Download citation
Download citation
link to html
The title compounds, bis­(ammonium) naphthalene-1,5-di­sul­fon­ate, 2NH4+·C10H6O6S22−, and bis­[1-(hydroxy­methyl)-3,5,7-tri­aza-1-azoniatri­cyclo­[3.3.1.13,7]­decane] 1,5-naphthalene­di­sul­fon­ate, 2C7H15N4O+·C10H6O6S22−, were prepared from the acid-promoted reaction of hexa­methyl­enetetr­amine. In both structures, the di­sulfonate anion is positioned on an inversion center, with each sulfonate group contributing to the supramolecular assemblies via hydrogen bonds. The ammonium cations are linked to sulfonate groups by four distinct N+—H...O—S contacts [N...O = 2.846 (2)–2.898 (2) Å and N—H...O = 160 (2)–175 (2)°], whereas the 1-(hydroxy­methyl)-3,5,7-tri­aza-1-azoniatri­cyclo­[3.3.1.13,7]­decane cations form one O—H...O—S [O...O = 2.628 (2) Å and O—H...O = 176°] and three C—H...O—S [C...O = 3.359 (2)–3.380 (2) Å and C—H...O = 148–155°] interactions to neighboring sulfonate groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103008333/fr1418sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008333/fr1418Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103008333/fr1418IIsup3.hkl
Contains datablock 2

CCDC references: 214408; 214409

Comment top

The 1,5-naphthalenedisulfonate moiety has been shown to be a versatile building block in the construction of supramolecular arrays (Russell et al., 1997). Because of the high affinity of the sulfonate group to form hydrogen bonds and the inflexible nature of the naphthyl fragment, patterns of association to neighboring moieties often follow predictable sets of intermolecular contacts. The focus of this investigation was to understand the crystal chemistry of a two-component system composed of 1,5-naphthalenedisulfonic acid and hexamethylenetetramine (HMTA). Similar to previous reports on the donor ability of disulfonates and various acceptor molecules, we anticipated cocrystallization of the disulfonate and HMTA molecules would form motifs linked via strong D—H.·A interactions (Holman et al., 2001). Our crystallographic experiments, however, revealed chemical products from the reaction of HMTA and the disulfonic acid. We observed that slow evaporation of HMTA and 1,5-naphthalenedisulfonic acid from aqueous and methanolic solutions gave the ammonium, (I), and N-(hydroxymethyl)HMTA, (II), salts, respectively. The acid-promoted degradation of HMTA to formaldehyde and ammonia has been known for some time (Baur & Ruetschi, 1941) with recent reports detailing its influence on the construction of HMTA cocrystalline frameworks (Duraisamy et al., 2000; Lough et al., 2000). The structures of (I) and (II) support such a chemical process by providing structural evidence of chemical species [i.e. ammonium and N-(hydroxymethyl)HMTA] along the HMTA reaction coordinate.

From inspection of Figs. 1 and 2, the asymmetric units of both title compounds contain a 1,5-naphthalenedisulfonate molecule positioned on an inversion center and either two ammonium [for (I)] or N-(hydroxymethyl)HMTA [for (II)] cations. Each of the three S—O sulfonate acceptors and the four N+—H donor groups in compound (I) are utilized in the construction of hydrogen bonds. The disulfonate groups are linked to four adjacent ammonium molecules by N+—H···O—S contacts (Table 1). The collection of these hydrogen bonds forms a complex network of sulfonate and ammonium associations as shown in Fig. 3. These intermolecular associations generate molecular alignment with alternating hydrophobic (disulfonate and ammonium ions) and hydrophilic (naphthyl) regions that extend in the bc plane. In the structure of (II), the disulfonate moiety is hydrogen bonded to two neighboring N-(hydroxymethyl)HMTA cations via O—H···O—S close contacts (Table 2). From inspection of Fig. 4, this set of interactions forms a discrete centrosymmetric trimeric pattern with graph set D22(10) (Bernstein et al., 1995). Molecular alignment of complex (II) is further influenced by additional C—H···O3S interactions between the HMTA and sulfonate moieties. Although such C—H.·O interactions are weak by comparison to conventional hydrogen bonds, recent reports suggest their contribution to crystal packing may play a significant role in the overall construction of molecular assemblages (Desiraju, 2002; Steiner, 2002; Desiraju & Steiner, 1999).

Experimental top

Compounds (I) and (II) were obtained from the addition of equimolar quantities of 1,5-naphthalenedisulfonic acid and hexamethylenetetraamine to water or a 2:1 methanol–water solution, respectively. The resulting heterogeneous mixtures were stirred at 333 K for ~30 min until completely dissolved and the resulting solutions were allowed to recrystallize by slow evaporation at room temperature. After 5 d, crystals were retrieved and the sample quality assessed by polarized microscopy.

Refinement top

The H-atom positions for (I) and (II) were located from difference density maps or calculated using C—H distance criteria (methylene C—H = 0.99 Å, aryl C—H = 0.95 Å and O—H = 0.84 Å). H atoms were refined isotropically or using a riding model with fixed displacement parameters (Uiso = 1.2Ueq for the atom to which they are bonded). Each HN atom in structure (I) was located on difference maps and refined isotropically.

Computing details top

For both compounds, data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.

Figures top
[Figure 1] Fig. 1. The molecular structure of bis(ammonium) 1,5-naphthalenedisulfonate, (I), showing the atom-labeling scheme and displacement ellipsoids at the 60% probability level.
[Figure 2] Fig. 2. The molecular structure of bis[N-(hydroxymethyl)HMTA] 1,5-naphthalenedisulfonate, (II), showing the atom-labeling scheme and displacement ellipsoids at the 60% probability level.
[Figure 3] Fig. 3. The crystal structure of bis(ammonium) 1,5-naphthalenedisulfonate, (I), showing N+—H···O—S interactions. Aryl H atoms have been omitted for clarity. [Symmetry codes: (i) x, 1/2 − y, z + 1/2; (ii) x, 1 + y, z; (iii) −x, 1/2 + y, 1/2 − z].
[Figure 4] Fig. 4. The crystal structure of bis[N-(hydroxymethyl)HMTA] 1,5-naphthalenedisulfonate, (II), showing O—H···O—S and C—H.·O contacts. H atoms have been omitted for clarity. [Symmetry codes: (i) x − 1, 3/2 − y, z − 1/2; (ii) x − 1, y, z.]
(I) bis(ammonium) naphthalene-1,5-disulfonate top
Crystal data top
2NH4+·C10H6O6S22F(000) = 336
Mr = 322.36Dx = 1.648 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 29 reflections
a = 11.3771 (7) Åθ = 19.3–24.9°
b = 7.3386 (4) ŵ = 0.44 mm1
c = 7.9974 (7) ÅT = 298 K
β = 103.431 (6)°Transparent plate, colorless
V = 649.46 (8) Å30.56 × 0.44 × 0.08 mm
Z = 2
Data collection top
Siemens P4
diffractometer
1334 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
θ/2θ\ scansh = 1414
Absorption correction: analytical
(SHELXTL; Bruker, 1998)
k = 91
Tmin = 0.844, Tmax = 0.963l = 110
2078 measured reflections3 standard reflections every 97 reflections
1495 independent reflections intensity decay: <3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.2958P]
where P = (Fo2 + 2Fc2)/3
1495 reflections(Δ/σ)max < 0.001
107 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
2NH4+·C10H6O6S22V = 649.46 (8) Å3
Mr = 322.36Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.3771 (7) ŵ = 0.44 mm1
b = 7.3386 (4) ÅT = 298 K
c = 7.9974 (7) Å0.56 × 0.44 × 0.08 mm
β = 103.431 (6)°
Data collection top
Siemens P4
diffractometer
1334 reflections with I > 2σ(I)
Absorption correction: analytical
(SHELXTL; Bruker, 1998)
Rint = 0.013
Tmin = 0.844, Tmax = 0.9633 standard reflections every 97 reflections
2078 measured reflections intensity decay: <3%
1495 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.30 e Å3
1495 reflectionsΔρmin = 0.37 e Å3
107 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.19300 (3)0.54277 (5)0.45424 (5)0.02419 (14)
O10.12795 (11)0.70256 (18)0.48991 (19)0.0386 (3)
O20.18437 (11)0.39108 (17)0.56914 (16)0.0316 (3)
O30.15911 (11)0.4867 (2)0.27507 (16)0.0347 (3)
C10.34900 (13)0.6017 (2)0.5021 (2)0.0231 (3)
C20.38150 (15)0.7680 (2)0.5753 (2)0.0270 (3)
C30.50450 (15)0.8166 (2)0.6251 (2)0.0281 (3)
C40.59205 (14)0.6991 (2)0.6030 (2)0.0260 (3)
C50.56227 (13)0.5257 (2)0.52650 (19)0.0216 (3)
N0.08994 (15)0.0731 (2)0.3672 (2)0.0319 (3)
H20.32120.85070.59260.032*
H30.52650.93290.67470.034*
H40.67450.73360.63940.031*
H1N0.114 (2)0.160 (4)0.442 (3)0.049 (7)*
H2N0.124 (2)0.083 (3)0.279 (3)0.044 (6)*
H3N0.109 (3)0.038 (4)0.406 (4)0.055 (8)*
H4N0.007 (3)0.072 (4)0.331 (3)0.058 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0182 (2)0.0262 (2)0.0277 (2)0.00048 (14)0.00430 (15)0.00070 (15)
O10.0252 (6)0.0317 (7)0.0596 (9)0.0039 (5)0.0113 (6)0.0044 (6)
O20.0308 (6)0.0323 (7)0.0334 (6)0.0036 (5)0.0112 (5)0.0041 (5)
O30.0253 (6)0.0481 (8)0.0275 (6)0.0013 (5)0.0004 (5)0.0003 (6)
C10.0191 (7)0.0267 (8)0.0230 (7)0.0018 (6)0.0039 (6)0.0008 (6)
C20.0245 (7)0.0266 (8)0.0294 (8)0.0015 (6)0.0054 (6)0.0023 (7)
C30.0299 (8)0.0248 (8)0.0287 (8)0.0050 (7)0.0052 (6)0.0071 (6)
C40.0214 (7)0.0279 (8)0.0277 (7)0.0055 (6)0.0035 (6)0.0044 (6)
C50.0203 (7)0.0239 (7)0.0203 (7)0.0023 (6)0.0040 (6)0.0000 (6)
N0.0287 (8)0.0343 (9)0.0325 (8)0.0057 (7)0.0065 (6)0.0002 (7)
Geometric parameters (Å, º) top
S—O11.4499 (13)C3—H30.9500
S—O31.4540 (13)C4—C51.418 (2)
S—O21.4612 (13)C4—H40.9500
S—C11.7798 (15)C5—C1i1.432 (2)
C1—C21.367 (2)C5—C5i1.432 (3)
C1—C5i1.432 (2)N—H1N0.88 (3)
C2—C31.409 (2)N—H2N0.88 (3)
C2—H20.9500N—H3N0.88 (3)
C3—C41.360 (2)N—H4N0.92 (3)
O1—S—O3113.07 (8)C2—C3—H3119.6
O1—S—O2112.36 (8)C3—C4—C5121.08 (14)
O3—S—O2111.30 (8)C3—C4—H4119.5
O1—S—C1106.88 (8)C5—C4—H4119.5
O3—S—C1107.66 (7)C4—C5—C1i123.19 (14)
O2—S—C1105.02 (7)C4—C5—C5i118.99 (18)
C2—C1—C5i121.35 (14)C1i—C5—C5i117.82 (18)
C2—C1—S117.77 (12)H1N—N—H2N111 (2)
C5i—C1—S120.79 (12)H1N—N—H3N115 (2)
C1—C2—C3119.95 (15)H2N—N—H3N104 (2)
C1—C2—H2120.0H1N—N—H4N111 (2)
C3—C2—H2120.0H2N—N—H4N110 (2)
C4—C3—C2120.80 (15)H3N—N—H4N105 (2)
C4—C3—H3119.6
O1—S—C1—C26.03 (15)C5i—C1—C2—C30.3 (2)
O3—S—C1—C2127.80 (13)S—C1—C2—C3176.20 (13)
O2—S—C1—C2113.51 (14)C1—C2—C3—C40.7 (3)
O1—S—C1—C5i177.45 (13)C2—C3—C4—C51.2 (3)
O3—S—C1—C5i55.68 (15)C3—C4—C5—C5i0.6 (3)
O2—S—C1—C5i63.01 (14)C3—C4—C5—C1i178.96 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O20.88 (3)2.04 (3)2.898 (2)166 (2)
N—H2N···O2ii0.88 (3)1.98 (3)2.846 (2)175 (2)
N—H3N···O1iii0.88 (3)2.01 (3)2.889 (2)172 (3)
N—H4N···O3iv0.92 (3)1.98 (3)2.868 (2)160 (2)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y1, z; (iv) x, y1/2, z+1/2.
(II) bis[1-(hydroxymethyl)-3,5,7-triaza-1-azoniatricyclo[3.3.1.13,7]decane] 1,5-naphthalenedisulfonate top
Crystal data top
2C7H15N4O+·C10H6O6S22F(000) = 664
Mr = 628.73Dx = 1.548 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 52 reflections
a = 6.0625 (4) Åθ = 20.7–25.9°
b = 19.282 (1) ŵ = 0.26 mm1
c = 11.6207 (7) ÅT = 298 K
β = 96.72 (4)°Transparent rhomboid, colorless
V = 1349.09 (14) Å30.68 × 0.32 × 0.20 mm
Z = 2
Data collection top
Siemens P4
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.1°
Graphite monochromatorh = 17
θ/2θ scansk = 125
4192 measured reflectionsl = 1515
3101 independent reflections3 standard reflections every 97 reflections
2669 reflections with I > 2σ(I) intensity decay: <3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.6708P]
where P = (Fo2 + 2Fc2)/3
3101 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
2C7H15N4O+·C10H6O6S22V = 1349.09 (14) Å3
Mr = 628.73Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.0625 (4) ŵ = 0.26 mm1
b = 19.282 (1) ÅT = 298 K
c = 11.6207 (7) Å0.68 × 0.32 × 0.20 mm
β = 96.72 (4)°
Data collection top
Siemens P4
diffractometer
Rint = 0.012
4192 measured reflections3 standard reflections every 97 reflections
3101 independent reflections intensity decay: <3%
2669 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.45 e Å3
3101 reflectionsΔρmin = 0.33 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.96360 (8)0.63082 (2)0.79756 (4)0.03112 (13)
O10.8084 (3)0.68882 (7)0.79220 (11)0.0425 (3)
O20.9268 (3)0.58632 (7)0.69695 (11)0.0475 (4)
O31.1913 (2)0.65381 (8)0.82176 (14)0.0504 (4)
O40.6460 (2)0.74012 (9)0.59037 (12)0.0484 (4)
H4O0.69290.72310.65520.080 (10)*
N10.0017 (2)0.63935 (8)0.37794 (13)0.0322 (3)
N20.3463 (3)0.63972 (8)0.29311 (13)0.0348 (3)
N30.3359 (2)0.68248 (7)0.48914 (11)0.0268 (3)
N40.2931 (3)0.55924 (8)0.44949 (13)0.0350 (3)
C10.9034 (3)0.58010 (8)0.91800 (13)0.0268 (3)
C20.7296 (3)0.60048 (10)0.97527 (15)0.0350 (4)
H20.64720.64090.95120.042*
C30.6729 (3)0.56148 (10)1.06994 (16)0.0381 (4)
H30.55280.57611.10970.046*
C40.7878 (3)0.50330 (10)1.10507 (14)0.0322 (4)
H40.74610.47751.16870.039*
C50.9693 (3)0.48048 (8)1.04797 (13)0.0250 (3)
C60.4384 (3)0.69054 (9)0.37553 (14)0.0310 (4)
H6A0.40780.73770.34380.037*
H6B0.60140.68450.39020.037*
C70.1045 (3)0.64892 (11)0.27153 (16)0.0370 (4)
H7A0.04230.61500.21250.044*
H7B0.07110.69610.24050.044*
C80.3842 (3)0.60881 (9)0.53451 (15)0.0338 (4)
H8A0.54660.60190.55110.041*
H8B0.31750.60200.60750.041*
C90.0520 (3)0.56952 (9)0.42432 (17)0.0359 (4)
H9A0.01830.56280.49620.043*
H9B0.00980.53440.36730.043*
C100.0845 (3)0.68992 (9)0.46219 (15)0.0305 (4)
H10A0.01400.68370.53420.037*
H10B0.04820.73710.43210.037*
C110.3930 (3)0.56973 (10)0.34126 (17)0.0393 (4)
H11A0.33360.53460.28360.047*
H11B0.55570.56300.35650.047*
C120.4188 (3)0.73790 (11)0.57514 (17)0.0399 (4)
H12A0.36000.78350.54710.048*
H12B0.36330.72840.65040.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0428 (3)0.0244 (2)0.0264 (2)0.00076 (17)0.00464 (16)0.00141 (15)
O10.0588 (9)0.0329 (7)0.0350 (7)0.0107 (6)0.0023 (6)0.0062 (5)
O20.0789 (11)0.0386 (7)0.0257 (6)0.0012 (7)0.0083 (6)0.0043 (5)
O30.0470 (8)0.0395 (8)0.0652 (10)0.0101 (7)0.0079 (7)0.0100 (7)
O40.0427 (8)0.0590 (9)0.0400 (7)0.0121 (7)0.0062 (6)0.0078 (7)
N10.0260 (7)0.0324 (8)0.0378 (8)0.0003 (6)0.0021 (6)0.0040 (6)
N20.0349 (8)0.0422 (9)0.0283 (7)0.0022 (6)0.0075 (6)0.0015 (6)
N30.0268 (7)0.0289 (7)0.0250 (6)0.0007 (5)0.0041 (5)0.0032 (5)
N40.0356 (8)0.0289 (7)0.0408 (8)0.0055 (6)0.0056 (6)0.0033 (6)
C10.0324 (8)0.0258 (7)0.0218 (7)0.0000 (6)0.0018 (6)0.0007 (6)
C20.0398 (10)0.0318 (9)0.0337 (9)0.0098 (7)0.0054 (7)0.0018 (7)
C30.0371 (9)0.0432 (10)0.0362 (9)0.0101 (8)0.0135 (7)0.0010 (8)
C40.0336 (9)0.0369 (9)0.0274 (8)0.0013 (7)0.0085 (6)0.0013 (7)
C50.0285 (8)0.0242 (7)0.0221 (7)0.0007 (6)0.0013 (6)0.0028 (6)
C60.0274 (8)0.0383 (9)0.0281 (8)0.0039 (7)0.0068 (6)0.0035 (7)
C70.0373 (9)0.0430 (10)0.0292 (8)0.0035 (8)0.0025 (7)0.0038 (7)
C80.0359 (9)0.0325 (9)0.0325 (8)0.0062 (7)0.0022 (7)0.0085 (7)
C90.0354 (9)0.0292 (9)0.0438 (10)0.0038 (7)0.0068 (7)0.0048 (7)
C100.0252 (8)0.0305 (8)0.0367 (9)0.0056 (6)0.0068 (6)0.0040 (7)
C110.0374 (10)0.0391 (10)0.0429 (10)0.0066 (8)0.0107 (8)0.0072 (8)
C120.0433 (10)0.0395 (10)0.0364 (9)0.0011 (8)0.0021 (8)0.0040 (8)
Geometric parameters (Å, º) top
S1—O31.4460 (15)C2—H20.9500
S1—O21.4463 (14)C3—C41.358 (3)
S1—O11.4580 (14)C3—H30.9500
S1—C11.7798 (16)C4—C51.420 (2)
O4—C121.369 (2)C4—H40.9500
O4—H4O0.8400C5—C1i1.430 (2)
N1—C101.436 (2)C5—C5i1.430 (3)
N1—C71.471 (2)C6—H6A0.9900
N1—C91.472 (2)C6—H6B0.9900
N2—C61.437 (2)C7—H7A0.9900
N2—C71.468 (2)C7—H7B0.9900
N2—C111.476 (2)C8—H8A0.9900
N3—C121.508 (2)C8—H8B0.9900
N3—C101.526 (2)C9—H9A0.9900
N3—C61.531 (2)C9—H9B0.9900
N3—C81.532 (2)C10—H10A0.9900
N4—C81.438 (2)C10—H10B0.9900
N4—C91.470 (2)C11—H11A0.9900
N4—C111.472 (2)C11—H11B0.9900
C1—C21.368 (2)C12—H12A0.9900
C1—C5i1.430 (2)C12—H12B0.9900
C2—C31.408 (3)
O3—S1—O2113.10 (10)N2—C6—H6B109.7
O3—S1—O1111.70 (9)N3—C6—H6B109.7
O2—S1—O1112.51 (9)H6A—C6—H6B108.2
O3—S1—C1107.12 (9)N2—C7—N1111.57 (14)
O2—S1—C1106.46 (8)N2—C7—H7A109.3
O1—S1—C1105.34 (8)N1—C7—H7A109.3
C12—O4—H4O109.5N2—C7—H7B109.3
C10—N1—C7109.12 (14)N1—C7—H7B109.3
C10—N1—C9108.91 (14)H7A—C7—H7B108.0
C7—N1—C9108.82 (15)N4—C8—N3109.72 (13)
C6—N2—C7109.48 (15)N4—C8—H8A109.7
C6—N2—C11109.18 (14)N3—C8—H8A109.7
C7—N2—C11108.59 (15)N4—C8—H8B109.7
C12—N3—C10108.45 (13)N3—C8—H8B109.7
C12—N3—C6111.23 (13)H8A—C8—H8B108.2
C10—N3—C6108.03 (12)N4—C9—N1111.61 (14)
C12—N3—C8113.18 (13)N4—C9—H9A109.3
C10—N3—C8107.70 (13)N1—C9—H9A109.3
C6—N3—C8108.08 (13)N4—C9—H9B109.3
C8—N4—C9109.89 (15)N1—C9—H9B109.3
C8—N4—C11109.40 (15)H9A—C9—H9B108.0
C9—N4—C11108.09 (15)N1—C10—N3110.55 (13)
C2—C1—C5i121.43 (15)N1—C10—H10A109.5
C2—C1—S1117.71 (13)N3—C10—H10A109.5
C5i—C1—S1120.85 (12)N1—C10—H10B109.5
C1—C2—C3119.93 (16)N3—C10—H10B109.5
C1—C2—H2120.0H10A—C10—H10B108.1
C3—C2—H2120.0N4—C11—N2111.69 (14)
C4—C3—C2120.85 (16)N4—C11—H11A109.3
C4—C3—H3119.6N2—C11—H11A109.3
C2—C3—H3119.6N4—C11—H11B109.3
C3—C4—C5120.91 (16)N2—C11—H11B109.3
C3—C4—H4119.5H11A—C11—H11B107.9
C5—C4—H4119.5O4—C12—N3111.09 (16)
C4—C5—C1i123.13 (15)O4—C12—H12A109.4
C4—C5—C5i119.21 (18)N3—C12—H12A109.4
C1i—C5—C5i117.66 (18)O4—C12—H12B109.4
N2—C6—N3109.90 (13)N3—C12—H12B109.4
N2—C6—H6A109.7H12A—C12—H12B108.0
N3—C6—H6A109.7
O3—S1—C1—C2122.35 (15)C9—N4—C8—N359.14 (18)
O2—S1—C1—C2116.38 (15)C11—N4—C8—N359.38 (18)
O1—S1—C1—C23.30 (16)C12—N3—C8—N4177.87 (14)
O3—S1—C1—C5i58.70 (15)C10—N3—C8—N458.00 (17)
O2—S1—C1—C5i62.57 (15)C6—N3—C8—N458.49 (17)
O1—S1—C1—C5i177.76 (13)C8—N4—C9—N160.47 (19)
C5i—C1—C2—C30.0 (3)C11—N4—C9—N158.85 (19)
S1—C1—C2—C3178.96 (14)C10—N1—C9—N460.18 (19)
C1—C2—C3—C40.5 (3)C7—N1—C9—N458.67 (19)
C2—C3—C4—C50.5 (3)C7—N1—C10—N359.01 (17)
C3—C4—C5—C1i179.55 (17)C9—N1—C10—N359.65 (17)
C3—C4—C5—C5i0.1 (3)C12—N3—C10—N1178.39 (14)
C7—N2—C6—N359.38 (17)C6—N3—C10—N157.72 (17)
C11—N2—C6—N359.38 (18)C8—N3—C10—N158.80 (16)
C12—N3—C6—N2176.54 (14)C8—N4—C11—N260.71 (19)
C10—N3—C6—N257.62 (17)C9—N4—C11—N258.92 (19)
C8—N3—C6—N258.65 (17)C6—N2—C11—N460.62 (19)
C6—N2—C7—N161.13 (19)C7—N2—C11—N458.69 (19)
C11—N2—C7—N157.99 (19)C10—N3—C12—O4171.48 (14)
C10—N1—C7—N260.62 (19)C6—N3—C12—O452.8 (2)
C9—N1—C7—N258.10 (19)C8—N3—C12—O469.09 (19)
Symmetry code: (i) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O10.841.792.628 (2)176
C6—H6A···O3ii0.992.473.380 (2)153
C9—H9A···O2iii0.992.443.359 (2)155
C10—H10B···O1ii0.992.503.376 (2)148
Symmetry codes: (ii) x1, y+3/2, z1/2; (iii) x1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula2NH4+·C10H6O6S222C7H15N4O+·C10H6O6S22
Mr322.36628.73
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)298298
a, b, c (Å)11.3771 (7), 7.3386 (4), 7.9974 (7)6.0625 (4), 19.282 (1), 11.6207 (7)
β (°) 103.431 (6) 96.72 (4)
V3)649.46 (8)1349.09 (14)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.440.26
Crystal size (mm)0.56 × 0.44 × 0.080.68 × 0.32 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Siemens P4
diffractometer
Absorption correctionAnalytical
(SHELXTL; Bruker, 1998)
Tmin, Tmax0.844, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
2078, 1495, 1334 4192, 3101, 2669
Rint0.0130.012
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.09 0.038, 0.108, 1.08
No. of reflections14953101
No. of parameters107194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.370.45, 0.33

Computer programs: XSCANS (Bruker, 1999), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), X-SEED.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N—H1N···O20.88 (3)2.04 (3)2.898 (2)166 (2)
N—H2N···O2i0.88 (3)1.98 (3)2.846 (2)175 (2)
N—H3N···O1ii0.88 (3)2.01 (3)2.889 (2)172 (3)
N—H4N···O3iii0.92 (3)1.98 (3)2.868 (2)160 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O4—H4O···O10.841.792.628 (2)176
C6—H6A···O3i0.992.473.380 (2)153
C9—H9A···O2ii0.992.443.359 (2)155
C10—H10B···O1i0.992.503.376 (2)148
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds