Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, {[Mn(C4H4O6)(C12H8N2)]·6H2O}n, has a linear chain structure containing monomeric [Mn(C4H4O6)(C12H8N2)] repeat units. Each manganese ion is six-coordinate, with the two phenanthroline N atoms [Mn—N = 2.229 (2) and 2.235 (2) Å] and four O atoms from two tartrate anions [Mn—OCOO = 2.1252 (19) and 2.1310 (19) Å, and Mn—OOH = 2.2404 (19) and 2.2424 (19) Å] forming a seriously distorted octahedral coordination environment. Six water mol­ecules exist outside every repeat unit as solvate mol­ecules. Extensive hydrogen-bonding interactions and π–π stacking of the phenanthroline moieties exist between the chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010301761X/fr1417sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010301761X/fr1417Isup2.hkl
Contains datablock I

CCDC reference: 224494

Comment top

The structures and properties of polymanganese complexes are currently of great interest on account of their promising applications in diverse areas of technology (Aubin et al., 1997; Manson et al., 1998) and model complexes for the study of the photosynthetic oxygen-evolving complexes (OEC) of photosystem II in green plants (Wieghardt, 1989). L-Tartaric acid, as a polydentate ligand, has been extensively studied in transition metal compounds. The coordination modes of L-tartrate in these reported compounds are shown as (a) and (b) in the Scheme below, in which mode (a)is seldom found. However, only two manganese–L-tartrate compounds have been reported (Ruiz-Perez et al., 1996; Soylu, 1983) up to now. We report here the synthesis and crystal structure of the first mixed-ligand Mn/L-tartrate complex, viz. {[Mn(C4H4O6)(phen)]·6H2O}n, (I)), which has a polymeric linear chain structure. A similar copper complex has been reported (McCann et al., 1997).

The crystal structure of (I) consists of an infinite {[Mn(C4H4O6)(C12H8N2)]·6H2O}n chain and its asymmetric unit is shown in Fig. 1. The Mn ion locates in a seriously distorted octahedral environment with three trans angles ranging from 155.82 (7) to 157.17 (9)°. The Mn ion is coordinated by two phenanthroline N atoms [Mn—N = 2.229 (2) and 2.235 (2) Å] and four O atoms [Mn—O = 2.1252 (19)–2.2424 (19) Å] from opposite ends of two tartrate ligands, which are symmetry-related to form three chelating rings (symmetry code: x − 1, y, z). A tartrate anion links two neighboring Mn ions by a single ligand bridge to form two chelating rings [form (b) in Scheme]. Thus, manganese ions are bridged by tetradentate L-tartrate forming a linear chain along the a axis of the cell (Fig. 2). Six water molecules exist outside every repeat unit as solvate molecules.

The distortion of the coordination geometry is caused mainly by the three chelating five-membered rings. Bond lengths and angles for the L-tartrate ligand are usual and do not deviate significantly from those in other reported L-tartrate coordination compounds (Ortega et al., 1982; Ruiz-Perez et al., 1996). The average Mn—OOH distance [2.2414 (19) Å] is longer than that of Mn—OCOO [2.1281 (19) Å], which indicated that the hydroxyl groups of the L-tartrate ligand do not deprotonate, analogous to the reaction of L-tartrate ligand with other metal ions such as CuII, NiII, ZnII, CoII and CdII. According to charge-balance requirements, the oxidation state of Mn is +2. In addition, the room-temperature magnetic moments of a powdered sample of (I) (5.89 BM) were in the range expected for manganese II) complexes where there is no significant exchange interaction between metal centres.

Extensive hydrogen-bonding interactions are observed to correlate these chains. The packing diagram of the complex along the a axis is presented in Fig. 3, showing three types of hydrogen-bonding interactions as follows: (i) Ocoord to water [2.854 (3) and 2.889 (3) Å], (ii) Ouncoord to water [2.709 (3)–2.904 (3) Å] and (iii) water to water [2.775 (4)–2.832 (4) Å]. The other detailed hydrogen-bonding data are listed in Table 2. In addition, the phenanthroline groups of each polymeric chain are interwoven between the chains to form a ππ stacking along the a axis, with interplanar distances ranging from 3.22 to 3.35 Å.

Experimental top

A mixture of Mn(CH3COO)2·4H2O (0.25 g, 1.02 mmol), phen (2.0 g, 1 mmol), NaOCH3 (0.11 g, 2 mmol) and L(+)-tartaric acid (0.15 g, 1 mmol) in MeOH/H2O (16 ml, v/v, 1:1) was sealed in a 25 ml stainless-steel reactor with a Teflon liner. The reaction system was heated at 453 K for 72 h. Slow cooling to room temperature yielded deep-red crystals, which were collected by filtration (yield: 34%). Analysis calculated (%): C 39.12, H 4.92, N 5.70%; found (%): C 39.24, H 4.96, N 5.72.

Refinement top

H atoms bonded to C atoms were placed at calculated idealized positions using a riding model (C—H = 0.93 Å for 1,10-phenanthroline and 0.98 Å for L-tartrate). H atoms bonded to O atoms were located in a difference Fourier synthesis and were subsequently refined with restrained O—H distances approximately equal to 0.85 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994a); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. Part of the structure of {[Mn(C4H4O6)(C12H8N2)]·6H2O}n, showing the bridging mode of the L-tartrate anion and one of the independent structural units with the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound.
catena-Poly[[[(1,10-phenanthroline-κ2N,N')manganese(II)]-µ-L-tartrato- κ2O1:O4] hexahydrate] top
Crystal data top
[Mn(C4H4O6)(C12H8N2)]·6H2OF(000) = 1020
Mr = 491.31Dx = 1.569 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 146 reflections
a = 6.7093 (9) Åθ = 1.7–25.1°
b = 15.336 (3) ŵ = 0.70 mm1
c = 20.210 (3) ÅT = 293 K
V = 2079.4 (6) Å3Block, deep red
Z = 40.36 × 0.24 × 0.20 mm
Data collection top
Siemens SMART CCD
diffractometer
3372 independent reflections
Radiation source: fine-focus sealed tube3183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.1°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.777, Tmax = 0.869k = 1618
6282 measured reflectionsl = 2410
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0341P)2 + 1.1316P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.19 e Å3
3372 reflectionsΔρmin = 0.33 e Å3
337 parametersExtinction correction: SHELXTL (Bruker, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.0119 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1242 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
[Mn(C4H4O6)(C12H8N2)]·6H2OV = 2079.4 (6) Å3
Mr = 491.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.7093 (9) ŵ = 0.70 mm1
b = 15.336 (3) ÅT = 293 K
c = 20.210 (3) Å0.36 × 0.24 × 0.20 mm
Data collection top
Siemens SMART CCD
diffractometer
3372 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
3183 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.869Rint = 0.022
6282 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.19 e Å3
S = 1.02Δρmin = 0.33 e Å3
3372 reflectionsAbsolute structure: Flack (1983), 1242 Friedel pairs
337 parametersAbsolute structure parameter: 0.01 (2)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.00979 (6)0.39805 (2)0.171244 (17)0.02953 (12)
N10.0230 (4)0.42888 (14)0.06355 (10)0.0365 (5)
N20.0065 (4)0.26908 (13)0.11978 (9)0.0309 (4)
O10.1203 (3)0.34887 (13)0.25991 (9)0.0393 (5)
O20.3221 (3)0.38181 (14)0.34320 (9)0.0455 (5)
O30.3030 (3)0.44880 (13)0.17610 (9)0.0347 (4)
H3B0.355 (5)0.4875 (18)0.1520 (15)0.061 (11)*
O40.6777 (3)0.37675 (11)0.20711 (9)0.0319 (4)
H4A0.650 (6)0.3306 (17)0.2274 (17)0.062 (12)*
O50.8784 (3)0.52225 (12)0.19948 (11)0.0416 (5)
O60.6459 (3)0.59918 (14)0.25045 (13)0.0555 (6)
O70.0165 (4)0.19440 (15)0.32786 (11)0.0524 (5)
H7B0.048 (5)0.2368 (18)0.3119 (17)0.063 (13)*
H7C0.039 (7)0.1459 (18)0.322 (2)0.098 (17)*
O80.4147 (5)0.2368 (2)0.42085 (14)0.0723 (9)
H8B0.372 (9)0.233 (4)0.4604 (13)0.12 (2)*
H8C0.379 (8)0.279 (3)0.396 (3)0.109 (19)*
O90.6220 (5)0.22952 (18)0.26598 (16)0.0692 (8)
H9B0.535 (5)0.191 (2)0.2634 (19)0.071 (12)*
H9C0.725 (5)0.210 (3)0.285 (2)0.094 (17)*
O100.4547 (5)0.56282 (18)0.09144 (13)0.0719 (9)
H10B0.514 (7)0.609 (2)0.103 (2)0.104 (17)*
H10C0.424 (7)0.566 (3)0.0513 (11)0.090 (16)*
O110.1806 (6)0.2555 (2)0.44580 (14)0.0717 (8)
H11B0.122 (7)0.225 (3)0.4159 (19)0.092 (16)*
H11C0.306 (4)0.256 (5)0.436 (4)0.17 (3)*
O120.0504 (5)0.40839 (19)0.45313 (14)0.0691 (8)
H12B0.027 (8)0.362 (3)0.453 (2)0.102 (17)*
H12C0.124 (6)0.398 (3)0.4199 (16)0.087 (15)*
C10.0316 (5)0.5074 (2)0.03669 (16)0.0498 (8)
H1A0.03790.55560.06450.060*
C20.0315 (5)0.5210 (2)0.03183 (16)0.0562 (9)
H2A0.03840.57720.04900.067*
C30.0215 (5)0.4516 (2)0.07266 (14)0.0535 (8)
H3A0.01930.45990.11820.064*
C40.0144 (5)0.3672 (2)0.04666 (12)0.0427 (7)
C50.0086 (5)0.2895 (2)0.08624 (13)0.0512 (8)
H5A0.00550.29440.13210.061*
C60.0074 (5)0.2105 (2)0.05858 (14)0.0492 (7)
H6A0.00680.16140.08560.059*
C70.0071 (5)0.19955 (18)0.01218 (12)0.0386 (6)
C80.0066 (5)0.11834 (19)0.04343 (15)0.0468 (7)
H8A0.00850.06750.01840.056*
C90.0034 (5)0.11388 (18)0.11094 (15)0.0465 (7)
H9A0.00160.06010.13220.056*
C100.0029 (5)0.19077 (17)0.14733 (13)0.0394 (6)
H10A0.00010.18700.19320.047*
C110.0102 (5)0.27405 (17)0.05233 (11)0.0310 (5)
C120.0150 (4)0.35877 (17)0.02287 (11)0.0329 (5)
C130.2654 (4)0.38954 (18)0.28493 (12)0.0313 (6)
C140.3759 (4)0.45574 (19)0.24209 (13)0.0287 (6)
H14A0.34150.51400.25840.034*
C150.6027 (4)0.44594 (18)0.24681 (13)0.0275 (6)
H15A0.63400.43160.29290.033*
C160.7158 (4)0.52992 (17)0.22992 (14)0.0344 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0285 (2)0.0348 (2)0.02522 (18)0.0001 (2)0.00010 (19)0.00161 (15)
N10.0354 (13)0.0411 (12)0.0329 (11)0.0011 (11)0.0014 (11)0.0057 (9)
N20.0298 (11)0.0365 (11)0.0263 (9)0.0028 (12)0.0004 (11)0.0004 (8)
O10.0364 (12)0.0505 (12)0.0309 (9)0.0131 (9)0.0058 (9)0.0091 (9)
O20.0470 (11)0.0656 (14)0.0239 (9)0.0087 (11)0.0034 (8)0.0060 (9)
O30.0292 (9)0.0483 (11)0.0267 (9)0.0073 (9)0.0028 (8)0.0088 (9)
O40.0308 (10)0.0271 (10)0.0377 (10)0.0002 (8)0.0050 (8)0.0023 (8)
O50.0362 (11)0.0324 (10)0.0562 (12)0.0045 (8)0.0125 (10)0.0023 (9)
O60.0457 (13)0.0321 (11)0.0888 (17)0.0016 (11)0.0031 (12)0.0177 (12)
O70.0563 (14)0.0483 (13)0.0526 (12)0.0064 (13)0.0094 (15)0.0032 (11)
O80.100 (2)0.0688 (18)0.0486 (15)0.0245 (16)0.0025 (14)0.0099 (14)
O90.0667 (19)0.0491 (15)0.092 (2)0.0167 (14)0.0171 (17)0.0233 (15)
O100.102 (3)0.0667 (16)0.0467 (14)0.0328 (16)0.0071 (15)0.0170 (12)
O110.084 (2)0.0811 (19)0.0503 (15)0.0186 (18)0.0110 (15)0.0146 (14)
O120.084 (2)0.0581 (16)0.0650 (16)0.0126 (15)0.0233 (14)0.0120 (13)
C10.052 (2)0.0484 (17)0.0488 (16)0.0006 (17)0.0007 (16)0.0109 (14)
C20.050 (2)0.065 (2)0.0538 (18)0.0021 (18)0.0019 (17)0.0293 (16)
C30.0414 (18)0.087 (2)0.0322 (14)0.005 (2)0.0009 (15)0.0218 (15)
C40.0264 (14)0.0735 (19)0.0282 (12)0.0033 (16)0.0002 (14)0.0063 (13)
C50.0344 (16)0.094 (2)0.0247 (12)0.002 (2)0.0026 (15)0.0061 (14)
C60.0330 (15)0.078 (2)0.0371 (14)0.003 (2)0.0000 (16)0.0260 (15)
C70.0247 (13)0.0527 (15)0.0384 (13)0.0006 (16)0.0002 (15)0.0121 (12)
C80.0343 (15)0.0491 (16)0.0571 (17)0.0002 (17)0.0005 (16)0.0204 (13)
C90.0436 (16)0.0361 (14)0.0598 (17)0.0047 (18)0.0008 (17)0.0007 (12)
C100.0383 (14)0.0427 (14)0.0374 (12)0.0021 (16)0.0020 (15)0.0036 (11)
C110.0207 (12)0.0461 (14)0.0261 (11)0.0019 (15)0.0028 (13)0.0038 (10)
C120.0222 (13)0.0506 (15)0.0260 (11)0.0034 (14)0.0003 (13)0.0018 (10)
C130.0304 (14)0.0383 (14)0.0253 (12)0.0042 (12)0.0007 (11)0.0008 (11)
C140.0267 (14)0.0333 (15)0.0260 (13)0.0004 (11)0.0014 (11)0.0037 (12)
C150.0297 (13)0.0308 (14)0.0220 (13)0.0004 (11)0.0009 (11)0.0031 (11)
C160.0353 (16)0.0307 (14)0.0371 (14)0.0010 (12)0.0055 (12)0.0052 (12)
Geometric parameters (Å, º) top
Mn—O5i2.1252 (19)O11—H11C0.86 (3)
Mn—O12.1310 (19)O12—H12B0.88 (5)
Mn—N12.229 (2)O12—H12C0.85 (4)
Mn—N22.235 (2)C1—C21.400 (4)
Mn—O32.2404 (19)C1—H1A0.9300
Mn—O4i2.2424 (19)C2—C31.348 (5)
N1—C11.322 (4)C2—H2A0.9300
N1—C121.354 (3)C3—C41.398 (5)
N2—C101.324 (3)C3—H3A0.9300
N2—C111.366 (3)C4—C121.411 (3)
O1—C131.262 (3)C4—C51.436 (4)
O2—C131.243 (3)C5—C61.335 (5)
O3—C141.425 (3)C5—H5A0.9300
O3—H3B0.844 (19)C6—C71.440 (4)
O4—C151.422 (3)C6—H6A0.9300
O4—Mnii2.2424 (19)C7—C81.396 (4)
O4—H4A0.838 (19)C7—C111.401 (4)
O5—C161.258 (3)C8—C91.366 (4)
O5—Mnii2.1252 (19)C8—H8A0.9300
O6—C161.233 (3)C9—C101.390 (4)
O7—H7B0.846 (19)C9—H9A0.9300
O7—H7C0.841 (19)C10—H10A0.9300
O8—H8B0.85 (3)C11—C121.430 (4)
O8—H8C0.85 (5)C13—C141.526 (4)
O9—H9B0.832 (19)C14—C151.532 (3)
O9—H9C0.84 (2)C14—H14A0.9800
O10—H10B0.85 (2)C15—C161.533 (4)
O10—H10C0.838 (19)C15—H15A0.9800
O11—H11B0.86 (4)
O5i—Mn—O1103.65 (8)C3—C4—C5124.1 (3)
O5i—Mn—N193.33 (8)C12—C4—C5118.6 (3)
O1—Mn—N1155.84 (9)C6—C5—C4121.4 (2)
O5i—Mn—N2157.17 (9)C6—C5—H5A119.3
O1—Mn—N294.25 (8)C4—C5—H5A119.3
N1—Mn—N274.56 (8)C5—C6—C7121.4 (3)
O5i—Mn—O390.44 (8)C5—C6—H6A119.3
O1—Mn—O372.69 (7)C7—C6—H6A119.3
N1—Mn—O390.36 (8)C8—C7—C11117.7 (2)
N2—Mn—O3108.58 (8)C8—C7—C6123.6 (3)
O5i—Mn—O4i73.36 (7)C11—C7—C6118.7 (3)
O1—Mn—O4i93.42 (7)C9—C8—C7119.8 (2)
N1—Mn—O4i108.02 (8)C9—C8—H8A120.1
N2—Mn—O4i91.76 (8)C7—C8—H8A120.1
O3—Mn—O4i155.82 (7)C8—C9—C10119.1 (3)
C1—N1—C12118.4 (2)C8—C9—H9A120.5
C1—N1—Mn126.6 (2)C10—C9—H9A120.5
C12—N1—Mn115.00 (16)N2—C10—C9123.2 (2)
C10—N2—C11118.1 (2)N2—C10—H10A118.4
C10—N2—Mn127.40 (16)C9—C10—H10A118.4
C11—N2—Mn114.52 (16)N2—C11—C7122.2 (2)
C13—O1—Mn118.56 (17)N2—C11—C12117.8 (2)
C14—O3—Mn112.86 (15)C7—C11—C12120.0 (2)
C14—O3—H3B110 (3)N1—C12—C4122.1 (3)
Mn—O3—H3B128 (3)N1—C12—C11118.0 (2)
C15—O4—Mnii113.86 (15)C4—C12—C11119.9 (2)
C15—O4—H4A106 (3)O2—C13—O1124.6 (3)
Mnii—O4—H4A119 (3)O2—C13—C14116.9 (2)
C16—O5—Mnii121.42 (17)O1—C13—C14118.4 (2)
H7B—O7—H7C113 (4)O3—C14—C13108.4 (2)
H8B—O8—H8C121 (5)O3—C14—C15113.1 (2)
H9B—O9—H9C110 (4)C13—C14—C15112.4 (2)
H10B—O10—H10C109 (4)O3—C14—H14A107.6
H11B—O11—H11C107 (6)C13—C14—H14A107.6
H12B—O12—H12C101 (4)C15—C14—H14A107.6
N1—C1—C2122.8 (3)O4—C15—C14112.9 (2)
N1—C1—H1A118.6O4—C15—C16109.0 (2)
C2—C1—H1A118.6C14—C15—C16113.3 (2)
C3—C2—C1119.2 (3)O4—C15—H15A107.1
C3—C2—H2A120.4C14—C15—H15A107.1
C1—C2—H2A120.4C16—C15—H15A107.1
C2—C3—C4120.1 (3)O6—C16—O5125.1 (3)
C2—C3—H3A119.9O6—C16—C15117.4 (2)
C4—C3—H3A119.9O5—C16—C15117.4 (2)
C3—C4—C12117.3 (3)
O5i—Mn—N1—C119.4 (3)C11—N2—C10—C90.2 (5)
O1—Mn—N1—C1115.6 (3)Mn—N2—C10—C9179.2 (3)
N2—Mn—N1—C1179.8 (3)C8—C9—C10—N20.4 (5)
O3—Mn—N1—C171.0 (3)C10—N2—C11—C71.0 (5)
O4i—Mn—N1—C193.0 (3)Mn—N2—C11—C7179.4 (2)
O5i—Mn—N1—C12162.7 (2)C10—N2—C11—C12179.7 (3)
O1—Mn—N1—C1262.3 (3)Mn—N2—C11—C120.2 (4)
N2—Mn—N1—C122.3 (2)C8—C7—C11—N22.1 (5)
O3—Mn—N1—C12106.9 (2)C6—C7—C11—N2178.8 (3)
O4i—Mn—N1—C1289.1 (2)C8—C7—C11—C12178.7 (3)
O5i—Mn—N2—C10118.4 (3)C6—C7—C11—C120.5 (5)
O1—Mn—N2—C1023.4 (3)C1—N1—C12—C40.4 (5)
N1—Mn—N2—C10178.4 (3)Mn—N1—C12—C4177.6 (2)
O3—Mn—N2—C1096.6 (3)C1—N1—C12—C11178.7 (3)
O4i—Mn—N2—C1070.2 (3)Mn—N1—C12—C113.3 (4)
O5i—Mn—N2—C1161.1 (3)C3—C4—C12—N10.2 (5)
O1—Mn—N2—C11157.1 (2)C5—C4—C12—N1179.1 (3)
N1—Mn—N2—C111.1 (2)C3—C4—C12—C11179.3 (3)
O3—Mn—N2—C1183.9 (2)C5—C4—C12—C110.1 (5)
O4i—Mn—N2—C11109.3 (2)N2—C11—C12—N12.4 (4)
O5i—Mn—O1—C1362.7 (2)C7—C11—C12—N1178.4 (3)
N1—Mn—O1—C1370.7 (3)N2—C11—C12—C4178.6 (3)
N2—Mn—O1—C13131.5 (2)C7—C11—C12—C40.7 (5)
O3—Mn—O1—C1323.39 (19)Mn—O1—C13—O2161.1 (2)
O4i—Mn—O1—C13136.4 (2)Mn—O1—C13—C1416.4 (3)
O5i—Mn—O3—C1477.46 (18)Mn—O3—C14—C1326.4 (2)
O1—Mn—O3—C1426.71 (17)Mn—O3—C14—C15151.7 (2)
N1—Mn—O3—C14170.79 (18)O2—C13—C14—O3174.3 (2)
N2—Mn—O3—C14115.40 (17)O1—C13—C14—O37.9 (3)
O4i—Mn—O3—C1430.5 (3)O2—C13—C14—C1548.6 (3)
C12—N1—C1—C20.4 (5)O1—C13—C14—C15133.7 (3)
Mn—N1—C1—C2177.4 (3)Mnii—O4—C15—C14151.00 (19)
N1—C1—C2—C30.3 (6)Mnii—O4—C15—C1624.2 (2)
C1—C2—C3—C41.0 (5)O3—C14—C15—O443.5 (3)
C2—C3—C4—C120.9 (5)C13—C14—C15—O479.6 (3)
C2—C3—C4—C5178.4 (3)O3—C14—C15—C1681.1 (3)
C3—C4—C5—C6178.1 (4)C13—C14—C15—C16155.8 (2)
C12—C4—C5—C61.2 (5)Mnii—O5—C16—O6176.6 (2)
C4—C5—C6—C71.5 (5)Mnii—O5—C16—C150.9 (3)
C5—C6—C7—C8179.8 (3)O4—C15—C16—O6166.8 (2)
C5—C6—C7—C110.7 (5)C14—C15—C16—O640.1 (4)
C11—C7—C8—C91.9 (5)O4—C15—C16—O517.2 (3)
C6—C7—C8—C9179.0 (3)C14—C15—C16—O5143.8 (3)
C7—C8—C9—C100.7 (6)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O11iii0.85 (3)1.92 (6)2.775 (4)168 (6)
O9—H9B···O6iv0.83 (2)1.88 (2)2.709 (3)173 (4)
O10—H10B···O8v0.85 (2)2.07 (3)2.820 (4)147 (4)
O9—H9C···O7ii0.85 (2)1.95 (2)2.782 (4)168 (5)
O10—H10C···O12vi0.84 (2)2.03 (2)2.832 (4)160 (4)
O11—H11C···O8i0.86 (3)1.92 (3)2.775 (5)169 (6)
O7—H7C···O5iv0.84 (2)2.02 (2)2.854 (3)170 (5)
O11—H11B···O70.86 (4)1.96 (5)2.790 (4)159 (4)
O7—H7B···O10.85 (2)2.07 (2)2.889 (3)163 (4)
O12—H12B···O110.88 (5)1.94 (5)2.817 (4)174 (5)
O8—H8C···O20.86 (6)1.94 (6)2.794 (4)173 (6)
O12—H12C···O20.85 (4)2.06 (2)2.904 (3)173 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1/2, z+1/2; (vi) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C4H4O6)(C12H8N2)]·6H2O
Mr491.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.7093 (9), 15.336 (3), 20.210 (3)
V3)2079.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.36 × 0.24 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.777, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
6282, 3372, 3183
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.02
No. of reflections3372
No. of parameters337
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.33
Absolute structureFlack (1983), 1242 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994a), XPREP in SHELXTL (Siemens, 1994), SHELXTL (Bruker, 1997).

Selected geometric parameters (Å, º) top
Mn—O5i2.1252 (19)Mn—N22.235 (2)
Mn—O12.1310 (19)Mn—O32.2404 (19)
Mn—N12.229 (2)Mn—O4i2.2424 (19)
O5i—Mn—O1103.65 (8)N1—Mn—O390.36 (8)
O5i—Mn—N193.33 (8)N2—Mn—O3108.58 (8)
O1—Mn—N1155.84 (9)O5i—Mn—O4i73.36 (7)
O5i—Mn—N2157.17 (9)O1—Mn—O4i93.42 (7)
O1—Mn—N294.25 (8)N1—Mn—O4i108.02 (8)
N1—Mn—N274.56 (8)N2—Mn—O4i91.76 (8)
O5i—Mn—O390.44 (8)O3—Mn—O4i155.82 (7)
O1—Mn—O372.69 (7)
O5i—Mn—N1—C119.4 (3)O5i—Mn—N2—C1161.1 (3)
O4i—Mn—N1—C193.0 (3)N1—Mn—N2—C111.1 (2)
O1—Mn—N1—C1262.3 (3)O5i—Mn—O3—C1477.46 (18)
O3—Mn—N1—C12106.9 (2)O4i—Mn—O3—C1430.5 (3)
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O11ii0.85 (3)1.92 (6)2.775 (4)168 (6)
O9—H9B···O6iii0.834 (19)1.88 (2)2.709 (3)173 (4)
O10—H10B···O8iv0.85 (2)2.07 (3)2.820 (4)147 (4)
O9—H9C···O7v0.85 (2)1.95 (2)2.782 (4)168 (5)
O10—H10C···O12vi0.837 (19)2.03 (2)2.832 (4)160 (4)
O11—H11C···O8i0.86 (3)1.92 (3)2.775 (5)169 (6)
O7—H7C···O5iii0.840 (19)2.02 (2)2.854 (3)170 (5)
O11—H11B···O70.86 (4)1.96 (5)2.790 (4)159 (4)
O7—H7B···O10.845 (19)2.07 (2)2.889 (3)163 (4)
O12—H12B···O110.88 (5)1.94 (5)2.817 (4)174 (5)
O8—H8C···O20.86 (6)1.94 (6)2.794 (4)173 (6)
O12—H12C···O20.85 (4)2.06 (2)2.904 (3)173 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1/2, y+1, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds