2—C6—C7144.0 (3)
O1W—Ni1—N1—C5166.2 (3)C10—N2—C6—C5173.6 (3)
O3i—Ni1—N1—C577.8 (2)Ni1—N2—C6—C534.1 (3)
N2—Ni1—N1—C57.1 (2)N1—C5—C6—N229.0 (4)
O2W—Ni1—N1—C5103.4 (3)C4—C5—C6—N2148.6 (4)
O1W—Ni1—N2—C10135.5 (7)N1—C5—C6—C7149.0 (3)
O3W—Ni1—N2—C105.4 (3)C4—C5—C6—C733.5 (6)
O3i—Ni1—N2—C1085.1 (3)N2—C6—C7—C89.2 (5)
N1—Ni1—N2—C10174.1 (3)C5—C6—C7—C8173.0 (4)
O2W—Ni1—N2—C1095.4 (3)N2—C6—C7—C11163.0 (3)
O1W—Ni1—N2—C615.6 (8)C5—C6—C7—C1114.8 (6)
O3W—Ni1—N2—C6156.5 (2)C6—C7—C8—C93.0 (6)
O3i—Ni1—N2—C666.1 (2)C11—C7—C8—C9169.9 (4)
N1—Ni1—N2—C623.0 (2)C7—C8—C9—C103.9 (6)
O2W—Ni1—N2—C6113.5 (2)C6—N2—C10—C90.9 (6)
C5—N1—C1—C21.4 (6)Ni1—N2—C10—C9147.8 (3)
Ni1—N1—C1—C2172.8 (3)C8—C9—C10—N25.1 (6)
N1—C1—C2—C33.6 (7)C6—C7—C11—O138.7 (6)
C1—C2—C3—C41.1 (7)C8—C7—C11—O1133.5 (4)
C2—C3—C4—C53.2 (6)C6—C7—C11—O2146.8 (4)
C2—C3—C4—C12168.0 (4)C8—C7—C11—O240.9 (5)
C1—N1—C5—C43.2 (5)Ni1ii—O3—C12—O417.2 (7)
Ni1—N1—C5—C4168.9 (3)Ni1ii—O3—C12—C4162.3 (2)
C1—N1—C5—C6179.1 (3)C3—C4—C12—O3139.6 (4)
Ni1—N1—C5—C68.8 (4)C5—C4—C12—O331.0 (6)
C3—C4—C5—N15.5 (6)C3—C4—C12—O439.9 (6)
C12—C4—C5—N1165.1 (3)C5—C4—C12—O4149.4 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WB···O4iii0.81 (7)2.20 (8)2.850 (5)139 (7)
O4W—H4WA···O1iii0.89 (7)1.97 (7)2.846 (6)171 (6)
O3W—H3WB···O4i0.84 (6)1.91 (6)2.704 (5)159 (6)
O3W—H3WA···O2iii0.78 (5)1.89 (5)2.641 (4)162 (5)
O2W—H2WA···O4iii0.85 (5)2.58 (5)3.263 (5)138 (4)
O2W—H2WB···O1ii0.83 (5)1.90 (5)2.716 (5)169 (5)
O1W—H1WA···O4W0.80 (4)1.87 (5)2.668 (5)175 (5)
O1W—H1WB···O2i0.85 (6)1.86 (6)2.707 (5)176 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H6N2O4)(H2O)3]·H2O
Mr372.96
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.931 (2), 9.1780 (18), 15.970 (3)
β (°) 96.71 (3)
V3)1445.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.32 × 0.15 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
XCAD4 (Harms & Wocadlo, 1995)
Tmin, Tmax0.583, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
2672, 2518, 1795
Rint0.047
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.03
No. of reflections2518
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.37

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Bruker SHELXTL (Sheldrick, 2000), Bruker SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O1W2.037 (3)O3—C121.244 (4)
Ni1—O3W2.051 (3)N1—C51.344 (4)
Ni1—O3i2.055 (3)N2—C61.357 (4)
Ni1—N12.056 (3)C4—C121.524 (5)
Ni1—N22.088 (3)C5—C61.487 (5)
Ni1—O2W2.092 (3)
O1W—Ni1—O3W95.58 (14)N1—Ni1—N278.44 (11)
O1W—Ni1—O3i88.56 (13)O1W—Ni1—O2W90.33 (15)
O3W—Ni1—O3i90.69 (12)O3W—Ni1—O2W89.70 (14)
O1W—Ni1—N193.15 (13)O3i—Ni1—O2W178.85 (12)
O3i—Ni1—N187.96 (11)N1—Ni1—O2W91.82 (12)
O3W—Ni1—N292.71 (12)N2—Ni1—O2W96.46 (13)
O3i—Ni1—N284.60 (11)
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WB···O4ii0.81 (7)2.20 (8)2.850 (5)139 (7)
O4W—H4WA···O1ii0.89 (7)1.97 (7)2.846 (6)171 (6)
O3W—H3WB···O4i0.84 (6)1.91 (6)2.704 (5)159 (6)
O3W—H3WA···O2ii0.78 (5)1.89 (5)2.641 (4)162 (5)
O2W—H2WA···O4ii0.85 (5)2.58 (5)3.263 (5)138 (4)
O2W—H2WB···O1iii0.83 (5)1.90 (5)2.716 (5)169 (5)
O1W—H1WA···O4W0.80 (4)1.87 (5)2.668 (5)175 (5)
O1W—H1WB···O2i0.85 (6)1.86 (6)2.707 (5)176 (5)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x1, y, z; (iii) x+3/2, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds