Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An amine-elimination reaction was used to obtain the title compound, i.e. (N-tert-butyl-N-{[(1,2,3,3a,7a-η)-4,5,6,7-tetra­hydro-4,7-methano-1H-inden-2-yl]­di­methyl­silyl}amido-κN)bis(N-methyl­methanaminato-κN)­zirconium(IV) or [isodiCpSiMe2N-tert-butyl]Zr(NMe2)2 (Cp is cyclo­penta­dienyl), [Zr(C16H25NSi)(C2H6N)2], in very good yield. Treatment of isodiCpHSiMe2NH-tert-butyl with Zr(NMe2)4 leads to the formation of a yellow solid that can be purified by sublimation. The single-crystal structure of the product shows the exo complexation of the isodi­cyclo­penta­dienyl ligand to the Zr atom. The Cp portion of this ligand is bonded to the Zr atom in a η5 manner, with a Zr—Cg (Cg is the ring centroid) distance of 2.2352 (10) Å. The isodiCpSiMe2N-tert-butyl ligand has a constrained geometry, which is exhibited by the small angle of 95.55 (10)° for N—Si—CCp.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103003172/fr1410sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103003172/fr1410Isup2.hkl
Contains datablock I

CCDC reference: 211722

Comment top

There is considerable industrial interest in Group 4 half-sandwich complexes containing linked amido cyclopentadienyl (Cp) ligands, as catalysts for ethylene and propylene polymerization. The classical preparative route via amido dilithium salts and ZrCl4 or TiCl3(THF)3 in combination leads to low isolated yields of product mixtures with non-substituted Cp ligands. Alternatively, such complexes can be prepared by an amine-elimination reaction with excellent efficiency (Hughes et al., 1993; Herrmann & Morawietz, 1994; Carpenetti et al., 1996; Leung et al., 1999). We have previously demonstrated that the `constrained geometry' complex [isodiCpSiMe2N-tert-butyl]ZrCl2 can be synthesized by the classical metathesis route in 55% yield (Gentil et al., 2000). In this paper, we report the high-yield `one pot' formation of [isodiCpSiMe2N-tert-butyl]Zr(NMe2)2, (I), and its X-ray structure. Complex (I) was obtained according to the amine-elimination pathway developed earlier (Hughes et al., 1993; Herrmann & Morawietz, 1994; Carpenetti et al., 1996; Leung et al., 1999), using Zr(NMe2)4 and the corresponding amine as starting materials. \sch

As expected on the basis of experimental reaction conditions and prior results in this field (Paquette et al., 1989; Sornay et al., 1991; Zaegel et al., 1995; Gobley et al., 1998; Gentil et al., 2000, 2002), the molecular structure of (I) indicates that exo complexation of the isodicyclopentadienyl ligand to Zr has occurred. This structure exhibits the classical half-sandwich pseudotetrahedral geometry about the Zr atom. Comparison with [isodiCpSiMe2N-tert-butyl]Zr(CH2SiMe3)2 (Gentil et al., 2000) provides indications as to the structural changes due to the two –CH2SiMe3 substituents being replaced by the dimethylamino groups. The presence of the –NMe2 groups significantly increases both the Cg—Zr distance (Cg is the ring centroid for C1/C2/C3/C4/C5) and the Zr—N1 bond length. The Cg—Zr distance is 2.2125 (8) Å and the Zr—N bond length is 2.0858 (14) Å for [isodiCpSiMe2N-tert-butyl]Zr(CH2SiMe3)2, whereas these values are 2.2352 (10) and 2.107 (2) Å, respectively, for (I). The values for this structure agree well with those in the analogous complex [C5Me4SiMe2N-tert-butyl]Zr(NMe2)2 (Carpenetti et al., 1996), where Cg—Zr is 2.233 (3) Å and Zr—N1 is 2.108 (4) Å.

As observed in previous structures containing an isodicyclopentadienyl ligand with exo complexation, there is a small amount of bending in this ligand about the bond common to the Cp ring and the norbornane fragment. The dihedral angle between the least-squares planes defined by C1/C2/C3/C4/C5 and C1/C5/C6/C9 is 8.1 (2)°, and this bending is in the endo direction.

The (isodiCp)SiMe2N-tert-butyl ligand in (I) has a constrained geometry, characterized by the small angle of 95.55 (10)° for N1—Si—C3 and by the displacement of the Si atom from its adjacent Cp ring, measured by the angle of 27.4 (1)° between the Si—C3 bond and the plane of the Cp ring. The sum of the angles about atom N1 is 359.9 (3)°, indicative of sp2 hybridization.

Experimental top

All experiments were conducted under an argon atmosphere. The solvents were dried and distilled prior to use. IsodiCpHSiMe2NHtBu and Zr(NMe2)4 (Diamond et al., 1995; Gentil et al., 2000) were prepared according to the published methods. IsodiCpHSiMe2NHtBu (3.74 mmol, 977 mg) was added to Zr(NMe2)4 (1.00 g, 3.74 mmol) without any solvent. The reaction mixture was heated at 423 K for 12 h. Me2NH was removed from the flask by periodic evacuation. The resulting product was collected by sublimation at 433 K in a yield of 86%. Dissolution of the solid in a toluene/pentane (1:5) solution and cooling at 243 K for 2 d afforded colourless crystals of (I) suitable for X-ray analysis.

Refinement top

The tert-butyl group is disordered over two orientations. The occupancy factor for the major orientation (atom labels C14A, C15A and C16A) refined to 0.821 (6) and this set of atoms was refined anisotropically. The minor orientation (atom labels C14B, C15B, C16B) was kept isotropic with an occupancy factor of 0.179 (6). A SADI restraint (SHELXL97; Sheldrick, 1997) was used for the minor component to restrain the three C—C bonds to be equal. Methyl H atoms were added at calculated positions using a riding model, with C—H distances of 0.98 Å Is this added text OK? and Uiso(H) = 1.5Ueq(C). For each methyl group, the torsion angle which defines the orientation about the Si—C, N—C, or C—C bond was refined. The remaining H atoms were included in the model at calculated positions using a riding model, with C—H distances in the range 0.95–1.00 Å Is this added text OK? and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), drawn with 40% probability displacement ellipsoids. Only the major component of the disordered tert-butyl group is shown, for clarity. H atoms are shown as small spheres of arbitrary radii.
(N-tert-butyl-N-{[(1,2,3,3a,7a-η)-4,5,6,7-tetrahydro-4,7-methano-1H-inden- 2-yl]dimethylsilyl}amido)-κN]bis(N-methylmethanaminato-κN)zirconium(IV) top
Crystal data top
[Zr(C16H25NSi)(C2H6N)2]F(000) = 1856
Mr = 438.84Dx = 1.272 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4545 reflections
a = 10.593 (1) Åθ = 2.0–25.0°
b = 15.134 (2) ŵ = 0.54 mm1
c = 28.592 (3) ÅT = 150 K
V = 4583.7 (9) Å3Rectangular block, colourless
Z = 80.35 × 0.31 × 0.19 mm
Data collection top
Nonius Kappa CCD aarea-detector
diffractometer
4038 independent reflections
Radiation source: fine-focus sealed tube3443 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.849, Tmax = 0.902k = 1818
41422 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0361P)2 + 6.0948P]
where P = (Fo2 + 2Fc2)/3
4038 reflections(Δ/σ)max = 0.010
251 parametersΔρmax = 0.80 e Å3
3 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zr(C16H25NSi)(C2H6N)2]V = 4583.7 (9) Å3
Mr = 438.84Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.593 (1) ŵ = 0.54 mm1
b = 15.134 (2) ÅT = 150 K
c = 28.592 (3) Å0.35 × 0.31 × 0.19 mm
Data collection top
Nonius Kappa CCD aarea-detector
diffractometer
4038 independent reflections
Absorption correction: multi-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
3443 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.902Rint = 0.038
41422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.04Δρmax = 0.80 e Å3
4038 reflectionsΔρmin = 0.41 e Å3
251 parameters
Special details top

Experimental. All work was done at 150 K using an Oxford Cryosystems Cryostream Cooler. An octant of data was measured with a redundancy factor of 4, which means that 90% of the data was measured at least 4 times. A combination of phi and omega scans with a frame width of 1.0° was used for data collection. Data integration was done with DENZO (Otwinowski & Minor, 1997).

1H and 13C NMR spectra were recorded with a Bruker DRX500 spectrometer. 1H NMR (C6D6, δ, p.p.m.): 5.86 (s, 2H, peripheral), 3.23 (br s, 2H, bridgehead), 3.02 (s, 6H, N(CH3)2), 1.75 (br m, 3H, syn-methano and exo-ethano bridge), 1.48 (d, 1H, 2JHH = 8.93 Hz, anti-methano bridge), 1.45 (s, 9H, NC(CH3)3), 1.20 (d, 2H, 2JHH = 7.24 Hz, endo-ethano bridge), 0.67 (s, 6H, SiCH3); 13C {1H} NMR (C6D6, δ, p.p.m.): 143.6 (quaternary), 108.8 (peripheral), 106.9 (central), 56.3 (NC(CH3)3), 50.7 (methano bridge), 44.7 [N(CH3)2], 40.5 (bridgehead), 35.1 [NC(CH3)3], 29.3 (ethano bridge), 21.9 (CH3), 3.0 (SiCH3).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zr0.52498 (2)0.619386 (15)0.620355 (8)0.01794 (9)
Si0.25163 (6)0.56073 (4)0.62692 (2)0.01937 (16)
N10.39431 (19)0.53359 (13)0.65236 (7)0.0211 (4)
N20.6881 (2)0.55190 (16)0.60438 (8)0.0320 (5)
N30.5715 (3)0.70843 (15)0.67145 (9)0.0406 (6)
C10.4905 (2)0.66138 (16)0.53311 (8)0.0194 (5)
C20.4012 (2)0.59733 (15)0.54545 (8)0.0193 (5)
H20.39520.53960.53260.023*
C30.3203 (2)0.63358 (15)0.58090 (8)0.0178 (5)
C40.3603 (2)0.72356 (15)0.58790 (8)0.0192 (5)
H40.32180.76530.60820.023*
C50.4666 (2)0.73885 (15)0.55939 (8)0.0193 (5)
C60.5513 (2)0.81018 (17)0.54014 (9)0.0254 (6)
H60.56850.86140.56130.030*
C70.4975 (3)0.83286 (18)0.49097 (10)0.0311 (7)
H7A0.40590.84550.49260.037*
H7B0.54130.88460.47730.037*
C80.5235 (3)0.74808 (19)0.46191 (9)0.0315 (6)
H8A0.57910.76100.43490.038*
H8B0.44380.72180.45030.038*
C90.5899 (2)0.68537 (17)0.49730 (9)0.0252 (6)
H90.63870.63510.48360.030*
C100.6671 (2)0.75396 (17)0.52568 (9)0.0269 (6)
H10A0.71100.72740.55280.032*
H10B0.72770.78720.50610.032*
C110.1415 (3)0.62432 (18)0.66512 (10)0.0327 (6)
H11A0.10390.58460.68830.049*
H11B0.07450.65050.64590.049*
H11C0.18810.67130.68120.049*
C120.1610 (3)0.46851 (17)0.59900 (10)0.0305 (6)
H12A0.09240.49310.58000.046*
H12B0.12550.43030.62340.046*
H12C0.21760.43390.57900.046*
C130.4185 (3)0.46247 (18)0.68666 (10)0.0345 (7)
C14A0.5416 (4)0.4785 (3)0.71187 (14)0.0490 (13)0.821 (6)
H14A0.60990.48430.68900.073*0.821 (6)
H14B0.55940.42870.73280.073*0.821 (6)
H14C0.53540.53300.73020.073*0.821 (6)
C15A0.4411 (5)0.3758 (2)0.65758 (16)0.0510 (13)0.821 (6)
H15A0.51090.38510.63560.076*0.821 (6)
H15B0.36430.36090.64020.076*0.821 (6)
H15C0.46240.32720.67880.076*0.821 (6)
C16A0.3117 (4)0.4483 (4)0.71881 (17)0.0646 (17)0.821 (6)
H16A0.33120.39910.73990.097*0.821 (6)
H16B0.23570.43430.70070.097*0.821 (6)
H16C0.29730.50200.73720.097*0.821 (6)
C14B0.402 (2)0.5159 (13)0.7350 (6)0.059 (6)*0.179 (6)
H14D0.32640.55320.73310.089*0.179 (6)
H14E0.47620.55300.74030.089*0.179 (6)
H14F0.39270.47390.76080.089*0.179 (6)
C15B0.5513 (17)0.4164 (17)0.6908 (10)0.077 (8)*0.179 (6)
H15D0.61800.46100.68820.116*0.179 (6)
H15E0.56080.37290.66570.116*0.179 (6)
H15F0.55780.38660.72120.116*0.179 (6)
C16B0.3047 (16)0.3961 (12)0.6934 (7)0.047 (5)*0.179 (6)
H16D0.30360.35360.66750.071*0.179 (6)
H16E0.22510.42910.69380.071*0.179 (6)
H16F0.31480.36430.72300.071*0.179 (6)
C170.6999 (3)0.4869 (2)0.56820 (13)0.0598 (10)
H17A0.62000.48230.55110.090*
H17B0.72060.42960.58220.090*
H17C0.76720.50440.54660.090*
C180.8094 (3)0.5652 (3)0.62702 (14)0.0591 (10)
H18A0.80110.61060.65130.089*
H18B0.87160.58430.60380.089*
H18C0.83720.50970.64130.089*
C190.4956 (4)0.7295 (3)0.71455 (13)0.0662 (11)
H19A0.43110.68400.71920.099*
H19B0.45470.78720.71070.099*
H19C0.55160.73120.74180.099*
C200.6559 (5)0.7791 (3)0.66411 (14)0.0848 (16)
H20A0.70100.77020.63460.127*
H20B0.71670.78160.68990.127*
H20C0.60860.83470.66280.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr0.01658 (14)0.01852 (14)0.01872 (14)0.00120 (9)0.00261 (9)0.00062 (9)
Si0.0180 (3)0.0171 (3)0.0230 (3)0.0016 (3)0.0015 (3)0.0024 (3)
N10.0229 (11)0.0210 (10)0.0195 (11)0.0002 (9)0.0018 (9)0.0039 (8)
N20.0217 (12)0.0413 (14)0.0329 (12)0.0086 (10)0.0004 (10)0.0044 (11)
N30.0570 (16)0.0265 (12)0.0382 (14)0.0043 (12)0.0197 (13)0.0057 (11)
C10.0192 (13)0.0216 (13)0.0174 (12)0.0026 (10)0.0011 (10)0.0017 (10)
C20.0222 (13)0.0186 (12)0.0169 (12)0.0003 (10)0.0048 (10)0.0007 (9)
C30.0150 (12)0.0184 (12)0.0199 (12)0.0002 (9)0.0032 (10)0.0028 (9)
C40.0175 (12)0.0170 (12)0.0233 (13)0.0027 (10)0.0007 (10)0.0017 (10)
C50.0174 (12)0.0184 (12)0.0219 (12)0.0004 (10)0.0020 (10)0.0038 (10)
C60.0214 (14)0.0224 (13)0.0324 (15)0.0043 (10)0.0021 (11)0.0043 (11)
C70.0257 (15)0.0312 (15)0.0364 (16)0.0033 (11)0.0016 (12)0.0167 (13)
C80.0278 (15)0.0429 (16)0.0237 (14)0.0047 (13)0.0047 (11)0.0100 (12)
C90.0218 (14)0.0301 (14)0.0237 (13)0.0009 (11)0.0056 (11)0.0007 (11)
C100.0185 (13)0.0322 (14)0.0300 (14)0.0032 (11)0.0028 (11)0.0072 (12)
C110.0286 (15)0.0322 (15)0.0372 (16)0.0029 (12)0.0101 (13)0.0045 (12)
C120.0273 (15)0.0251 (14)0.0391 (16)0.0057 (11)0.0044 (12)0.0046 (12)
C130.0350 (16)0.0318 (15)0.0367 (16)0.0028 (13)0.0091 (13)0.0172 (12)
C14A0.059 (3)0.045 (2)0.043 (2)0.003 (2)0.026 (2)0.0227 (19)
C15A0.070 (3)0.0232 (19)0.060 (3)0.0045 (19)0.020 (2)0.0098 (17)
C16A0.056 (3)0.080 (4)0.057 (3)0.014 (3)0.016 (2)0.048 (3)
C170.051 (2)0.071 (2)0.057 (2)0.0331 (19)0.0021 (18)0.0169 (19)
C180.0292 (17)0.064 (2)0.084 (3)0.0085 (17)0.0139 (18)0.009 (2)
C190.091 (3)0.058 (2)0.049 (2)0.001 (2)0.003 (2)0.0160 (19)
C200.137 (4)0.071 (3)0.046 (2)0.059 (3)0.005 (2)0.011 (2)
Geometric parameters (Å, º) top
Zr—N32.048 (2)C11—H11B0.98
Zr—N22.059 (2)C11—H11C0.98
Zr—N12.107 (2)C12—H12A0.98
Zr—C32.454 (2)C12—H12B0.98
Zr—C42.528 (2)C12—H12C0.98
Zr—C22.533 (2)C13—C16A1.473 (5)
Zr—C52.587 (2)C13—C14A1.509 (5)
Zr—C12.600 (2)C13—C15A1.572 (5)
Zr—Si3.0343 (7)C13—C15B1.575 (14)
Si—N11.727 (2)C13—C16B1.582 (13)
Si—C31.864 (2)C13—C14B1.610 (13)
Si—C111.866 (3)C14A—H14A0.98
Si—C121.873 (3)C14A—H14B0.98
N1—C131.478 (3)C14A—H14C0.98
N2—C171.433 (4)C15A—H15A0.98
N2—C181.452 (4)C15A—H15B0.98
N3—C201.410 (4)C15A—H15C0.98
N3—C191.506 (5)C16A—H16A0.98
C1—C21.399 (3)C16A—H16B0.98
C1—C51.415 (3)C16A—H16C0.98
C1—C91.513 (3)C14B—H14D0.98
C2—C31.437 (3)C14B—H14E0.98
C2—H20.95C14B—H14F0.98
C3—C41.440 (3)C15B—H15D0.98
C4—C51.409 (3)C15B—H15E0.98
C4—H40.95C15B—H15F0.98
C5—C61.508 (3)C16B—H16D0.98
C6—C101.549 (4)C16B—H16E0.98
C6—C71.555 (4)C16B—H16F0.98
C6—H61.00C17—H17A0.98
C7—C81.553 (4)C17—H17B0.98
C7—H7A0.99C17—H17C0.98
C7—H7B0.99C18—H18A0.98
C8—C91.555 (4)C18—H18B0.98
C8—H8A0.99C18—H18C0.98
C8—H8B0.99C19—H19A0.98
C9—C101.550 (4)C19—H19B0.98
C9—H91.00C19—H19C0.98
C10—H10A0.99C20—H20A0.98
C10—H10B0.99C20—H20B0.98
C11—H11A0.98C20—H20C0.98
N3—Zr—N2106.42 (10)C9—C8—H8B111.0
N3—Zr—N1104.71 (9)H8A—C8—H8B109.0
N2—Zr—N1110.00 (9)C1—C9—C1099.99 (19)
N3—Zr—C3118.89 (9)C1—C9—C8105.8 (2)
N2—Zr—C3133.10 (9)C10—C9—C899.8 (2)
N1—Zr—C370.92 (8)C1—C9—H9116.3
N3—Zr—C491.01 (9)C10—C9—H9116.3
N2—Zr—C4143.83 (8)C8—C9—H9116.3
N1—Zr—C495.20 (8)C6—C10—C995.18 (19)
C3—Zr—C433.57 (7)C6—C10—H10A112.7
N3—Zr—C2144.54 (9)C9—C10—H10A112.7
N2—Zr—C2100.45 (8)C6—C10—H10B112.7
N1—Zr—C286.91 (8)C9—C10—H10B112.7
C3—Zr—C233.44 (8)H10A—C10—H10B110.2
C4—Zr—C254.18 (8)Si—C11—H11A109.5
N3—Zr—C594.49 (9)Si—C11—H11B109.5
N2—Zr—C5113.46 (8)H11A—C11—H11B109.5
N1—Zr—C5124.50 (7)Si—C11—H11C109.5
C3—Zr—C554.38 (7)H11A—C11—H11C109.5
C4—Zr—C531.95 (7)H11B—C11—H11C109.5
C2—Zr—C553.02 (7)Si—C12—H12A109.5
N3—Zr—C1123.87 (9)Si—C12—H12B109.5
N2—Zr—C191.51 (8)H12A—C12—H12B109.5
N1—Zr—C1118.36 (8)Si—C12—H12C109.5
C3—Zr—C154.08 (8)H12A—C12—H12C109.5
C4—Zr—C153.01 (8)H12B—C12—H12C109.5
C2—Zr—C131.60 (8)N1—C13—C16A112.8 (3)
C5—Zr—C131.67 (7)N1—C13—C14A110.4 (2)
N1—Si—C395.55 (10)C16A—C13—C14A112.9 (3)
N1—Si—C11115.06 (12)N1—C13—C15A106.5 (2)
C3—Si—C11110.61 (11)C16A—C13—C15A109.0 (3)
N1—Si—C12116.81 (11)C14A—C13—C15A104.8 (3)
C3—Si—C12109.87 (12)N1—C13—C15B121.9 (10)
C11—Si—C12108.26 (13)N1—C13—C16B114.3 (7)
C13—N1—Si127.19 (17)C15B—C13—C16B113.0 (13)
C13—N1—Zr128.52 (16)N1—C13—C14B100.6 (8)
Si—N1—Zr104.21 (9)C15B—C13—C14B104.8 (13)
C17—N2—C18109.9 (3)C16B—C13—C14B97.5 (11)
C17—N2—Zr125.0 (2)C13—C14A—H14A109.5
C18—N2—Zr125.1 (2)C13—C14A—H14B109.5
C20—N3—C19107.4 (3)C13—C14A—H14C109.5
C20—N3—Zr123.1 (2)C13—C15A—H15A109.5
C19—N3—Zr126.5 (2)C13—C15A—H15B109.5
C2—C1—C5108.6 (2)C13—C15A—H15C109.5
C2—C1—C9143.8 (2)C13—C16A—H16A109.5
C5—C1—C9106.6 (2)C13—C16A—H16B109.5
C2—C1—Zr71.56 (13)C13—C16A—H16C109.5
C5—C1—Zr73.64 (13)C13—C14B—H14D109.5
C9—C1—Zr127.59 (16)C13—C14B—H14E109.5
C1—C2—C3108.5 (2)H14D—C14B—H14E109.5
C1—C2—Zr76.84 (14)C13—C14B—H14F109.5
C3—C2—Zr70.24 (13)H14D—C14B—H14F109.5
C1—C2—H2125.8H14E—C14B—H14F109.5
C3—C2—H2125.8C13—C15B—H15D109.5
Zr—C2—H2118.9C13—C15B—H15E109.5
C2—C3—C4106.5 (2)H15D—C15B—H15E109.5
C2—C3—Si120.33 (17)C13—C15B—H15F109.5
C4—C3—Si125.17 (18)H15D—C15B—H15F109.5
C2—C3—Zr76.31 (13)H15E—C15B—H15F109.5
C4—C3—Zr76.03 (13)C13—C16B—H16D109.5
Si—C3—Zr88.19 (9)C13—C16B—H16E109.5
C5—C4—C3108.1 (2)H16D—C16B—H16E109.5
C5—C4—Zr76.33 (13)C13—C16B—H16F109.5
C3—C4—Zr70.40 (13)H16D—C16B—H16F109.5
C5—C4—H4126.0H16E—C16B—H16F109.5
C3—C4—H4126.0N2—C17—H17A109.5
Zr—C4—H4119.1N2—C17—H17B109.5
C4—C5—C1108.3 (2)H17A—C17—H17B109.5
C4—C5—C6143.5 (2)N2—C17—H17C109.5
C1—C5—C6107.0 (2)H17A—C17—H17C109.5
C4—C5—Zr71.71 (13)H17B—C17—H17C109.5
C1—C5—Zr74.69 (13)N2—C18—H18A109.5
C6—C5—Zr127.16 (16)N2—C18—H18B109.5
C5—C6—C10100.10 (19)H18A—C18—H18B109.5
C5—C6—C7105.6 (2)N2—C18—H18C109.5
C10—C6—C799.8 (2)H18A—C18—H18C109.5
C5—C6—H6116.3H18B—C18—H18C109.5
C10—C6—H6116.3N3—C19—H19A109.5
C7—C6—H6116.3N3—C19—H19B109.5
C8—C7—C6103.7 (2)H19A—C19—H19B109.5
C8—C7—H7A111.0N3—C19—H19C109.5
C6—C7—H7A111.0H19A—C19—H19C109.5
C8—C7—H7B111.0H19B—C19—H19C109.5
C6—C7—H7B111.0N3—C20—H20A109.5
H7A—C7—H7B109.0N3—C20—H20B109.5
C7—C8—C9103.7 (2)H20A—C20—H20B109.5
C7—C8—H8A111.0N3—C20—H20C109.5
C9—C8—H8A111.0H20A—C20—H20C109.5
C7—C8—H8B111.0H20B—C20—H20C109.5
N3—Zr—Si—N183.08 (12)C1—C2—C3—C42.7 (3)
N2—Zr—Si—N158.12 (13)Zr—C2—C3—C470.67 (15)
C3—Zr—Si—N1167.96 (14)C1—C2—C3—Si147.60 (17)
C4—Zr—Si—N1162.34 (12)Zr—C2—C3—Si79.62 (15)
C2—Zr—Si—N1135.71 (12)C1—C2—C3—Zr67.98 (17)
C5—Zr—Si—N1178.36 (11)N1—Si—C3—C264.9 (2)
C1—Zr—Si—N1149.99 (11)C11—Si—C3—C2175.71 (19)
N3—Zr—Si—C3108.96 (12)C12—Si—C3—C256.3 (2)
N2—Zr—Si—C3109.84 (12)Zr—Si—C3—C272.98 (18)
N1—Zr—Si—C3167.96 (14)N1—Si—C3—C479.6 (2)
C4—Zr—Si—C329.70 (11)C11—Si—C3—C439.8 (2)
C2—Zr—Si—C332.25 (11)C12—Si—C3—C4159.3 (2)
C5—Zr—Si—C313.68 (10)Zr—Si—C3—C471.47 (19)
C1—Zr—Si—C317.97 (10)N1—Si—C3—Zr8.11 (9)
N3—Zr—Si—C1113.44 (13)C11—Si—C3—Zr111.31 (12)
N2—Zr—Si—C11154.64 (13)C12—Si—C3—Zr129.23 (10)
N1—Zr—Si—C1196.53 (14)N3—Zr—C3—C2148.49 (14)
C3—Zr—Si—C1195.51 (14)N2—Zr—C3—C214.95 (18)
C4—Zr—Si—C1165.81 (12)N1—Zr—C3—C2114.85 (14)
C2—Zr—Si—C11127.76 (12)C4—Zr—C3—C2111.16 (19)
C5—Zr—Si—C1181.84 (12)C5—Zr—C3—C275.06 (14)
C1—Zr—Si—C11113.49 (12)C1—Zr—C3—C235.76 (13)
N3—Zr—Si—C12166.97 (14)Si—Zr—C3—C2121.85 (16)
N2—Zr—Si—C1225.77 (15)N3—Zr—C3—C437.33 (17)
N1—Zr—Si—C1283.88 (16)N2—Zr—C3—C4126.11 (15)
C3—Zr—Si—C1284.08 (15)N1—Zr—C3—C4133.99 (15)
C4—Zr—Si—C12113.77 (14)C2—Zr—C3—C4111.16 (19)
C2—Zr—Si—C1251.82 (13)C5—Zr—C3—C436.10 (13)
C5—Zr—Si—C1297.75 (13)C1—Zr—C3—C475.40 (15)
C1—Zr—Si—C1266.10 (13)Si—Zr—C3—C4126.99 (17)
C3—Si—N1—C13167.0 (2)N3—Zr—C3—Si89.67 (11)
C11—Si—N1—C1377.2 (2)N2—Zr—C3—Si106.89 (12)
C12—Si—N1—C1351.4 (2)N1—Zr—C3—Si6.99 (8)
Zr—Si—N1—C13176.7 (3)C4—Zr—C3—Si126.99 (17)
C3—Si—N1—Zr9.75 (11)C2—Zr—C3—Si121.85 (16)
C11—Si—N1—Zr106.08 (12)C5—Zr—C3—Si163.09 (13)
C12—Si—N1—Zr125.32 (12)C1—Zr—C3—Si157.60 (13)
N3—Zr—N1—C1375.1 (2)C2—C3—C4—C53.2 (3)
N2—Zr—N1—C1338.8 (2)Si—C3—C4—C5145.24 (18)
C3—Zr—N1—C13168.9 (2)Zr—C3—C4—C567.66 (16)
C4—Zr—N1—C13167.6 (2)C2—C3—C4—Zr70.87 (15)
C2—Zr—N1—C13138.8 (2)Si—C3—C4—Zr77.57 (17)
C5—Zr—N1—C13178.68 (19)N3—Zr—C4—C596.88 (15)
C1—Zr—N1—C13142.0 (2)N2—Zr—C4—C523.3 (2)
Si—Zr—N1—C13176.7 (3)N1—Zr—C4—C5158.25 (14)
N3—Zr—N1—Si108.17 (11)C3—Zr—C4—C5115.2 (2)
N2—Zr—N1—Si137.84 (10)C2—Zr—C4—C575.85 (15)
C3—Zr—N1—Si7.79 (9)C1—Zr—C4—C536.33 (13)
C4—Zr—N1—Si15.75 (10)Si—Zr—C4—C5148.57 (15)
C2—Zr—N1—Si37.84 (10)N3—Zr—C4—C3147.93 (15)
C5—Zr—N1—Si1.99 (14)N2—Zr—C4—C391.87 (19)
C1—Zr—N1—Si34.64 (13)N1—Zr—C4—C343.06 (14)
N3—Zr—N2—C17175.9 (3)C2—Zr—C4—C339.33 (13)
N1—Zr—N2—C1771.2 (3)C5—Zr—C4—C3115.2 (2)
C3—Zr—N2—C1711.0 (3)C1—Zr—C4—C378.86 (15)
C4—Zr—N2—C1760.2 (3)Si—Zr—C4—C333.38 (12)
C2—Zr—N2—C1719.3 (3)C3—C4—C5—C12.5 (3)
C5—Zr—N2—C1773.4 (3)Zr—C4—C5—C166.28 (16)
C1—Zr—N2—C1749.9 (3)C3—C4—C5—C6167.7 (3)
Si—Zr—N2—C1741.3 (3)Zr—C4—C5—C6128.5 (4)
N3—Zr—N2—C181.8 (3)C3—C4—C5—Zr63.74 (16)
N1—Zr—N2—C18111.0 (3)C2—C1—C5—C40.9 (3)
C3—Zr—N2—C18166.8 (2)C9—C1—C5—C4170.5 (2)
C4—Zr—N2—C18117.6 (3)Zr—C1—C5—C464.33 (16)
C2—Zr—N2—C18158.4 (2)C2—C1—C5—C6171.7 (2)
C5—Zr—N2—C18104.4 (2)C9—C1—C5—C60.3 (3)
C1—Zr—N2—C18127.9 (3)Zr—C1—C5—C6124.83 (17)
Si—Zr—N2—C18140.9 (2)C2—C1—C5—Zr63.47 (17)
N2—Zr—N3—C2064.7 (3)C9—C1—C5—Zr125.16 (17)
N1—Zr—N3—C20178.8 (3)N3—Zr—C5—C484.68 (16)
C3—Zr—N3—C20102.7 (3)N2—Zr—C5—C4165.25 (14)
C4—Zr—N3—C2083.1 (3)N1—Zr—C5—C426.61 (17)
C2—Zr—N3—C2073.0 (4)C3—Zr—C5—C437.99 (14)
C5—Zr—N3—C2051.3 (3)C2—Zr—C5—C479.79 (15)
C1—Zr—N3—C2038.6 (3)C1—Zr—C5—C4115.7 (2)
Si—Zr—N3—C20144.3 (3)Si—Zr—C5—C427.70 (13)
N2—Zr—N3—C19137.3 (3)N3—Zr—C5—C1159.63 (15)
N1—Zr—N3—C1920.9 (3)N2—Zr—C5—C149.56 (16)
C3—Zr—N3—C1955.2 (3)N1—Zr—C5—C189.08 (15)
C4—Zr—N3—C1974.8 (3)C3—Zr—C5—C177.70 (15)
C2—Zr—N3—C1985.0 (3)C4—Zr—C5—C1115.7 (2)
C5—Zr—N3—C19106.6 (3)C2—Zr—C5—C135.90 (14)
C1—Zr—N3—C19119.3 (3)Si—Zr—C5—C187.99 (13)
Si—Zr—N3—C1913.6 (3)N3—Zr—C5—C659.6 (2)
N3—Zr—C1—C2141.35 (15)N2—Zr—C5—C650.4 (2)
N2—Zr—C1—C2107.66 (15)N1—Zr—C5—C6170.93 (19)
N1—Zr—C1—C26.11 (16)C3—Zr—C5—C6177.7 (2)
C3—Zr—C1—C237.92 (13)C4—Zr—C5—C6144.3 (3)
C4—Zr—C1—C279.98 (15)C2—Zr—C5—C6135.9 (2)
C5—Zr—C1—C2116.6 (2)C1—Zr—C5—C6100.0 (2)
Si—Zr—C1—C224.39 (13)Si—Zr—C5—C6172.0 (2)
N3—Zr—C1—C524.71 (18)C4—C5—C6—C10161.8 (3)
N2—Zr—C1—C5135.70 (15)C1—C5—C6—C1033.0 (2)
N1—Zr—C1—C5110.53 (14)Zr—C5—C6—C1050.5 (3)
C3—Zr—C1—C578.72 (15)C4—C5—C6—C795.0 (4)
C4—Zr—C1—C536.66 (13)C1—C5—C6—C770.3 (2)
C2—Zr—C1—C5116.6 (2)Zr—C5—C6—C7153.73 (17)
Si—Zr—C1—C592.25 (13)C5—C6—C7—C867.8 (2)
N3—Zr—C1—C973.9 (2)C10—C6—C7—C835.7 (2)
N2—Zr—C1—C937.1 (2)C6—C7—C8—C90.1 (3)
N1—Zr—C1—C9150.90 (19)C2—C1—C9—C10160.5 (3)
C3—Zr—C1—C9177.3 (2)C5—C1—C9—C1033.5 (2)
C4—Zr—C1—C9135.2 (2)Zr—C1—C9—C1048.4 (2)
C2—Zr—C1—C9144.8 (3)C2—C1—C9—C896.2 (4)
C5—Zr—C1—C998.6 (2)C5—C1—C9—C869.8 (2)
Si—Zr—C1—C9169.2 (2)Zr—C1—C9—C8151.65 (18)
C5—C1—C2—C31.2 (3)C7—C8—C9—C167.9 (2)
C9—C1—C2—C3167.1 (3)C7—C8—C9—C1035.5 (2)
Zr—C1—C2—C363.64 (16)C5—C6—C10—C950.9 (2)
C5—C1—C2—Zr64.82 (17)C7—C6—C10—C957.0 (2)
C9—C1—C2—Zr129.3 (4)C1—C9—C10—C651.1 (2)
N3—Zr—C2—C163.4 (2)C8—C9—C10—C657.0 (2)
N2—Zr—C2—C175.61 (15)Si—N1—C13—C16A34.1 (4)
N1—Zr—C2—C1174.62 (14)Zr—N1—C13—C16A149.9 (3)
C3—Zr—C2—C1115.4 (2)Si—N1—C13—C14A161.4 (2)
C4—Zr—C2—C175.94 (15)Zr—N1—C13—C14A22.6 (4)
C5—Zr—C2—C135.98 (13)Si—N1—C13—C15A85.3 (3)
Si—Zr—C2—C1151.93 (15)Zr—N1—C13—C15A90.6 (3)
N3—Zr—C2—C352.1 (2)Si—N1—C13—C15B152.5 (13)
N2—Zr—C2—C3168.96 (14)Zr—N1—C13—C15B23.5 (13)
N1—Zr—C2—C359.18 (14)Si—N1—C13—C16B10.8 (9)
C4—Zr—C2—C339.49 (13)Zr—N1—C13—C16B165.1 (9)
C5—Zr—C2—C379.46 (14)Si—N1—C13—C14B92.5 (8)
C1—Zr—C2—C3115.4 (2)Zr—N1—C13—C14B91.5 (8)
Si—Zr—C2—C336.49 (11)

Experimental details

Crystal data
Chemical formula[Zr(C16H25NSi)(C2H6N)2]
Mr438.84
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)10.593 (1), 15.134 (2), 28.592 (3)
V3)4583.7 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.35 × 0.31 × 0.19
Data collection
DiffractometerNonius Kappa CCD aarea-detector
diffractometer
Absorption correctionMulti-scan
HKL SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.849, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
41422, 4038, 3443
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.04
No. of reflections4038
No. of parameters251
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.41

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Zr—N32.048 (2)N1—C131.478 (3)
Zr—N22.059 (2)N2—C171.433 (4)
Zr—N12.107 (2)N2—C181.452 (4)
Si—N11.727 (2)N3—C201.410 (4)
Si—C31.864 (2)N3—C191.506 (5)
N3—Zr—N2106.42 (10)C17—N2—Zr125.0 (2)
N3—Zr—N1104.71 (9)C18—N2—Zr125.1 (2)
N2—Zr—N1110.00 (9)C20—N3—C19107.4 (3)
N1—Si—C395.55 (10)C20—N3—Zr123.1 (2)
C13—N1—Si127.19 (17)C19—N3—Zr126.5 (2)
C13—N1—Zr128.52 (16)C2—C3—C4106.5 (2)
Si—N1—Zr104.21 (9)C2—C3—Si120.33 (17)
C17—N2—C18109.9 (3)C4—C3—Si125.17 (18)
Selected geometric parameters (Å and °) involving Zr and the ring centroid top
Cg-Zr2.2352 (10)
Cg-Zr-N1100.26 (6)
Cg-Zr-N2118.16 (7)
Cg-Zr-N3116.26 (8)
Cg is the ring centroid for atoms C1, C2, C3, C4 and C5.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds