Download citation
Download citation
link to html
The title complexes [μ-(E)-4,4′-(ethene-1,2-diyl)­di­pyridine-κ2N:N′]­bis­[halotris(4-methyl­phenyl)­tin(IV)], [Sn2(C7H7)6X2(C12H10N2)], where halo is chloro (X = Cl) and bromo (X = Br) are isostructural. In both crystals, the mol­ecules lie on inversion centers, and there are voids of ca 80 Å3 that could, but apparently do not, accommodate water mol­ecules. The corresponding iodo structure (X = I) is almost, but not quite, isostructural with the other two compounds; when Br is changed to I, the length of the c axis decreases by more than 1 Å and the voids are no longer large enough to accomodate any solvent mol­ecule. The related complex [μ-(E)-4,4′-(ethene-1,2-diyl)­di­pyridine-κ2N:N′]­bis­[chloro­tri­phenyl­tin(IV)], [Sn2(C6H5)6Cl2(C12H10N2)], crystallizes in a related structure, but the mol­ecules lie on general rather than on special positions. The molecular structures of the four complexes are similar, but the conformation of the phenyl derivative is approximately eclipsed rather than staggered.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102023600/fr1399sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023600/fr1399Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023600/fr1399IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023600/fr1399IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023600/fr1399IVsup5.hkl
Contains datablock IV

CCDC references: 214363; 214364; 214365; 214366

Comment top

The structures of the four molecules shown in the Scheme below were determined as part of a study of Sn complexes (Bajue et al., 1992). The structures are interesting crystallographically because the members of the set R = Me/X = Cl, R = Me/X = Br, and R = Me/X = I are almost, but not quite, isostructural. The packing in the R = H/X = Cl crystal is similar even though the molecular volume is ca 13% smaller.

The molecular structures of the four compounds (see Fig. 1) are similar. The tolyl groups are staggered in the R = Me/X = Cl, R = Me/X = Br, and R = Me/X = I molecules, all of which lie on inversion centers. In the R = H/X = Cl molecule, which has no imposed crystallographic symmetry, the phenyl groups are approximately eclipsed [torsion angles 22.0 (1), 17.1 (1), and 15.0 (1)° for angles Cn—Sn1···Sn2—C(n+24), n = 7, 13, and 19]. While the R = Me/X = Cl and R = Me/X = Br molecules are nearly identical, the positions and orientations of the tolyl rings in the R = Me/X = I molecule are a little different. An important stilbene-like disorder (Bouwstra et al., 1984, and references therein) of the bridging trans-1,2-bis(4-pyridyl)ethene ligand (hereafter, the bpe ligand) in the iodo compound is obvious (see Fig. 1 and Experimental). This disorder is good evidence that the structure of the iodo compound differs in significant, if small, ways from the structures of the chloro and bromo compounds.

The bpe ligand is significantly non-planar in the R = Me/X = I molecule, but is essentially planar in the other three molecules. The torsion angles C2—C3—C6—C6' and C4—C3—C6—C6' for the major component of R = Me/X = I are −157.5 (7) and 23.2 (11)°, but are 0(1) and 179 (1)° for R = Me/X = Cl, and are 4(1) and 177 (1)° for R = Me/X = Br. For the two independent halves of the R = H/X = Cl, molecule, the corresponding angles are 6(1) and 174 (1)°, and 6(1) and 172 (1)°.

A quick look at the packing diagrams for the three R = Me structures (see Figs. 2 and 3) suggests that the compounds are isostructural, but a comparison of the cell constants indicates otherwise. The value of a increases by 0.095 (2) Å and by 0.431 (2) Å when Cl is changed to Br and then I; the corresponding pairs of changes for b are 0.041 (2) and 0.263 (2) Å. The changes for c, however, are +0.055 (3) Å when Cl is changed to Br but −1.074 (3) Å when Br is changed to I. The c axis is very significantly shorter in the I compound than in the Br compound. The volume per molecule increases by 19.9 (4) Å3 when Cl is changed to Br, but remains unchanged [ΔV is −0.1 (4) Å3] when Br is changed to I. The structure of the I derivative is more closely packed than are the structures of the Br and Cl derivatives.

The free spaces in the R = Me/X = Cl and R = Me/X = Br structures are concentrated in regions classified by PLATON (Spek, 2003) as `solvent-accessible voids' (see Fig. 2). Although the empty spaces seemed large enough (81 and 83 Å3) to accommodate small solvent molecules, a more detailed analysis (Spek, 2002) indicated that the spaces are too constricted (i.e., dumb-bell-shaped) to hold any molecule larger than water. Since no water was present during the synthesis or recrystallization, and since little electron density is found in the void regions (see Experimental), we conclude that the voids are empty. PLATON (Spek, 2003) identifies no void in the R = Me/X = I or R = H/X = Cl structure.

The crystal packing can be described in terms of planes that contain the real-space directions [101] and [010] (R = Me; see Fig. 3) or [001] and [010] (R = H; see bottom half of Fig. 4). Within these layers (Fig. 2 and the top half of Fig. 4) there are short X···H—C interactions (see Table 2) that involve atoms C4 and C6 and either their symmetry equivalents in the other half of the molecule (R = Me) or atoms C26 and C30 (R = H). These interactions are substantially weaker in the X = I structure than in the other three structures.

Drawings of these layers for the R = Me/X = Cl and R = Me/X = Br structures are nearly superimposable. There are very subtle differences, however, between the layers for the X = Br and X = I structures (see Fig. 2). The long molecular axes for the R = H/X = Cl compound make a smaller angle (see top half of Fig. 4) with the b axis, but the basic arrangement is the same.

No significiant difference between the stacking of these layers in the R = Me/X = Cl and R = Me/X = Br compounds can be identified, but the distance across x = z = 1/2, y = 0 between the I atoms in molecules related by the translation a+c is substantially shorter (6.46 Å) than the corresponding distances between the Br or Cl atoms (8.77 and 9.09 Å; all s.u. values < 0.002 Å). The shorter of the two X···X contacts across the inversion center at x = y = z = 1/2 are similar in the three structures (8.68, 8.42 and 8.27 Å for X = I, Br and Cl, respectively). All other X···X contacts are longer than 12 Å.

There is no question that the R = Me/X = Cl and R = Me/X = Br compounds should be considered isostructural. These crystals are so similar that the formation of mixed crystals (or solid solutions) seems likely and may even have been observed (see Experimental). The R = Me/X = I structure is very similar, but important differences in the molecular conformation, the intermolecular interactions, and the ratios of the cell constants can be identified. The choice of whether or not to describe the Br and I structures as isostructural would probably depend on the purpose of the comparison.

For the R = Me/X = Cl and R = H/X = Cl structures it is the similarities, rather than the structural differences, that are easily missed. The doubling of the asymmetric unit is a surprise, because most molecules and ions that can conform to inversion symmetry do (Yao et al., 2002). It looks as if (see Fig. 3) the methyl groups in the tolyl series prevent tighter packing of the layers. When the Me groups are replaced by H atoms, the structure collapses (see bottom half of Fig. 4) so that the `voids' are much smaller. The change in imposed symmetry and conformation means that the contacts on the two sides of the layer are different (see Fig. 4). The tighter packing is reflected in the melting point; Tfus rises by ca 50 K when R = Me/X = Cl is changed to R = H/X = Cl, even though the molar mass drops by 84 Da (see Experimental).

Experimental top

The adducts were prepared by refluxing the triorganotin halides with (E)-4,4'-(ethene-1,2-diyl)bis(pyridine) (bpe) in ethanol for about 1 h. Typically, a 0.001 mol sample of the tin compound was used. The reactions were carried out using various mole ratios of Sn-to-ligand, but only 2:1 adducts were obtained. The melting points are 409–410 (R = Me/X = Cl), 395–397 (R = Me/X = Br), 369–371 (R = Me/X = I), and 460–462 K (R = H/X = Cl).

Refinement top

For the R = Me/X = Cl compound, the position of the largest peak in the final difference Fourier map (0.72 e Å−3) suggests the possibility of minor disorder of atom C6 of the type known for stilbene (Bouwstra et al., 1984, and references therein). The second largest peak (0.38 e Å3) lies 1.83 Å from the inversion center at 0, 1/2, 0 in a region that PLATON (Spek, 2003) identifies as a solvent-accessible void with a volume of 81 Å3. Crystals had been grown from benzene, which has an approximate volume (Hofmann, 2002) of 114 Å3, but ethanol (approximate volume 70 Å3) may also have been present. In any event, no pattern of peaks corresponding to a localized solvent molecule could be identified. Other peaks in the difference map (0.36 e Å−3) are near the mid-points of bonds or suggest a set of alternate positions for the methyl H atoms. The deepest trough (−0.45 e Å−3) is 0.75 Å from the Sn atom.

For the R = Me/X = Br compound, the largest peak in the final difference Fourier map (0.52 e Å−3) is 0.68 Å from the Sn atom. The second largest peak (0.51 e Å−3) suggests a stilbene-like disorder of atom C6. The third largest peak ((0.37 e Å−3) is part of a cluster around the Br atom. The fourth largest peak (0.37 e Å−3) lies 1.76 Å from the inversion center at 0, 1/2, 0 in a solvent-accessible region of volume of 83 Å3. Crystals had been grown from ethanol. The most important feature of the final difference map, however, is a set of three large troughs (−1.14 to −1.37 e Å−3) near the Br atom. It seems possible that some of the supposed Br atoms were actually Cl atoms.

For the R = Me/X = I compound, when the standard anisotropic refinement had converged the atomic ellipsoids showed clearly that the bpe ligand is disordered in the same way as stilbene (Bouwstra et al., 1984, and references therein). The final disorder model included two sites (see Fig. 1); the occupancy factor for the major site (N1/C1–C6) is 0.739 (7). The refinement included restraints to keep the pyridyl rings planar (FLAT 0.10) and to keep the distances and angles in the two BPE ligands similar (SAME and SADI 0.002). The two N atoms were required to have the same anisotropic displacement parameters; restraints (SIMU 0.012) kept the displacement parameters of atoms C1–C6 and C1A–C6A similar.

For the R = H/X = Cl compound, the atomic ellipsoids for the phenyl ring containing atoms C7—C12 suggest disorder between rings displaced by ca 0.6 Å. A number of disorder models were explored but we eventually decided they offered no advantage. The molecular geometry of this ring, which has C—C bonds that are a little shorter than average, is not accurate. The top five peaks in the final difference map (0.41 to 0.25 e Å−3) are associated with this ring. The deepest trough (−0.58 e Å−3) is 0.74 Å from the Sn atom.

The H atoms in all four structures were placed at calculated positions. The C—H distances in the methyl groups were fixed at 0.96 Å; all other C—H distances were fixed at 0.93 Å. The Uiso values for the methyl H atoms were set to 1.5 times the Ueq value for the attached C atom; the multiplicative factor was 1.2 for all other H atoms. The use of calculated positions for the methyl groups of the tolyl rings (HFIX/AFIX 33) in the X = Cl and X = Br structures is almost certainly a serious approximation; in the X = I structure there were contacts so short that the methyl groups were allowed to rotate (AFIX 137).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) in maXus (Mackay et al., 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990).

Figures top
[Figure 1] Fig. 1. Perspective drawings of the molecules of the four different compounds; enough information is given about the atom-numbering schemes that the numbers of all atoms can be worked out. The schemes for the first three molecules, all of which lie on inversion centers, are the same except for the label of the halogen atom and the labels of the two independent N atoms (N1 and N1A) in the R = Me/X = I structure. The C atoms in the phenyl rings are numbered sequentially, with the lowest number assigned to the C atom attached to the Sn atom (see Table 1). The N atom (label not shown) of the bpe ligand is attached to the atoms Sn, C1, and C5. The numbering scheme for the fourth molecule, which lies on a general position, is similar. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Slices of the R = Me/X = Br (upper drawing) and R = Me/X = I (lower drawing) structures viewed along −a*+c*. These slices are the layers described in the text. The vectors a+c are in the planes of the drawings and point vertically downwards; the centers of the drawings are at 1/2,1/2,1/2. The possible voids are located at, for example, 0,1/2,0 and at 1/2,0,1/2. The differences between the two structures are most easily seen in the regions of the drawing in which the phenyl rings appear most densely packed. In the R = Me/X = I structure, a single circle represents the disordered atoms C6 and C6A.
[Figure 3] Fig. 3. Slices of the R = Me/X = Cl (upper drawing) and R = Me/X = I (lower drawing) structures viewed along b; the centers of the drawings are at 1/2, 1/2, 1/2. The differences between the two structures are most easily seen around the central bond (C6—C6') of the bpe ligand. The layers described in the text are parallel to a+c and b and so are viewed edge-on; these layers extend from the lower left to the upper right of the drawings. In the X = I structure, a single circle represents the disordered atoms C6 and C6A.
[Figure 4] Fig. 4. Slices of the R = H/X = Cl structure drawn to maximize the similarities to the drawings shown in Figs. 2 and 3. The upper drawing shows a slice of the structure viewed along a*; the center of the drawing is at 1/4, 1, 1/4. The lower drawing shows a slice viewed along −b; the center of the drawing is at 1/2, 1/2, 1/2.
(I) [µ-(E)-4,4'-(1,2-ethenediyl)dipyridine-κ2-N:N']bis[chlorotris(4- methylphenyl)tin(IV)] top
Crystal data top
[Sn2(C7H7)6Cl2(C12H10N2)]Dx = 1.385 Mg m3
Mr = 1037.26Melting point: 136-137 C K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.641 (1) ÅCell parameters from 50324 reflections
b = 12.019 (1) Åθ = 2.0–25.0°
c = 17.999 (2) ŵ = 1.15 mm1
β = 98.94 (1)°T = 293 K
V = 2487.7 (4) Å3Block, colourless
Z = 20.32 × 0.32 × 0.24 mm
F(000) = 1048
Data collection top
Nonius KappaCCD
diffractometer
4372 independent reflections
Radiation source: fine-focus sealed tube3781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 2.1°
ϕ and ω scans with 1.0° stepsh = 013
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.65, Tmax = 0.74l = 2121
8292 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.031P)2 + 1.8P]
where P = (Fo2 + 2Fc2)/3
4372 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Sn2(C7H7)6Cl2(C12H10N2)]V = 2487.7 (4) Å3
Mr = 1037.26Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.641 (1) ŵ = 1.15 mm1
b = 12.019 (1) ÅT = 293 K
c = 17.999 (2) Å0.32 × 0.32 × 0.24 mm
β = 98.94 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4372 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
3781 reflections with I > 2σ(I)
Tmin = 0.65, Tmax = 0.74Rint = 0.017
8292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.04Δρmax = 0.72 e Å3
4372 reflectionsΔρmin = 0.45 e Å3
271 parameters
Special details top

Experimental. The crystal-to-detector distance was 35 mm. Each frame was measured for 60 s. The number of scan sets measured was 5; the total number of frames measured was 756.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.05018 (2)0.27211 (2)0.22573 (1)0.0409 (1)
Cl0.13316 (6)0.22531 (8)0.13781 (4)0.0589 (2)
N0.22357 (19)0.3280 (2)0.31738 (12)0.0453 (6)
C10.3092 (2)0.3842 (2)0.29343 (17)0.0489 (7)
H10.31010.38710.24190.059*
C20.3963 (3)0.4384 (2)0.33977 (17)0.0514 (7)
H20.45320.47700.31940.062*
C30.3993 (3)0.4353 (2)0.41603 (18)0.0523 (8)
C40.3120 (3)0.3753 (3)0.44220 (16)0.0655 (9)
H40.31150.36890.49360.079*
C50.2253 (3)0.3247 (3)0.39179 (16)0.0582 (8)
H50.16610.28710.41050.070*
C60.4934 (3)0.4971 (3)0.46445 (17)0.0613 (8)
H60.54710.53470.44050.074*
C70.1606 (2)0.2387 (2)0.14406 (15)0.0410 (6)
C80.1281 (3)0.2716 (3)0.06996 (16)0.0518 (7)
H80.06170.31470.05710.062*
C90.1926 (3)0.2417 (3)0.01470 (17)0.0632 (9)
H90.16960.26600.03440.076*
C100.2903 (3)0.1762 (3)0.03161 (18)0.0607 (8)
C110.3246 (3)0.1450 (3)0.10523 (18)0.0573 (8)
H110.39140.10220.11770.069*
C120.2616 (2)0.1760 (3)0.16110 (16)0.0487 (7)
H120.28720.15470.21060.058*
C130.3577 (4)0.1375 (4)0.0302 (2)0.0950 (14)
H13A0.32200.16750.07760.142*
H13B0.35670.05770.03260.142*
H13C0.43660.16300.01900.142*
C140.0205 (2)0.1449 (2)0.30380 (15)0.0428 (6)
C150.0918 (3)0.1205 (3)0.31534 (18)0.0548 (8)
H150.15280.16480.29260.066*
C160.1154 (3)0.0321 (3)0.35977 (18)0.0597 (8)
H160.19170.01880.36680.072*
C170.0284 (3)0.0366 (3)0.39364 (17)0.0538 (8)
C180.0840 (3)0.0132 (3)0.38281 (17)0.0567 (8)
H180.14450.05830.40530.068*
C190.1083 (3)0.0761 (3)0.33913 (16)0.0502 (7)
H190.18490.09030.33330.060*
C200.0554 (4)0.1354 (3)0.4394 (2)0.0768 (11)
H20A0.01560.17280.45940.115*
H20B0.10530.18580.40790.115*
H20C0.09370.11070.47990.115*
C210.0030 (2)0.4410 (2)0.23193 (15)0.0431 (6)
C220.0762 (3)0.4762 (3)0.28066 (17)0.0536 (8)
H220.10040.42550.31410.064*
C230.1143 (3)0.5854 (3)0.28079 (18)0.0557 (8)
H230.16370.60670.31420.067*
C240.0803 (2)0.6630 (3)0.23218 (17)0.0507 (7)
C250.0077 (3)0.6277 (3)0.18252 (17)0.0542 (8)
H250.01550.67820.14860.065*
C260.0307 (3)0.5188 (3)0.18261 (17)0.0520 (7)
H260.07990.49730.14910.062*
C270.1204 (3)0.7816 (3)0.2329 (2)0.0695 (10)
H27A0.08830.82320.19550.104*
H27B0.09480.81340.28160.104*
H27C0.20380.78400.22210.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.03960 (12)0.04651 (13)0.03583 (12)0.00156 (8)0.00365 (8)0.00526 (8)
Cl0.0420 (4)0.0840 (6)0.0476 (4)0.0058 (4)0.0027 (3)0.0148 (4)
N0.0452 (13)0.0487 (14)0.0394 (12)0.0090 (11)0.0016 (10)0.0014 (11)
C10.0491 (17)0.0493 (17)0.0467 (16)0.0052 (14)0.0024 (13)0.0015 (14)
C20.0449 (16)0.0459 (17)0.0600 (19)0.0055 (13)0.0028 (14)0.0017 (14)
C30.0475 (17)0.0378 (16)0.064 (2)0.0013 (13)0.0134 (15)0.0003 (14)
C40.092 (3)0.065 (2)0.0322 (15)0.0094 (19)0.0133 (16)0.0009 (15)
C50.072 (2)0.063 (2)0.0373 (15)0.0219 (17)0.0009 (14)0.0007 (15)
C60.065 (2)0.0519 (19)0.0619 (18)0.0011 (16)0.0064 (17)0.0031 (17)
C70.0385 (14)0.0473 (16)0.0369 (14)0.0040 (12)0.0045 (11)0.0058 (12)
C80.0511 (17)0.0621 (19)0.0399 (16)0.0046 (15)0.0006 (13)0.0030 (14)
C90.070 (2)0.083 (3)0.0361 (16)0.0015 (19)0.0077 (16)0.0032 (16)
C100.062 (2)0.069 (2)0.0546 (19)0.0044 (18)0.0201 (16)0.0162 (17)
C110.0445 (17)0.061 (2)0.068 (2)0.0068 (15)0.0128 (15)0.0077 (16)
C120.0457 (16)0.0578 (18)0.0405 (15)0.0007 (14)0.0007 (12)0.0016 (14)
C130.101 (3)0.117 (4)0.077 (3)0.004 (3)0.046 (2)0.029 (3)
C140.0433 (15)0.0452 (16)0.0398 (14)0.0033 (13)0.0059 (12)0.0090 (12)
C150.0469 (17)0.0564 (19)0.0598 (19)0.0016 (15)0.0044 (14)0.0036 (16)
C160.0531 (19)0.062 (2)0.066 (2)0.0103 (16)0.0154 (16)0.0005 (17)
C170.067 (2)0.0494 (18)0.0447 (16)0.0070 (16)0.0089 (15)0.0065 (14)
C180.065 (2)0.0523 (19)0.0508 (18)0.0130 (16)0.0034 (15)0.0006 (15)
C190.0446 (16)0.0586 (19)0.0472 (16)0.0014 (14)0.0064 (13)0.0049 (15)
C200.103 (3)0.061 (2)0.066 (2)0.012 (2)0.013 (2)0.0088 (18)
C210.0413 (15)0.0492 (17)0.0373 (14)0.0014 (13)0.0014 (12)0.0086 (12)
C220.0552 (18)0.058 (2)0.0492 (17)0.0002 (15)0.0131 (14)0.0023 (14)
C230.0509 (18)0.062 (2)0.0561 (18)0.0035 (15)0.0139 (15)0.0114 (16)
C240.0419 (16)0.0487 (18)0.0579 (18)0.0021 (13)0.0035 (14)0.0132 (15)
C250.0552 (18)0.0518 (19)0.0554 (18)0.0067 (15)0.0081 (15)0.0018 (15)
C260.0524 (17)0.0554 (19)0.0499 (17)0.0001 (15)0.0137 (14)0.0066 (15)
C270.064 (2)0.051 (2)0.093 (3)0.0019 (17)0.0129 (19)0.0160 (19)
Geometric parameters (Å, º) top
Sn—Cl2.5152 (8)C23—C241.378 (4)
Sn—N2.492 (2)C24—C251.388 (4)
Sn—C72.136 (3)C24—C271.501 (4)
Sn—C142.141 (3)C25—C261.383 (4)
Sn—C212.130 (3)C1—H10.93
N—C11.330 (4)C2—H20.93
N—C51.337 (4)C4—H40.93
C1—C21.373 (4)C5—H50.93
C2—C31.368 (4)C6—H60.93
C3—C41.388 (5)C8—H80.93
C3—C61.488 (4)C9—H90.93
C4—C51.388 (4)C11—H110.93
C6—C6i1.267 (6)C12—H120.93
C7—C81.386 (4)C13—H13A0.96
C7—C121.390 (4)C13—H13B0.96
C8—C91.383 (4)C13—H13C0.96
C9—C101.379 (5)C15—H150.93
C10—C111.375 (5)C16—H160.93
C10—C131.529 (4)C18—H180.93
C11—C121.385 (4)C19—H190.93
C14—C151.387 (4)C20—H20A0.96
C14—C191.389 (4)C20—H20B0.96
C15—C161.384 (4)C20—H20C0.96
C16—C171.374 (4)C22—H220.93
C17—C181.381 (4)C23—H230.93
C17—C201.505 (4)C25—H250.93
C18—C191.385 (4)C26—H260.93
C21—C221.381 (4)C27—H27A0.96
C21—C261.387 (4)C27—H27B0.96
C22—C231.386 (4)C27—H27C0.96
N—Sn—N175.92 (6)C2—C1—H1117.8
C7—Sn—C793.87 (7)C1—C2—H2120.1
C14—Sn—C1492.61 (7)C3—C2—H2120.1
C21—Sn—C2191.20 (7)C3—C4—H4119.9
N—Sn—C789.67 (9)C5—C4—H4119.9
N—Sn—C1487.40 (9)N—C5—H5118.7
N—Sn—C2185.45 (9)C4—C5—H5118.7
C7—Sn—C14119.55 (10)C3—C6—H6117.2
C7—Sn—C21115.22 (11)C6i—C6—H6117.2
C14—Sn—C21124.64 (10)C7—C8—H8119.3
Sn—N—C1119.54 (18)C9—C8—H8119.3
Sn—N—C5122.7 (2)C8—C9—H9119.6
C1—N—C5116.4 (2)C10—C9—H9119.6
N—C1—C2124.3 (3)C10—C11—H11119.4
C1—C2—C3119.9 (3)C12—C11—H11119.4
C2—C3—C4116.7 (3)C7—C12—H12119.6
C2—C3—C6118.4 (3)C11—C12—H12119.6
C4—C3—C6124.9 (3)H13A—C13—H13B109.5
C3—C4—C5120.2 (3)H13A—C13—H13C109.5
N—C5—C4122.6 (3)H13B—C13—H13C109.5
C3i—C6—C6125.6 (5)C10—C13—H13A109.5
Sn—C7—C8120.4 (2)C10—C13—H13B109.5
Sn—C7—C12121.9 (2)C10—C13—H13C109.5
C8—C7—C12117.5 (3)C14—C15—H15119.1
C7—C8—C9121.4 (3)C16—C15—H15119.1
C8—C9—C10120.7 (3)C15—C16—H16119.4
C9—C10—C11118.3 (3)C17—C16—H16119.4
C9—C10—C13120.8 (3)C17—C18—H18119.3
C11—C10—C13120.8 (3)C19—C18—H18119.3
C10—C11—C12121.3 (3)C14—C19—H19119.3
C7—C12—C11120.7 (3)C18—C19—H19119.3
Sn—C14—C15120.1 (2)H20A—C20—H20B109.5
Sn—C14—C19122.9 (2)H20A—C20—H20C109.5
C15—C14—C19116.7 (3)H20B—C20—H20C109.5
C14—C15—C16121.7 (3)C17—C20—H20A109.5
C15—C16—C17121.3 (3)C17—C20—H20B109.5
C16—C17—C18117.7 (3)C17—C20—H20C109.5
C16—C17—C20120.9 (3)C21—C22—H22119.3
C18—C17—C20121.4 (3)C23—C22—H22119.3
C17—C18—C19121.3 (3)C22—C23—H23119.5
C14—C19—C18121.4 (3)C24—C23—H23119.5
Sn—C21—C22122.6 (2)C24—C25—H25119.4
Sn—C21—C26119.7 (2)C26—C25—H25119.4
C22—C21—C26117.7 (3)C21—C26—H26119.5
C21—C22—C23121.4 (3)C25—C26—H26119.5
C22—C23—C24121.1 (3)H27A—C27—H27B109.5
C23—C24—C25117.8 (3)H27A—C27—H27C109.5
C23—C24—C27121.1 (3)H27B—C27—H27C109.5
C25—C24—C27121.1 (3)C24—C27—H27A109.5
C24—C25—C26121.2 (3)C24—C27—H27B109.5
C21—C26—C25121.0 (3)C24—C27—H27C109.5
N—C1—H1117.8
C2—C3—C6—C6i179.2 (4)C4—C3—C6—C6i0.2 (7)
Symmetry code: (i) x+1, y+1, z+1.
(II) [µ-(E)-4,4'-(1,2-ethenediyl)dipyridine-κ2-N:N']bis[bromotris(4- methylphenyl)tin(IV)] top
Crystal data top
[Sn2Br2(C7H7)6(C12H10N2)]Dx = 1.481 Mg m3
Mr = 1126.18Melting point: 122-124 C K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.736 (1) ÅCell parameters from 20962 reflections
b = 12.060 (1) Åθ = 3.6–25.0°
c = 18.054 (2) ŵ = 2.62 mm1
β = 98.76 (1)°T = 295 K
V = 2525.5 (4) Å3Block, colourless
Z = 20.37 × 0.21 × 0.21 mm
F(000) = 1120
Data collection top
Nonius KappaCCD
diffractometer
4416 independent reflections
Radiation source: fine-focus sealed tube3932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 3.6°
ϕ and ω scans with 1.0° stepsh = 1313
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 1414
Tmin = 0.50, Tmax = 0.58l = 1921
13805 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.051P)2 + 4.2P]
where P = (Fo2 + 2Fc2)/3
4416 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 1.37 e Å3
Crystal data top
[Sn2Br2(C7H7)6(C12H10N2)]V = 2525.5 (4) Å3
Mr = 1126.18Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.736 (1) ŵ = 2.62 mm1
b = 12.060 (1) ÅT = 295 K
c = 18.054 (2) Å0.37 × 0.21 × 0.21 mm
β = 98.76 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4416 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
3932 reflections with I > 2σ(I)
Tmin = 0.50, Tmax = 0.58Rint = 0.027
13805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.52 e Å3
4416 reflectionsΔρmin = 1.37 e Å3
271 parameters
Special details top

Experimental. The crystal-to-detector distance was 25 mm. Each frame was measured for 180 s. The number of scan sets measured was 1; the total number of frames measured was 180.

Refinement. The presence of three large troughs (−1.37, −1.22, and −1.14 e/Å3) near the Br atom suggest that this site may be partially occupied by Cl atoms. Chlorine is often a contaminant of Br-containing reagents.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.05330 (2)0.28466 (2)0.22384 (2)0.0404 (1)
Br0.13928 (4)0.23964 (5)0.13034 (3)0.0695 (2)
N0.2228 (3)0.3410 (3)0.31508 (18)0.0441 (8)
C10.3086 (4)0.3959 (3)0.2913 (2)0.0462 (10)
H10.30980.39910.23990.055*
C20.3957 (4)0.4483 (3)0.3381 (2)0.0468 (10)
H20.45260.48670.31810.056*
C30.3986 (4)0.4437 (3)0.4145 (3)0.0474 (10)
C40.3091 (4)0.3856 (4)0.4397 (2)0.0597 (12)
H40.30720.37940.49090.072*
C50.2235 (4)0.3374 (4)0.3892 (2)0.0563 (12)
H50.16370.30080.40740.068*
C60.4922 (4)0.5007 (4)0.4640 (3)0.0539 (11)
H60.54450.54120.44110.065*
C70.1643 (3)0.2487 (3)0.1434 (2)0.0407 (9)
C80.1333 (4)0.2796 (4)0.0687 (2)0.0528 (11)
H80.06770.32250.05490.063*
C90.1982 (5)0.2475 (5)0.0149 (3)0.0634 (13)
H90.17610.27000.03450.076*
C100.2953 (4)0.1825 (5)0.0329 (3)0.0599 (12)
C110.3267 (4)0.1528 (4)0.1069 (3)0.0570 (12)
H110.39210.10940.12040.068*
C120.2633 (4)0.1859 (4)0.1616 (2)0.0461 (10)
H120.28750.16580.21120.055*
C130.3619 (6)0.1409 (6)0.0272 (4)0.094 (2)
H13A0.32790.16990.07500.141*
H13B0.35960.06130.02860.141*
H13C0.44060.16510.01610.141*
C140.0231 (3)0.1570 (3)0.3011 (2)0.0422 (9)
C150.0883 (4)0.1306 (4)0.3113 (3)0.0525 (11)
H150.14950.17330.28800.063*
C160.1103 (4)0.0416 (4)0.3556 (3)0.0592 (12)
H160.18590.02680.36220.071*
C170.0231 (4)0.0258 (4)0.3903 (3)0.0541 (11)
C180.0884 (4)0.0013 (4)0.3798 (3)0.0546 (11)
H180.14940.04220.40250.066*
C190.1112 (4)0.0901 (4)0.3369 (2)0.0492 (10)
H190.18710.10600.33170.059*
C200.0487 (5)0.1247 (5)0.4356 (3)0.0731 (15)
H20A0.02210.16130.45530.110*
H20B0.09770.17510.40430.110*
H20C0.08690.10080.47630.110*
C210.0001 (3)0.4525 (4)0.2295 (2)0.0432 (9)
C220.0740 (4)0.4872 (4)0.2777 (2)0.0517 (11)
H220.09800.43650.31090.062*
C230.1131 (4)0.5955 (4)0.2775 (3)0.0543 (11)
H230.16280.61630.31060.065*
C240.0796 (4)0.6728 (4)0.2292 (3)0.0515 (11)
C250.0065 (4)0.6386 (4)0.1800 (3)0.0558 (11)
H250.01610.68910.14610.067*
C260.0334 (4)0.5298 (4)0.1808 (3)0.0519 (11)
H260.08330.50900.14790.062*
C270.1207 (5)0.7914 (4)0.2286 (4)0.0743 (16)
H27A0.08840.83240.19120.111*
H27B0.09650.82420.27690.111*
H27C0.20330.79320.21730.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.03584 (17)0.04718 (19)0.03681 (18)0.00080 (11)0.00093 (11)0.00687 (11)
Br0.0475 (3)0.0967 (4)0.0603 (3)0.0048 (3)0.0044 (2)0.0208 (3)
N0.0409 (18)0.051 (2)0.0366 (18)0.0086 (16)0.0057 (14)0.0024 (15)
C10.047 (2)0.047 (2)0.042 (2)0.0068 (19)0.0026 (18)0.0008 (18)
C20.042 (2)0.042 (2)0.053 (3)0.0047 (18)0.0019 (18)0.0010 (19)
C30.043 (2)0.039 (2)0.055 (3)0.0010 (18)0.0120 (19)0.0002 (19)
C40.074 (3)0.069 (3)0.030 (2)0.012 (3)0.011 (2)0.000 (2)
C50.064 (3)0.064 (3)0.037 (2)0.022 (2)0.001 (2)0.004 (2)
C60.053 (3)0.049 (2)0.054 (2)0.005 (2)0.011 (2)0.001 (2)
C70.037 (2)0.047 (2)0.036 (2)0.0034 (17)0.0000 (16)0.0060 (17)
C80.048 (2)0.066 (3)0.042 (2)0.009 (2)0.0026 (19)0.002 (2)
C90.068 (3)0.085 (4)0.037 (3)0.001 (3)0.005 (2)0.003 (2)
C100.059 (3)0.070 (3)0.053 (3)0.003 (2)0.015 (2)0.014 (2)
C110.045 (2)0.057 (3)0.069 (3)0.007 (2)0.008 (2)0.007 (2)
C120.042 (2)0.052 (2)0.042 (2)0.0000 (19)0.0003 (17)0.0007 (19)
C130.098 (5)0.116 (5)0.078 (4)0.005 (4)0.044 (4)0.027 (4)
C140.041 (2)0.044 (2)0.041 (2)0.0038 (17)0.0032 (16)0.0111 (18)
C150.039 (2)0.055 (3)0.062 (3)0.003 (2)0.005 (2)0.001 (2)
C160.047 (3)0.063 (3)0.069 (3)0.010 (2)0.012 (2)0.004 (2)
C170.064 (3)0.051 (3)0.047 (3)0.007 (2)0.006 (2)0.007 (2)
C180.059 (3)0.056 (3)0.047 (3)0.012 (2)0.002 (2)0.001 (2)
C190.037 (2)0.061 (3)0.048 (2)0.0015 (19)0.0022 (18)0.004 (2)
C200.090 (4)0.061 (3)0.067 (3)0.010 (3)0.009 (3)0.006 (3)
C210.040 (2)0.048 (2)0.039 (2)0.0016 (18)0.0014 (17)0.0071 (18)
C220.050 (2)0.058 (3)0.048 (3)0.000 (2)0.009 (2)0.004 (2)
C230.045 (2)0.060 (3)0.059 (3)0.004 (2)0.012 (2)0.014 (2)
C240.040 (2)0.048 (2)0.063 (3)0.0022 (19)0.005 (2)0.012 (2)
C250.054 (3)0.053 (3)0.060 (3)0.007 (2)0.008 (2)0.002 (2)
C260.049 (2)0.057 (3)0.051 (3)0.001 (2)0.011 (2)0.009 (2)
C270.069 (3)0.052 (3)0.103 (5)0.002 (2)0.015 (3)0.019 (3)
Geometric parameters (Å, º) top
Sn—Br2.6629 (6)C23—C241.375 (7)
Sn—N2.477 (3)C24—C251.387 (7)
Sn—C72.137 (4)C24—C271.509 (7)
Sn—C142.142 (4)C25—C261.393 (7)
Sn—C212.125 (4)C1—H10.93
N—C11.329 (5)C2—H20.93
N—C51.338 (5)C4—H40.93
C1—C21.377 (6)C5—H50.93
C2—C31.376 (6)C6—H60.93
C3—C41.395 (7)C8—H80.93
C3—C61.476 (6)C9—H90.93
C4—C51.379 (6)C11—H110.93
C6—C6i1.284 (9)C12—H120.93
C7—C81.393 (6)C13—H13A0.96
C7—C121.384 (6)C13—H13B0.96
C8—C91.378 (7)C13—H13C0.96
C9—C101.381 (7)C15—H150.93
C10—C111.377 (7)C16—H160.93
C10—C131.516 (7)C18—H180.93
C11—C121.383 (6)C19—H190.93
C14—C151.385 (6)C20—H20A0.96
C14—C191.390 (6)C20—H20B0.96
C15—C161.387 (7)C20—H20C0.96
C16—C171.380 (7)C22—H220.93
C17—C181.390 (7)C23—H230.93
C17—C201.502 (7)C25—H250.93
C18—C191.372 (7)C26—H260.93
C21—C221.385 (6)C27—H27A0.96
C21—C261.378 (6)C27—H27B0.96
C22—C231.385 (7)C27—H27C0.96
Br—Sn—N174.74 (8)C2—C1—H1118.0
Br—Sn—C794.24 (10)C1—C2—H2120.0
Br—Sn—C1493.29 (10)C3—C2—H2120.0
Br—Sn—C2189.84 (10)C3—C4—H4119.9
N—Sn—C789.81 (13)C5—C4—H4119.9
N—Sn—C1487.72 (13)N—C5—H5118.6
N—Sn—C2185.36 (13)C4—C5—H5118.6
C7—Sn—C14118.33 (16)C3—C6—H6117.1
C7—Sn—C21116.08 (16)C6i—C6—H6117.1
C14—Sn—C21125.05 (16)C7—C8—H8119.4
Sn—N—C1119.5 (3)C9—C8—H8119.4
Sn—N—C5122.6 (3)C8—C9—H9119.4
C1—N—C5116.8 (4)C10—C9—H9119.4
N—C1—C2123.9 (4)C10—C11—H11119.2
C1—C2—C3120.0 (4)C12—C11—H11119.2
C2—C3—C4116.3 (4)C7—C12—H12119.6
C2—C3—C6119.4 (4)C11—C12—H12119.6
C4—C3—C6124.3 (4)H13A—C13—H13B109.5
C3—C4—C5120.3 (4)H13A—C13—H13C109.5
N—C5—C4122.7 (4)H13B—C13—H13C109.5
C3i—C6—C6125.8 (6)C10—C13—H13A109.5
Sn—C7—C8120.5 (3)C10—C13—H13B109.5
Sn—C7—C12121.8 (3)C10—C13—H13C109.5
C8—C7—C12117.5 (4)C14—C15—H15119.4
C7—C8—C9121.1 (4)C16—C15—H15119.4
C8—C9—C10121.2 (5)C15—C16—H16119.1
C9—C10—C11117.8 (4)C17—C16—H16119.1
C9—C10—C13121.0 (5)C17—C18—H18119.0
C11—C10—C13121.1 (5)C19—C18—H18119.0
C10—C11—C12121.6 (4)C14—C19—H19119.3
C7—C12—C11120.9 (4)C18—C19—H19119.3
Sn—C14—C15120.3 (3)H20A—C20—H20B109.5
Sn—C14—C19122.3 (3)H20A—C20—H20C109.5
C15—C14—C19117.0 (4)H20B—C20—H20C109.5
C14—C15—C16121.1 (4)C17—C20—H20A109.5
C15—C16—C17121.9 (4)C17—C20—H20B109.5
C16—C17—C18116.6 (4)C17—C20—H20C109.5
C16—C17—C20121.3 (5)C21—C22—H22119.2
C18—C17—C20122.1 (5)C23—C22—H22119.2
C17—C18—C19122.0 (4)C22—C23—H23119.5
C14—C19—C18121.4 (4)C24—C23—H23119.5
Sn—C21—C22122.4 (3)C24—C25—H25119.6
Sn—C21—C26120.0 (3)C26—C25—H25119.6
C22—C21—C26117.5 (4)C21—C26—H26119.4
C21—C22—C23121.6 (5)C25—C26—H26119.4
C22—C23—C24120.9 (4)H27A—C27—H27B109.5
C23—C24—C25118.0 (4)H27A—C27—H27C109.5
C23—C24—C27121.7 (5)H27B—C27—H27C109.5
C25—C24—C27120.4 (5)C24—C27—H27A109.5
C24—C25—C26120.9 (5)C24—C27—H27B109.5
C21—C26—C25121.1 (4)C24—C27—H27C109.5
N—C1—H1118.0
C2—C3—C6—C6i177.0 (6)C4—C3—C6—C6i4.3 (9)
Symmetry code: (i) x+1, y+1, z+1.
(III) [µ-(E)-4,4'-(1,2-ethenediyl)dipyridine-κ2-N:N']bis[iodotris(4- methylphenyl)tin(IV)] top
Crystal data top
[Sn2(C7H7)6I2(C12H10N2)]Dx = 1.605 Mg m3
Mr = 1220.16Melting point: 96-98 C K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.167 (1) ÅCell parameters from 20894 reflections
b = 12.323 (1) Åθ = 3.2–25.0°
c = 16.980 (2) ŵ = 2.25 mm1
β = 97.28 (1)°T = 295 K
V = 2525.4 (4) Å3Block, pale yellow
Z = 20.45 × 0.40 × 0.30 mm
F(000) = 1192
Data collection top
Nonius KappaCCD
diffractometer
4428 independent reflections
Radiation source: fine-focus sealed tube3862 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 3.2°
ϕ and ω scans with 1.0° stepsh = 1414
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 1414
Tmin = 0.36, Tmax = 0.48l = 2020
13846 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.01P)2 + 1.8P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4428 reflectionsΔρmax = 0.38 e Å3
303 parametersΔρmin = 0.72 e Å3
60 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0009 (2)
Crystal data top
[Sn2(C7H7)6I2(C12H10N2)]V = 2525.4 (4) Å3
Mr = 1220.16Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.167 (1) ŵ = 2.25 mm1
b = 12.323 (1) ÅT = 295 K
c = 16.980 (2) Å0.45 × 0.40 × 0.30 mm
β = 97.28 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4428 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
3862 reflections with I > 2σ(I)
Tmin = 0.36, Tmax = 0.48Rint = 0.035
13846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03060 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.38 e Å3
4428 reflectionsΔρmin = 0.72 e Å3
303 parameters
Special details top

Experimental. The crystal-to-detector distance was 25 mm. Each frame was measured for 240 s. The number of scan sets measured was 1; the total number of frames measured was 180.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I0.12712 (2)0.30537 (2)0.078547 (16)0.06897 (11)
Sn0.058115 (17)0.343183 (18)0.201584 (13)0.04106 (9)
N10.2114 (5)0.3966 (10)0.3050 (3)0.0421 (14)0.739 (7)
C10.2990 (4)0.4443 (6)0.2803 (3)0.0463 (15)0.739 (7)
H10.30150.44960.22600.056*0.739 (7)
C20.3864 (4)0.4864 (4)0.3309 (4)0.0467 (12)0.739 (7)
H20.44460.52100.31060.056*0.739 (7)
C30.3867 (4)0.4767 (4)0.4122 (4)0.0421 (12)0.739 (7)
C40.2938 (5)0.4321 (5)0.4380 (3)0.0526 (14)0.739 (7)
H40.28830.42810.49210.063*0.739 (7)
C50.2090 (5)0.3935 (6)0.3838 (3)0.0485 (15)0.739 (7)
H50.14710.36390.40270.058*0.739 (7)
C60.4852 (4)0.5157 (4)0.4639 (2)0.0573 (15)0.739 (7)
H60.52950.56690.44290.069*0.739 (7)
N1A0.2014 (14)0.407 (3)0.3095 (6)0.0421 (14)0.261 (7)
C1A0.3030 (12)0.439 (2)0.2991 (6)0.050 (5)*0.261 (7)
H1A0.32110.44270.24760.060*0.261 (7)
C2A0.3832 (9)0.4682 (13)0.3606 (7)0.037 (4)*0.261 (7)
H2A0.45340.48870.35010.045*0.261 (7)
C3A0.3582 (8)0.4663 (12)0.4378 (7)0.032 (3)*0.261 (7)
C4A0.2533 (9)0.4326 (15)0.4490 (6)0.047 (4)*0.261 (7)
H4A0.23370.42750.50000.056*0.261 (7)
C5A0.1774 (10)0.4065 (16)0.3846 (7)0.042 (4)*0.261 (7)
H5A0.10610.38740.39340.051*0.261 (7)
C6A0.4480 (4)0.4914 (9)0.5020 (6)0.031 (3)*0.261 (7)
H6A0.42670.49530.55260.037*0.261 (7)
C70.1822 (3)0.3003 (3)0.12886 (18)0.0420 (7)
C80.1782 (3)0.3321 (3)0.0499 (2)0.0575 (10)
H80.12290.37940.02840.069*
C90.2548 (3)0.2949 (3)0.0032 (2)0.0652 (11)
H90.25100.31870.04910.078*
C100.3370 (3)0.2230 (3)0.0322 (2)0.0566 (9)
C110.3418 (3)0.1917 (3)0.1106 (2)0.0546 (9)
H110.39710.14410.13170.065*
C120.2663 (3)0.2295 (3)0.1582 (2)0.0470 (8)
H120.27190.20720.21080.056*
C130.4203 (4)0.1801 (4)0.0190 (3)0.0888 (15)
H13A0.42570.22940.06210.133*
H13B0.39660.11030.03980.133*
H13C0.49140.17340.01230.133*
C140.0210 (3)0.2148 (2)0.27950 (18)0.0409 (7)
C150.0860 (3)0.1745 (3)0.2766 (2)0.0485 (8)
H150.14360.20860.24460.058*
C160.1083 (3)0.0840 (3)0.3208 (2)0.0555 (9)
H160.18100.05990.31880.067*
C170.0255 (3)0.0290 (3)0.3674 (2)0.0527 (9)
C180.0810 (3)0.0696 (3)0.3711 (2)0.0526 (9)
H180.13840.03530.40310.063*
C190.1039 (3)0.1606 (3)0.3280 (2)0.0488 (8)
H190.17640.18590.33160.059*
C200.0493 (4)0.0735 (3)0.4113 (3)0.0789 (12)
H20A0.00580.08250.45660.118*
H20B0.04760.13470.37660.118*
H20C0.12120.06820.42870.118*
C210.0036 (3)0.5063 (3)0.20991 (19)0.0431 (7)
C220.0672 (3)0.5371 (3)0.2636 (2)0.0529 (9)
H220.08640.48720.30060.063*
C230.1101 (3)0.6423 (3)0.2628 (2)0.0601 (10)
H230.15620.66190.30010.072*
C240.0852 (3)0.7171 (3)0.2080 (3)0.0605 (10)
C250.0132 (4)0.6870 (3)0.1554 (3)0.0669 (11)
H250.00650.73730.11890.080*
C260.0303 (3)0.5832 (3)0.1562 (2)0.0577 (9)
H260.07850.56480.11990.069*
C270.1378 (4)0.8290 (3)0.2038 (3)0.0934 (16)
H27A0.16110.84760.14930.140*
H27B0.08460.88140.22680.140*
H27C0.20070.82900.23260.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.05117 (17)0.0806 (2)0.06762 (19)0.00076 (12)0.02163 (12)0.01554 (14)
Sn0.03433 (14)0.04676 (14)0.04044 (14)0.00097 (9)0.00162 (9)0.00021 (10)
N10.0382 (19)0.047 (3)0.0383 (16)0.007 (2)0.0074 (13)0.0003 (14)
C10.042 (3)0.057 (3)0.038 (2)0.017 (2)0.005 (2)0.006 (3)
C20.043 (3)0.047 (3)0.046 (3)0.015 (2)0.009 (2)0.009 (3)
C30.038 (3)0.041 (3)0.043 (3)0.003 (2)0.011 (2)0.002 (2)
C40.054 (4)0.067 (3)0.032 (2)0.013 (3)0.011 (2)0.002 (2)
C50.041 (3)0.063 (4)0.040 (3)0.008 (3)0.002 (2)0.002 (2)
C60.057 (3)0.052 (3)0.057 (3)0.011 (2)0.014 (3)0.005 (2)
N1A0.0382 (19)0.047 (3)0.0383 (16)0.007 (2)0.0074 (13)0.0003 (14)
C70.0360 (17)0.0513 (18)0.0372 (17)0.0034 (14)0.0009 (14)0.0004 (15)
C80.055 (2)0.076 (3)0.0391 (19)0.0164 (19)0.0048 (16)0.0040 (18)
C90.069 (3)0.091 (3)0.0366 (19)0.013 (2)0.0077 (18)0.006 (2)
C100.054 (2)0.065 (2)0.051 (2)0.0024 (18)0.0108 (18)0.0092 (18)
C110.045 (2)0.055 (2)0.062 (2)0.0084 (16)0.0015 (18)0.0070 (18)
C120.0429 (19)0.055 (2)0.0418 (18)0.0028 (15)0.0006 (15)0.0096 (16)
C130.091 (4)0.102 (4)0.078 (3)0.018 (3)0.032 (3)0.012 (3)
C140.0390 (18)0.0417 (17)0.0418 (17)0.0001 (14)0.0045 (14)0.0067 (14)
C150.0376 (19)0.0464 (19)0.061 (2)0.0013 (14)0.0023 (16)0.0032 (16)
C160.044 (2)0.055 (2)0.069 (2)0.0128 (17)0.0111 (18)0.0060 (19)
C170.060 (2)0.052 (2)0.048 (2)0.0043 (17)0.0126 (17)0.0032 (16)
C180.052 (2)0.062 (2)0.0440 (19)0.0049 (17)0.0059 (16)0.0068 (17)
C190.0382 (18)0.062 (2)0.0463 (19)0.0048 (16)0.0045 (15)0.0020 (17)
C200.093 (3)0.070 (3)0.074 (3)0.017 (2)0.010 (2)0.014 (2)
C210.0372 (18)0.0464 (18)0.0423 (17)0.0036 (14)0.0088 (14)0.0044 (15)
C220.050 (2)0.057 (2)0.051 (2)0.0037 (17)0.0010 (17)0.0006 (17)
C230.045 (2)0.063 (2)0.070 (3)0.0012 (18)0.0029 (18)0.021 (2)
C240.057 (2)0.045 (2)0.073 (3)0.0036 (17)0.015 (2)0.014 (2)
C250.078 (3)0.050 (2)0.070 (3)0.007 (2)0.001 (2)0.0061 (19)
C260.066 (2)0.053 (2)0.055 (2)0.0009 (18)0.0076 (18)0.0041 (18)
C270.095 (4)0.049 (2)0.130 (5)0.009 (2)0.007 (3)0.014 (3)
Geometric parameters (Å, º) top
Sn—I2.9100 (5)C21—C261.383 (5)
Sn—N12.482 (4)C22—C231.396 (5)
Sn—N1A2.493 (8)C23—C241.371 (6)
Sn—C72.135 (3)C24—C251.379 (6)
Sn—C142.147 (3)C24—C271.519 (5)
Sn—C212.127 (3)C25—C261.384 (5)
N1—C11.331 (5)C1—H10.93
N1—C51.343 (4)C2—H20.93
N1A—C1A1.331 (5)C4—H40.93
C1—C21.381 (6)C5—H50.93
C2—C31.384 (7)C6—H60.93
C3—C41.378 (8)C1A—H1A0.93
C3—C61.473 (5)C2A—H2A0.93
C4—C51.377 (6)C4A—H4A0.93
C6—C6i1.294 (7)C5A—H5A0.93
N1A—C5A1.343 (5)C6A—H6A0.93
C1A—C2A1.381 (6)C8—H80.93
C2A—C3A1.384 (7)C9—H90.93
C3A—C4A1.378 (8)C11—H110.93
C3A—C6A1.474 (6)C12—H120.93
C4A—C5A1.377 (6)C13—H13A0.96
C6A—C6Ai1.294 (7)C13—H13B0.96
C7—C81.392 (4)C13—H13C0.96
C7—C121.388 (4)C15—H150.93
C8—C91.376 (5)C16—H160.93
C9—C101.381 (5)C18—H180.93
C10—C111.379 (5)C19—H190.93
C10—C131.512 (5)C20—H20A0.96
C11—C121.379 (5)C20—H20B0.96
C14—C151.388 (4)C20—H20C0.96
C14—C191.390 (5)C22—H220.93
C15—C161.390 (5)C23—H230.93
C16—C171.378 (5)C25—H250.93
C17—C181.384 (5)C26—H260.93
C17—C201.512 (5)C27—H27A0.96
C18—C191.386 (5)C27—H27B0.96
C21—C221.384 (5)C27—H27C0.96
I—Sn—N1173.8 (3)C24—C25—C26121.4 (4)
I—Sn—N1A169.9 (9)C21—C26—C25121.2 (4)
I—Sn—C794.89 (8)N1—C1—H1118.1
I—Sn—C1496.89 (8)C2—C1—H1118.1
I—Sn—C2188.81 (8)C1—C2—H2120.3
N1—Sn—C787.23 (18)C3—C2—H2120.3
N1—Sn—C1487.6 (2)C3—C4—H4120.0
N1—Sn—C2185.1 (3)C5—C4—H4120.0
N1A—Sn—C791.4 (5)N1—C5—H5118.4
N1A—Sn—C1487.9 (6)C4—C5—H5118.4
N1A—Sn—C2181.2 (9)C3—C6—H6117.4
C7—Sn—C14113.16 (12)C6i—C6—H6117.4
C7—Sn—C21121.48 (12)N1A—C1A—H1A118.1
C14—Sn—C21124.31 (12)C2A—C1A—H1A118.1
Sn—N1—C1117.1 (4)C1A—C2A—H2A120.2
Sn—N1—C5126.0 (3)C3A—C2A—H2A120.2
C1—N1—C5116.4 (4)C3A—C4A—H4A120.0
Sn—N1A—C1A124.9 (6)C5A—C4A—H4A120.0
Sn—N1A—C5A118.6 (6)N1A—C5A—H5A118.4
C1A—N1A—C5A116.4 (4)C4A—C5A—H5A118.4
N1—C1—C2123.7 (5)C3A—C6A—H6A115.3
C1—C2—C3119.5 (4)C6Ai—C6A—H6A115.3
C2—C3—C4117.0 (3)C7—C8—H8119.4
C2—C3—C6117.7 (5)C9—C8—H8119.4
C4—C3—C6125.4 (5)C8—C9—H9119.3
C3—C4—C5120.0 (4)C10—C9—H9119.3
N1—C5—C4123.2 (5)C10—C11—H11119.3
C3i—C6—C6125.1 (5)C12—C11—H11119.3
N1A—C1A—C2A123.7 (5)C7—C12—H12119.4
C1A—C2A—C3A119.5 (5)C11—C12—H12119.4
C2A—C3A—C4A117.0 (4)H13A—C13—H13B109.5
C2A—C3A—C6A117.7 (6)H13A—C13—H13C109.5
C4A—C3A—C6A125.0 (6)H13B—C13—H13C109.5
C3A—C4A—C5A120.0 (5)C10—C13—H13A109.5
C3Ai—C6A—C6A129.4 (10)C10—C13—H13B109.5
N1A—C5A—C4A123.2 (5)C10—C13—H13C109.5
Sn—C7—C8123.1 (2)C14—C15—H15119.5
Sn—C7—C12119.5 (2)C16—C15—H15119.5
C8—C7—C12117.2 (3)C15—C16—H16119.1
C7—C8—C9121.2 (3)C17—C16—H16119.1
C8—C9—C10121.4 (3)C17—C18—H18119.4
C9—C10—C11117.6 (3)C19—C18—H18119.4
C9—C10—C13121.8 (4)C14—C19—H19119.3
C11—C10—C13120.5 (4)C18—C19—H19119.3
C10—C11—C12121.4 (3)H20A—C20—H20B109.5
C7—C12—C11121.2 (3)H20A—C20—H20C109.5
Sn—C14—C15120.7 (2)H20B—C20—H20C109.5
Sn—C14—C19121.7 (2)C17—C20—H20A109.5
C15—C14—C19117.2 (3)C17—C20—H20B109.5
C14—C15—C16120.9 (3)C17—C20—H20C109.5
C15—C16—C17121.8 (3)C21—C22—H22119.6
C16—C17—C18117.4 (3)C23—C22—H22119.6
C16—C17—C20121.5 (3)C22—C23—H23119.5
C18—C17—C20121.1 (4)C24—C23—H23119.5
C17—C18—C19121.2 (3)C24—C25—H25119.5
C14—C19—C18121.5 (3)C26—C25—H25119.5
Sn—C21—C22121.9 (3)C21—C26—H26119.4
Sn—C21—C26120.2 (2)C25—C26—H26119.4
C22—C21—C26117.6 (3)H27A—C27—H27B109.5
C21—C22—C23120.8 (4)H27A—C27—H27C109.5
C22—C23—C24121.1 (4)H27B—C27—H27C109.5
C23—C24—C25118.2 (3)C24—C27—H27A109.5
C23—C24—C27121.0 (4)C24—C27—H27B109.5
C25—C24—C27120.8 (4)C24—C27—H27C109.5
C2—C3—C6—C6i157.5 (7)C2A—C3A—C6A—C6Ai5 (3)
C4—C3—C6—C6i23.2 (11)C4A—C3A—C6A—C6Ai169.3 (18)
Symmetry code: (i) x+1, y+1, z+1.
(IV) [µ-(E)-4,4'-(1,2-ethenediyl)dipyridine-κ2-N:N']bis[chlorotriphenyltin(IV)] top
Crystal data top
[Sn2(C6H5)6Cl2(C12H10N2)]Dx = 1.466 Mg m3
Mr = 953.10Melting point: 187-189 C K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.767 (2) ÅCell parameters from 49334 reflections
b = 14.640 (2) Åθ = 1.0–25.0°
c = 19.148 (3) ŵ = 1.31 mm1
β = 102.34 (1)°T = 293 K
V = 4317.8 (11) Å3Plate, colourless
Z = 40.32 × 0.21 × 0.16 mm
F(000) = 1904
Data collection top
Nonius KappaCCD
diffractometer
7585 independent reflections
Radiation source: fine-focus sealed tube5778 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 1.8°
ϕ and ω scans with 1.0° stepsh = 018
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
k = 017
Tmin = 0.66, Tmax = 0.81l = 2221
10037 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2)]
7585 reflections(Δ/σ)max = 0.003
487 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Sn2(C6H5)6Cl2(C12H10N2)]V = 4317.8 (11) Å3
Mr = 953.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.767 (2) ŵ = 1.31 mm1
b = 14.640 (2) ÅT = 293 K
c = 19.148 (3) Å0.32 × 0.21 × 0.16 mm
β = 102.34 (1)°
Data collection top
Nonius KappaCCD
diffractometer
7585 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
5778 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.81Rint = 0.038
10037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 0.81Δρmax = 0.41 e Å3
7585 reflectionsΔρmin = 0.53 e Å3
487 parameters
Special details top

Experimental. The crystal-to-detector distance was 35 mm. Each frame was measured for 40 s. The number of scan sets measured was 2; the total number of frames measured was 339.

Refinement. The displacement ellipsoids of atoms C7—C12 suggest that the phenyl ligand that they compose can adopt a range of orientations. The refinement of a two-site disorder model was, however, unstable, even when constraints and/or restraints were applied. In the end we decided that the one-site model with its very eccentric ellipsoids was preferable.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.90650 (1)0.77553 (1)0.04902 (1)0.0451 (1)
Sn20.64526 (1)0.25033 (1)0.59672 (1)0.0446 (1)
Cl10.97577 (5)0.86925 (5)0.03080 (4)0.0602 (2)
Cl20.58979 (6)0.15925 (6)0.68908 (4)0.0644 (2)
N10.84631 (15)0.67614 (16)0.13133 (12)0.0463 (6)
N20.69884 (15)0.33554 (15)0.50291 (11)0.0426 (6)
C10.7902 (2)0.6082 (2)0.11174 (15)0.0514 (8)
H10.76880.59840.06320.062*
C20.76216 (19)0.5517 (2)0.15959 (14)0.0487 (8)
H20.72350.50460.14310.058*
C30.79165 (18)0.56517 (18)0.23251 (13)0.0391 (7)
C40.8508 (2)0.6357 (2)0.25269 (14)0.0510 (8)
H40.87260.64780.30090.061*
C50.8767 (2)0.6871 (2)0.20148 (15)0.0538 (8)
H50.91790.73250.21630.065*
C60.75999 (18)0.50654 (18)0.28323 (14)0.0432 (7)
H60.71630.46510.26440.052*
C70.7986 (2)0.7426 (2)0.03475 (17)0.0594 (9)
C80.8078 (4)0.6933 (3)0.0920 (3)0.141 (2)
H80.86180.66860.09330.169*
C90.7384 (5)0.6787 (4)0.1493 (3)0.178 (4)
H90.74650.64270.18730.214*
C100.6615 (5)0.7143 (6)0.1509 (3)0.171 (4)
H100.61500.70260.18870.205*
C110.6523 (4)0.7685 (6)0.0962 (3)0.220 (5)
H110.59920.79680.09730.264*
C120.7204 (3)0.7828 (5)0.0380 (2)0.163 (3)
H120.71240.82050.00090.195*
C131.01753 (19)0.6884 (2)0.07668 (14)0.0449 (7)
C141.0106 (2)0.5944 (2)0.07987 (17)0.0626 (9)
H140.95590.56750.07120.075*
C151.0833 (3)0.5401 (2)0.0956 (2)0.0811 (11)
H151.07700.47700.09650.097*
C161.1648 (3)0.5774 (3)0.11018 (18)0.0740 (11)
H161.21370.54010.12090.089*
C171.1731 (2)0.6702 (3)0.10864 (16)0.0647 (9)
H171.22800.69660.11960.078*
C181.1003 (2)0.7252 (2)0.09078 (16)0.0563 (8)
H181.10710.78810.08820.068*
C190.8867 (2)0.8858 (2)0.11742 (14)0.0466 (7)
C200.8132 (2)0.8918 (2)0.14626 (17)0.0625 (9)
H200.77130.84620.13640.075*
C210.8010 (3)0.9642 (3)0.18934 (18)0.0756 (11)
H210.75120.96700.20800.091*
C220.8617 (3)1.0316 (3)0.20455 (17)0.0762 (11)
H220.85411.07960.23440.091*
C230.9335 (3)1.0283 (2)0.17583 (18)0.0752 (11)
H230.97441.07490.18550.090*
C240.9463 (2)0.9565 (2)0.13261 (15)0.0563 (8)
H240.99570.95550.11330.068*
C250.7671 (2)0.3907 (2)0.52193 (14)0.0523 (8)
H250.79590.39150.56970.063*
C260.79732 (19)0.4464 (2)0.47512 (13)0.0487 (8)
H260.84550.48330.49120.058*
C270.75588 (18)0.44740 (18)0.40382 (13)0.0387 (7)
C280.68605 (19)0.3885 (2)0.38354 (14)0.0479 (8)
H280.65690.38530.33590.057*
C290.66016 (19)0.3351 (2)0.43373 (14)0.0467 (7)
H290.61300.29630.41890.056*
C300.78769 (19)0.50694 (19)0.35342 (14)0.0457 (7)
H300.83110.54850.37250.055*
C310.5699 (2)0.1756 (2)0.51025 (14)0.0524 (8)
C320.6017 (3)0.0951 (3)0.48698 (18)0.0812 (12)
H320.65540.07290.51060.097*
C330.5542 (4)0.0475 (3)0.4290 (2)0.1070 (16)
H330.57550.00680.41430.128*
C340.4766 (4)0.0807 (4)0.3938 (3)0.1130 (19)
H340.44510.04880.35470.136*
C350.4438 (3)0.1596 (4)0.4144 (2)0.1082 (16)
H350.39080.18200.38930.130*
C360.4906 (2)0.2065 (3)0.47367 (19)0.0734 (10)
H360.46770.25980.48870.088*
C370.77627 (19)0.20700 (19)0.63366 (14)0.0447 (7)
C380.8136 (2)0.2014 (2)0.70618 (15)0.0543 (8)
H380.78170.21900.73960.065*
C390.8969 (2)0.1701 (3)0.72902 (18)0.0702 (10)
H390.92080.16720.77780.084*
C400.9453 (2)0.1430 (3)0.6814 (2)0.0757 (11)
H401.00160.12140.69740.091*
C410.9093 (2)0.1483 (2)0.60917 (19)0.0749 (11)
H410.94140.13030.57610.090*
C420.8263 (2)0.1802 (2)0.58608 (16)0.0621 (9)
H420.80300.18380.53730.075*
C430.60078 (19)0.3782 (2)0.63023 (15)0.0507 (8)
C440.5816 (2)0.4526 (2)0.58515 (17)0.0738 (11)
H440.58680.44720.53790.089*
C450.5552 (3)0.5344 (3)0.6085 (2)0.0991 (15)
H450.54300.58340.57710.119*
C460.5466 (3)0.5443 (3)0.6772 (3)0.0988 (15)
H460.52720.59940.69230.119*
C470.5663 (3)0.4741 (3)0.7232 (2)0.0995 (15)
H470.56210.48150.77060.119*
C480.5931 (3)0.3900 (3)0.70038 (17)0.0789 (12)
H480.60580.34180.73260.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04754 (14)0.04487 (13)0.04482 (12)0.00070 (10)0.01406 (10)0.01163 (9)
Sn20.05314 (15)0.04773 (13)0.03361 (11)0.00572 (10)0.01081 (9)0.00718 (8)
Cl10.0647 (6)0.0594 (5)0.0630 (5)0.0019 (4)0.0277 (4)0.0262 (4)
Cl20.0651 (6)0.0797 (6)0.0513 (4)0.0028 (4)0.0192 (4)0.0270 (4)
N10.0487 (16)0.0496 (15)0.0425 (13)0.0091 (12)0.0140 (12)0.0109 (11)
N20.0541 (16)0.0455 (14)0.0298 (12)0.0017 (12)0.0126 (11)0.0051 (10)
C10.058 (2)0.060 (2)0.0362 (15)0.0129 (17)0.0107 (15)0.0064 (14)
C20.058 (2)0.0486 (18)0.0393 (16)0.0155 (15)0.0095 (14)0.0019 (13)
C30.0439 (18)0.0388 (16)0.0369 (15)0.0021 (13)0.0138 (13)0.0039 (12)
C40.065 (2)0.0505 (19)0.0356 (15)0.0136 (16)0.0059 (14)0.0039 (13)
C50.059 (2)0.0529 (19)0.0483 (18)0.0201 (16)0.0078 (15)0.0078 (15)
C60.0513 (19)0.0394 (16)0.0405 (16)0.0109 (14)0.0131 (14)0.0029 (13)
C70.063 (2)0.068 (2)0.0455 (19)0.0127 (18)0.0079 (17)0.0148 (16)
C80.175 (5)0.100 (4)0.111 (4)0.054 (4)0.050 (4)0.044 (3)
C90.245 (9)0.119 (5)0.120 (5)0.009 (6)0.075 (6)0.047 (4)
C100.129 (6)0.280 (10)0.080 (4)0.098 (6)0.030 (4)0.034 (5)
C110.063 (4)0.522 (15)0.069 (3)0.019 (6)0.001 (3)0.004 (6)
C120.059 (3)0.366 (9)0.062 (3)0.010 (4)0.010 (2)0.019 (4)
C130.0492 (19)0.0477 (18)0.0399 (15)0.0012 (15)0.0142 (14)0.0099 (13)
C140.059 (2)0.047 (2)0.085 (2)0.0018 (17)0.0211 (19)0.0088 (17)
C150.079 (3)0.050 (2)0.120 (3)0.012 (2)0.035 (3)0.018 (2)
C160.068 (3)0.077 (3)0.081 (3)0.024 (2)0.027 (2)0.025 (2)
C170.050 (2)0.085 (3)0.061 (2)0.004 (2)0.0156 (17)0.0094 (19)
C180.057 (2)0.055 (2)0.060 (2)0.0041 (18)0.0187 (17)0.0084 (16)
C190.052 (2)0.0469 (18)0.0416 (16)0.0037 (15)0.0120 (14)0.0148 (13)
C200.062 (2)0.056 (2)0.074 (2)0.0007 (18)0.0268 (19)0.0109 (18)
C210.097 (3)0.072 (3)0.070 (2)0.022 (2)0.043 (2)0.015 (2)
C220.119 (4)0.064 (3)0.045 (2)0.014 (2)0.015 (2)0.0057 (17)
C230.095 (3)0.065 (2)0.058 (2)0.014 (2)0.001 (2)0.0042 (19)
C240.058 (2)0.060 (2)0.0483 (18)0.0041 (17)0.0072 (16)0.0105 (16)
C250.067 (2)0.056 (2)0.0288 (14)0.0105 (17)0.0008 (14)0.0024 (13)
C260.057 (2)0.0526 (19)0.0353 (15)0.0137 (15)0.0068 (14)0.0010 (13)
C270.0461 (18)0.0391 (16)0.0331 (14)0.0033 (13)0.0137 (13)0.0007 (12)
C280.053 (2)0.063 (2)0.0267 (14)0.0112 (16)0.0066 (13)0.0093 (13)
C290.0453 (19)0.0553 (19)0.0382 (16)0.0097 (15)0.0057 (14)0.0057 (13)
C300.051 (2)0.0458 (17)0.0414 (16)0.0101 (14)0.0121 (14)0.0017 (13)
C310.071 (2)0.053 (2)0.0367 (16)0.0124 (17)0.0173 (16)0.0057 (14)
C320.119 (4)0.069 (3)0.054 (2)0.001 (2)0.017 (2)0.0058 (19)
C330.151 (5)0.096 (4)0.081 (3)0.015 (4)0.040 (3)0.028 (3)
C340.118 (5)0.145 (5)0.081 (3)0.052 (4)0.031 (3)0.045 (3)
C350.067 (3)0.165 (5)0.088 (3)0.040 (3)0.007 (2)0.021 (3)
C360.061 (3)0.091 (3)0.070 (2)0.023 (2)0.017 (2)0.009 (2)
C370.0509 (19)0.0435 (17)0.0415 (16)0.0042 (14)0.0139 (14)0.0083 (13)
C380.056 (2)0.063 (2)0.0455 (17)0.0032 (17)0.0141 (15)0.0023 (15)
C390.059 (2)0.093 (3)0.054 (2)0.006 (2)0.0016 (18)0.0052 (19)
C400.053 (2)0.086 (3)0.089 (3)0.012 (2)0.016 (2)0.013 (2)
C410.074 (3)0.090 (3)0.070 (2)0.027 (2)0.036 (2)0.014 (2)
C420.073 (3)0.075 (2)0.0417 (17)0.0220 (19)0.0206 (17)0.0130 (16)
C430.0465 (19)0.061 (2)0.0446 (17)0.0044 (15)0.0097 (14)0.0019 (15)
C440.094 (3)0.070 (2)0.053 (2)0.036 (2)0.0048 (19)0.0015 (18)
C450.117 (4)0.080 (3)0.090 (3)0.052 (3)0.001 (3)0.004 (2)
C460.092 (3)0.095 (4)0.108 (4)0.029 (3)0.019 (3)0.033 (3)
C470.123 (4)0.112 (4)0.078 (3)0.003 (3)0.053 (3)0.035 (3)
C480.107 (3)0.082 (3)0.056 (2)0.002 (2)0.036 (2)0.0032 (19)
Geometric parameters (Å, º) top
Sn1—Cl12.4748 (8)C38—C391.371 (4)
Sn1—N12.478 (2)C39—C401.368 (4)
Sn1—C72.130 (3)C40—C411.380 (5)
Sn1—C132.139 (3)C41—C421.371 (4)
Sn1—C192.143 (3)C43—C441.382 (4)
Sn2—Cl22.5164 (8)C43—C481.385 (4)
Sn2—N22.479 (2)C44—C451.375 (5)
Sn2—C312.124 (3)C45—C461.357 (5)
Sn2—C372.132 (3)C46—C471.346 (6)
Sn2—C432.145 (3)C47—C481.402 (5)
N1—C11.330 (3)C1—H10.93
N1—C51.336 (3)C2—H20.93
N2—C251.333 (3)C4—H40.93
N2—C291.335 (3)C5—H50.93
C1—C21.376 (4)C6—H60.93
C2—C31.388 (3)C8—H80.93
C3—C41.389 (4)C9—H90.93
C3—C61.462 (3)C10—H100.93
C4—C51.366 (4)C11—H110.93
C6—C301.321 (3)C12—H120.93
C7—C81.346 (5)C14—H140.93
C7—C121.355 (6)C15—H150.93
C8—C91.391 (7)C16—H160.93
C9—C101.313 (9)C17—H170.93
C10—C111.347 (10)C18—H180.93
C11—C121.388 (7)C20—H200.93
C13—C141.383 (4)C21—H210.93
C13—C181.385 (4)C22—H220.93
C14—C151.374 (4)C23—H230.93
C15—C161.368 (5)C24—H240.93
C16—C171.367 (5)C25—H250.93
C17—C181.384 (4)C26—H260.93
C19—C201.389 (4)C28—H280.93
C19—C241.387 (4)C29—H290.93
C20—C211.382 (4)C30—H300.93
C21—C221.361 (5)C32—H320.93
C22—C231.362 (5)C33—H330.93
C23—C241.379 (4)C34—H340.93
C25—C261.370 (4)C35—H350.93
C26—C271.382 (3)C36—H360.93
C27—C281.387 (4)C38—H380.93
C27—C301.466 (3)C39—H390.93
C28—C291.367 (4)C40—H400.93
C31—C321.390 (4)C41—H410.93
C31—C361.373 (4)C42—H420.93
C32—C331.387 (5)C44—H440.93
C33—C341.355 (6)C45—H450.93
C34—C351.357 (6)C46—H460.93
C35—C361.396 (5)C47—H470.93
C37—C381.390 (4)C48—H480.93
C37—C421.383 (4)
Cl1—Sn1—N1176.22 (6)C43—C44—C45121.6 (3)
Cl1—Sn1—C792.73 (8)C44—C45—C46120.6 (4)
Cl1—Sn1—C1392.17 (7)C45—C46—C47119.7 (4)
Cl1—Sn1—C1995.79 (8)C46—C47—C48120.6 (4)
N1—Sn1—C789.60 (10)C43—C48—C47120.4 (4)
N1—Sn1—C1384.07 (9)N1—C1—H1118.3
N1—Sn1—C1985.87 (9)C2—C1—H1118.3
C7—Sn1—C13122.10 (13)C1—C2—H2120.0
C7—Sn1—C19115.70 (13)C3—C2—H2120.0
C13—Sn1—C19121.07 (11)C3—C4—H4120.1
N2—Sn2—N2178.04 (6)C5—C4—H4120.1
C31—Sn2—C3193.10 (8)N1—C5—H5118.1
C37—Sn2—C3793.83 (7)C4—C5—H5118.1
C43—Sn2—C4393.85 (8)C3—C6—H6117.0
N2—Sn2—C3185.12 (9)C30—C6—H6117.0
N2—Sn2—C3786.22 (9)C7—C8—H8119.3
N2—Sn2—C4387.79 (9)C9—C8—H8119.3
C31—Sn2—C37116.50 (12)C8—C9—H9119.2
C31—Sn2—C43121.25 (12)C10—C9—H9119.2
C37—Sn2—C43121.07 (11)C9—C10—H10121.1
Sn1—N1—C1125.55 (18)C11—C10—H10121.1
Sn1—N1—C5117.71 (18)C10—C11—H11119.4
C1—N1—C5116.6 (2)C12—C11—H11119.4
Sn2—N2—C25119.17 (17)C7—C12—H12119.6
Sn2—N2—C29124.22 (19)C11—C12—H12119.6
C25—N2—C29116.4 (2)C13—C14—H14119.5
N1—C1—C2123.4 (3)C15—C14—H14119.5
C1—C2—C3119.9 (3)C14—C15—H15119.4
C2—C3—C4116.5 (2)C16—C15—H15119.4
C2—C3—C6119.8 (2)C15—C16—H16120.6
C4—C3—C6123.8 (2)C17—C16—H16120.6
C3—C4—C5119.7 (3)C16—C17—H17119.8
N1—C5—C4123.9 (3)C18—C17—H17119.8
C3—C6—C30126.0 (3)C13—C18—H18119.4
Sn1—C7—C8121.7 (3)C17—C18—H18119.4
Sn1—C7—C12120.6 (3)C19—C20—H20119.3
C8—C7—C12116.8 (4)C21—C20—H20119.3
C7—C8—C9121.3 (6)C20—C21—H21119.9
C8—C9—C10121.6 (7)C22—C21—H21119.9
C9—C10—C11117.9 (6)C21—C22—H22120.2
C10—C11—C12121.3 (7)C23—C22—H22120.2
C7—C12—C11120.8 (6)C22—C23—H23119.7
Sn1—C13—C14122.4 (2)C24—C23—H23119.7
Sn1—C13—C18120.2 (2)C19—C24—H24119.5
C14—C13—C18117.3 (3)C23—C24—H24119.5
C13—C14—C15121.0 (3)N2—C25—H25118.1
C14—C15—C16121.1 (3)C26—C25—H25118.1
C15—C16—C17118.8 (3)C25—C26—H26120.1
C16—C17—C18120.4 (3)C27—C26—H26120.1
C13—C18—C17121.3 (3)C27—C28—H28120.1
Sn1—C19—C20122.3 (2)C29—C28—H28120.1
Sn1—C19—C24120.7 (2)N2—C29—H29118.2
C20—C19—C24117.0 (3)C28—C29—H29118.2
C19—C20—C21121.4 (3)C6—C30—H30117.2
C20—C21—C22120.2 (4)C27—C30—H30117.2
C21—C22—C23119.7 (4)C31—C32—H32119.6
C22—C23—C24120.7 (4)C33—C32—H32119.6
C19—C24—C23121.0 (3)C32—C33—H33120.2
N2—C25—C26123.7 (3)C34—C33—H33120.2
C25—C26—C27119.7 (3)C33—C34—H34119.3
C26—C27—C28116.7 (2)C35—C34—H34119.3
C26—C27—C30120.0 (3)C34—C35—H35120.4
C28—C27—C30123.2 (2)C36—C35—H35120.4
C27—C28—C29119.8 (3)C31—C36—H36119.4
N2—C29—C28123.6 (3)C35—C36—H36119.4
C6—C30—C27125.6 (3)C37—C38—H38119.6
Sn2—C31—C32120.4 (3)C39—C38—H38119.6
Sn2—C31—C36121.6 (3)C38—C39—H39119.4
C32—C31—C36117.9 (3)C40—C39—H39119.4
C31—C32—C33120.8 (4)C39—C40—H40120.6
C32—C33—C34119.6 (5)C41—C40—H40120.6
C33—C34—C35121.3 (5)C40—C41—H41119.9
C34—C35—C36119.1 (5)C42—C41—H41119.9
C31—C36—C35121.2 (4)C37—C42—H42119.2
Sn2—C37—C38121.5 (2)C41—C42—H42119.2
Sn2—C37—C42121.0 (2)C43—C44—H44119.2
C38—C37—C42117.5 (3)C45—C44—H44119.2
C37—C38—C39120.7 (3)C44—C45—H45119.7
C38—C39—C40121.2 (3)C46—C45—H45119.7
C39—C40—C41118.9 (3)C45—C46—H46120.2
C40—C41—C42120.2 (3)C47—C46—H46120.2
C37—C42—C41121.6 (3)C46—C47—H47119.7
Sn2—C43—C44122.9 (2)C48—C47—H47119.7
Sn2—C43—C48120.1 (2)C43—C48—H48119.8
C44—C43—C48117.0 (3)C47—C48—H48119.8
C2—C3—C6—C30174.2 (3)C7—Sn1—Sn2—C3122.0 (1)
C4—C3—C6—C306.0 (5)C13—Sn1—Sn2—C3717.1 (1)
C26—C27—C30—C6172.0 (3)C19—Sn1—Sn2—C4315.0 (1)
C28—C27—C30—C66.3 (5)

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula[Sn2(C7H7)6Cl2(C12H10N2)][Sn2Br2(C7H7)6(C12H10N2)][Sn2(C7H7)6I2(C12H10N2)][Sn2(C6H5)6Cl2(C12H10N2)]
Mr1037.261126.181220.16953.10
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)293295295293
a, b, c (Å)11.641 (1), 12.019 (1), 17.999 (2)11.736 (1), 12.060 (1), 18.054 (2)12.167 (1), 12.323 (1), 16.980 (2)15.767 (2), 14.640 (2), 19.148 (3)
β (°) 98.94 (1) 98.76 (1) 97.28 (1) 102.34 (1)
V3)2487.7 (4)2525.5 (4)2525.4 (4)4317.8 (11)
Z2224
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.152.622.251.31
Crystal size (mm)0.32 × 0.32 × 0.240.37 × 0.21 × 0.210.45 × 0.40 × 0.300.32 × 0.21 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.65, 0.740.50, 0.580.36, 0.480.66, 0.81
No. of measured, independent and
observed [I > 2σ(I)] reflections
8292, 4372, 3781 13805, 4416, 3932 13846, 4428, 3862 10037, 7585, 5778
Rint0.0170.0270.0350.038
(sin θ/λ)max1)0.5950.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.04 0.036, 0.105, 1.06 0.030, 0.062, 1.07 0.027, 0.064, 0.81
No. of reflections4372441644287585
No. of parameters271271303487
No. of restraints00600
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.450.52, 1.370.38, 0.720.41, 0.53

Computer programs: COLLECT (Nonius, 1998), DENZO–SMN (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997) in maXus (Mackay et al., 1998), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990).

Selected distances (Å) in the four title compounds. When two distances are given on the same line for the same compound the distance to the lower numbered atom is given first. The Sn—N distance given for the X = I compound is for the major site. top
R = Me/X = ClR = Me/X = BrR = Me/X = IR = H/X = Cl
SnX2.515 (1)2.663 (1)2.910 (1)2.475 (1), 2.516 (1)
SnN2.492 (2)2.477 (3)2.482 (4)2.478 (2), 2.479 (2)
SnC7(C7,C31)2.136 (3)2.135 (3)2.136 (4)2.130 (3), 2.124 (3)
SnC14(C13,C37)2.141 (3)2.147 (3)2.146 (4)2.139 (3), 2.132 (3)
SnC21(C19,C43)2.130 (3)2.127 (3)2.127 (4)2.143 (3), 2.145 (3)
Calculated H···X contact distances (Å) in the four title compounds. For the R = H/X = Cl compound, the first two distances are H6···Cl2 and H30···Cl1, and the second two are H28···Cl2 and H4···Cl1. top
H6···XH4···XSum van der Waals radii (Bondi, 1964)
R = Me/X = Cl2.952.812.95
R = Me/X = Br3.012.883.05
R = Me/X = I3.213.333.18
R = H/X = Cl2.85, 2.882.86, 3.292.95
Symmetry information: in the three R = Me structures, H4 and H6(1 − x, 1 − y, 1 − z) interact with X(3/2 − x, −1/2 + y, 3/2 − z); in the R = H structure, H4 and H30 interact with Cl1(x, 3/2 − y, 1/2 + z), while H6 and H28 interact with Cl2(x, 1/2 − y, 1/2 + z). The distances for atoms H4A and H6A of the minor component in the X = I structure are substantially longer than those shown for atoms H4 and H6 of the major component.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds