Download citation
Download citation
link to html
The molecule of 3,3',4,4'-tetrakis­(phenyl­ethynyl)­bi­phenyl, C44H26, is approximately planar and is located on a crystallographic inversion center. Bis­[3,4-bis­(phenyl­ethynyl)­phenyl] ether, C44H26O, has mol­ecules located on twofold symmetry axes, whereas the molecule of 2,2-bis­[3,4-bis­(phenyl­ethynyl)­phenyl]­propane, C47H32, does not exhibit any molecular symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102023594/fr1389sup1.cif
Contains datablocks global, III, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023594/fr1389Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023594/fr1389IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023594/fr1389IIIsup4.hkl
Contains datablock (3)

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270102023594/fr1389sup5.pdf
Supplementary material

CCDC references: 208008; 208009; 208010

Comment top

Bis-ortho-diynylarene (BODA) compounds are a new class of tetrayne monomers which undergo thermally induced Bergman cyclization (Bergman, 1973) to form processable precursors leading to polyarylene polymer networks (Smith et al., 1998). BODA-derived networks are targeted for applications such as high-temperature thin-film dielectrics, optoelectronic materials (Smith et al., 1998), matrix composite resins, and precursors to glassy carbon microstructures (Shah et al., 2000). Currently BODA monomers are polymerized in solution or melt. However, solid-state polymerization could occur with appropriate high melting crystals. We report here the crystal structures of a series of BODA compounds with melting points below their polymerization temperature (<473 K).

The molecule of compound (I) is located on an inversion center and is approximately planar, with an r.m.s displacement of the C atoms from the molecular plane of 0.131 Å and a maximum displacement of 0.230 (3) Å for atom C5. The molecules are stacked in the direction of the crystallographic b axis; the distances between benzene rings are reported in Table 4. The molecule of compound (II) is located on a twofold symmetry axis; both parts are planar with an r.m.s. displacement for the non-H atoms of 0.174 Å and a maximum displacement from the least-squares plane of 0.352 (3) Å for atom C13. For BODA molecules with terminal phenyl groups, π-stacking of the aromatic rings is an important factor in determining crystal packing. The π-stacking distances of all molecules reported here are in a narrow range. The almost planar stacking of molecules in (I) (as illustrated by low value of the dihedral angle between the stacked rings) indicates very efficient packing (Table 4). Rings I and I of the two adjacent molecules of BODA (II) are exactly parallel to each other. The other close contact between phenyl rings in the structure of (II) exhibits a slightly longer distance and a relatively large angle between the planes of the two interacting rings (Table 4). Reactivity-determining trans-alkyne distances are reported in Table 5. The variation of the distance in one of the molecule (III) is comparable to the variation between different molecules. Thus, it seems that packing plays as important role as the spacer group in determining the trans-alkyne distance in solid state.

For BODA compounds with terminal phenyl groups, π-stacking of the aromatic rings is an important factor in determining crystal packing. Apart from their potential application for network polyarenes, the monomers are good candidates for crystal engineering as robust and versatile building blocks for supramolecular assemblies.

The 1,2-bis(phenylethynyl)phenyl fragment present in all three compounds is relatively uncommon among structures reported in the Cambridge Structural Database (CSD; Allen, 2002). Most often, such fragments occur as part of a larger macrocycle consisting of alternating benzene rings and ethynylene bridges. Sometimes they also incorporate a transition metal atom in the center. There are only four structures reported in the CSD with a free standing 1,2-bis(phenylethynyl)phenyl fragment, namely 1,2-bis[2-(3-hydroxyphenyl)ethynyl]benzene (refcode ECACEQ; Schmittel et al., 2001), bis{2-[2-(trimethylsilylethynyl)phenylethynyl]phenyl}ethyne and bis{2-[2-(ethynyl)phenylethynyl]phenyl}ethyne (GOPMIH and GOPMON, respectively; Baldwin et al., 1998), and 1,2-bis[2-(2-ethynylphenyl)ethynyl]benzene (PIPYUI; Baldwin et al., 1993). In GOPMIH and GOPMON, only two of the aromatic rings are coplanar, the rest of the molecule being twisted as a result of bulky substituents. The atomic coordinates of PIPYUI were not reported in the CSD. The fourth structure, ECACEQ, is nearly planar, closely resembling the planar fragments in molecules (I) and (II) reported here. It forms a hemihydrate clathrate with two molecules encapsulating one water molecule.

Experimental top

Bis-ortho-diynylarylene (BODA) derivatives were synthesized as described previously (Smith et al., 1998). Monomers were prepared in three steps via ortho bromination and trifluoromethylsulfonate (trifluoromethanesulfonate) esterification, followed by Pd-catalyzed coupling of phenyl acetylene (Sonogashira et al., 1975) to give tetrayne (see reaction Scheme above). Solvents for recrystallization were hexane–ethyl acetate (1:1) for (I) and (II), and hexane for (III.

Refinement top

All H atoms, except those on atoms C22 and C23 of (III), were placed in idealized positions and were refined riding on their parent atoms. C—H distances of 0.98 and 0.99 Å were used for methyl and secondary C atoms, respectively. A distance of 0.93 Å was used for Csp2 atoms in structures (I) and (II), and 0.95 Å in structure (III). The H-atom displacement parameters were set at 1.2Ueq of the parent C atom and 1.5Ueq for the methyl C atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 1998-2001) for (I), (II); SMART (Bruker, 1998) for (III). Cell refinement: CrystalClear for (I), (II); SMART and SAINT (Bruker, 1998) for (III). Data reduction: CrystalClear for (I), (II); SHELXTL (Bruker, 1998) for (III). Program(s) used to solve structure: SIR92 (Altomare et al., 1994) for (I), (II); SHELXTL for (III). Program(s) used to refine structure: SHELXTL (Bruker. 1998) for (I); SHELXTL (Bruker, 1998) for (II); SHELXTL for (III). For all compounds, molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of molecule (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of molecule (II), with displacement ellipsoids drawn at the 30% probability level.
[Figure 3] Fig. 3. A view of molecule (III), with displacement ellipsoids drawn at the 30% probability level.
(I) top
Crystal data top
C44H26F(000) = 580.00
Mr = 554.65Dx = 1.254 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3530 reflections
a = 13.299 (7) Åθ = 1.0–26.5°
b = 5.229 (3) ŵ = 0.07 mm1
c = 21.196 (11) ÅT = 300 K
β = 92.540 (15)°Platelet, colorless
V = 1472.4 (14) Å30.30 × 0.15 × 0.10 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
3021 independent reflections
Radiation source: X-ray tube1664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 7.314 pixels mm-1θmax = 26.5°, θmin = 2.5°
ω scansh = 1616
Absorption correction: multi-scan
(Jacobson, 1998)
k = 66
Tmin = 0.987, Tmax = 0.993l = 2626
14417 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0608P)2]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C44H26V = 1472.4 (14) Å3
Mr = 554.65Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.299 (7) ŵ = 0.07 mm1
b = 5.229 (3) ÅT = 300 K
c = 21.196 (11) Å0.30 × 0.15 × 0.10 mm
β = 92.540 (15)°
Data collection top
Rigaku Mercury CCD
diffractometer
3021 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1664 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.993Rint = 0.091
14417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.15Δρmax = 0.18 e Å3
3021 reflectionsΔρmin = 0.18 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0200 (2)0.4834 (6)0.96801 (15)0.0323 (7)
C20.0893 (2)0.2930 (6)0.95569 (15)0.0352 (7)
H20.10960.18320.98830.042*
C30.1296 (2)0.2591 (6)0.89687 (15)0.0336 (7)
C40.0985 (2)0.4236 (6)0.84734 (14)0.0358 (8)
C50.0272 (2)0.6120 (6)0.85877 (16)0.0399 (8)
H50.00480.71910.82600.048*
C60.0104 (2)0.6414 (6)0.91780 (15)0.0373 (8)
H60.05730.76970.92440.045*
C70.2030 (2)0.0641 (7)0.88780 (14)0.0384 (8)
C80.2659 (2)0.0997 (6)0.88176 (15)0.0378 (8)
C90.3399 (2)0.2945 (6)0.87416 (15)0.0339 (7)
C100.3742 (2)0.4486 (6)0.92376 (16)0.0409 (8)
H100.34970.42420.96380.049*
C110.4446 (2)0.6385 (7)0.91435 (17)0.0442 (9)
H110.46690.74130.94790.053*
C120.4816 (2)0.6753 (6)0.85530 (17)0.0419 (9)
H120.52880.80300.84880.050*
C130.4482 (2)0.5215 (6)0.80574 (17)0.0429 (8)
H130.47320.54580.76580.051*
C140.3782 (2)0.3319 (6)0.81492 (16)0.0393 (8)
H140.35650.22870.78130.047*
C150.1405 (2)0.4116 (7)0.78612 (16)0.0392 (8)
C160.1763 (2)0.4203 (7)0.73519 (16)0.0406 (8)
C170.2190 (2)0.4426 (6)0.67546 (14)0.0349 (7)
C180.2918 (2)0.2725 (7)0.65654 (16)0.0426 (8)
H180.31410.14300.68380.051*
C190.3314 (3)0.2930 (7)0.59811 (16)0.0455 (9)
H190.38030.17770.58600.055*
C200.2992 (2)0.4831 (7)0.55715 (16)0.0437 (8)
H200.32570.49520.51730.052*
C210.2279 (2)0.6544 (7)0.57506 (17)0.0431 (8)
H210.20650.78330.54740.052*
C220.1875 (2)0.6373 (6)0.63388 (16)0.0413 (8)
H220.13950.75520.64580.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0273 (14)0.0376 (16)0.0321 (16)0.0031 (13)0.0026 (12)0.0055 (14)
C20.0335 (16)0.0390 (17)0.0334 (17)0.0007 (14)0.0027 (14)0.0010 (15)
C30.0291 (15)0.0379 (17)0.0339 (17)0.0017 (14)0.0041 (13)0.0077 (15)
C40.0282 (15)0.046 (2)0.0336 (18)0.0030 (14)0.0036 (13)0.0069 (15)
C50.0406 (18)0.0456 (19)0.0333 (18)0.0062 (15)0.0013 (14)0.0034 (16)
C60.0366 (17)0.0414 (19)0.0342 (18)0.0065 (14)0.0041 (14)0.0003 (15)
C70.0391 (17)0.0456 (19)0.0311 (18)0.0015 (16)0.0082 (14)0.0096 (16)
C80.0349 (16)0.0427 (18)0.0362 (18)0.0044 (15)0.0072 (14)0.0088 (16)
C90.0271 (15)0.0344 (16)0.0405 (19)0.0014 (13)0.0054 (14)0.0070 (15)
C100.0425 (18)0.0413 (19)0.0396 (19)0.0039 (16)0.0096 (15)0.0027 (16)
C110.0439 (19)0.0409 (19)0.048 (2)0.0003 (15)0.0006 (17)0.0036 (16)
C120.0333 (17)0.0395 (19)0.053 (2)0.0030 (14)0.0049 (16)0.0059 (17)
C130.0393 (17)0.0452 (19)0.045 (2)0.0011 (16)0.0117 (15)0.0118 (17)
C140.0385 (17)0.0416 (18)0.0380 (19)0.0008 (15)0.0050 (15)0.0044 (16)
C150.0342 (17)0.046 (2)0.038 (2)0.0019 (15)0.0052 (15)0.0068 (16)
C160.0394 (18)0.047 (2)0.0350 (19)0.0005 (15)0.0031 (16)0.0047 (16)
C170.0350 (16)0.0431 (18)0.0267 (16)0.0054 (15)0.0017 (13)0.0047 (15)
C180.0477 (19)0.0421 (19)0.0381 (19)0.0060 (16)0.0019 (16)0.0063 (16)
C190.049 (2)0.051 (2)0.037 (2)0.0089 (17)0.0114 (16)0.0012 (17)
C200.0477 (19)0.054 (2)0.0296 (17)0.0048 (17)0.0035 (15)0.0026 (16)
C210.0410 (18)0.0458 (19)0.043 (2)0.0029 (16)0.0015 (16)0.0086 (17)
C220.0365 (17)0.0427 (19)0.045 (2)0.0040 (15)0.0054 (15)0.0018 (17)
Geometric parameters (Å, º) top
C1—C21.388 (4)C11—H110.9300
C1—C61.392 (4)C12—C131.380 (5)
C1—C1i1.486 (6)C12—H120.9300
C2—C31.388 (4)C13—C141.379 (4)
C2—H20.9300C13—H130.9300
C3—C41.404 (4)C14—H140.9300
C3—C71.430 (4)C15—C161.198 (4)
C4—C51.395 (4)C16—C171.413 (4)
C4—C151.435 (4)C17—C181.386 (4)
C5—C61.375 (4)C17—C221.398 (4)
C5—H50.9300C18—C191.369 (5)
C6—H60.9300C18—H180.9300
C7—C81.207 (4)C19—C201.375 (5)
C8—C91.430 (4)C19—H190.9300
C9—C101.385 (4)C20—C211.369 (5)
C9—C141.387 (4)C20—H200.9300
C10—C111.384 (5)C21—C221.380 (5)
C10—H100.9300C21—H210.9300
C11—C121.377 (5)C22—H220.9300
C2—C1—C6117.1 (3)C11—C12—C13119.6 (3)
C2—C1—C1i121.4 (4)C11—C12—H12120.2
C6—C1—C1i121.6 (3)C13—C12—H12120.2
C1—C2—C3123.0 (3)C14—C13—C12120.6 (3)
C1—C2—H2118.5C14—C13—H13119.7
C3—C2—H2118.5C12—C13—H13119.7
C2—C3—C4118.6 (3)C13—C14—C9120.3 (3)
C2—C3—C7120.2 (3)C13—C14—H14119.8
C4—C3—C7121.1 (3)C9—C14—H14119.8
C5—C4—C3118.9 (3)C16—C15—C4175.3 (4)
C5—C4—C15118.8 (3)C15—C16—C17177.4 (4)
C3—C4—C15122.3 (3)C18—C17—C22118.6 (3)
C6—C5—C4120.9 (3)C18—C17—C16121.1 (3)
C6—C5—H5119.6C22—C17—C16120.2 (3)
C4—C5—H5119.6C19—C18—C17120.7 (3)
C5—C6—C1121.5 (3)C19—C18—H18119.6
C5—C6—H6119.2C17—C18—H18119.6
C1—C6—H6119.2C18—C19—C20120.3 (3)
C8—C7—C3178.3 (3)C18—C19—H19119.8
C7—C8—C9179.5 (4)C20—C19—H19119.8
C10—C9—C14118.8 (3)C21—C20—C19119.9 (3)
C10—C9—C8122.3 (3)C21—C20—H20120.0
C14—C9—C8118.9 (3)C19—C20—H20120.0
C11—C10—C9120.7 (3)C20—C21—C22120.5 (3)
C11—C10—H10119.7C20—C21—H21119.7
C9—C10—H10119.7C22—C21—H21119.7
C12—C11—C10120.1 (3)C21—C22—C17119.9 (3)
C12—C11—H11120.0C21—C22—H22120.1
C10—C11—H11120.0C17—C22—H22120.1
C6—C1—C2—C31.2 (4)C9—C10—C11—C120.3 (5)
C1i—C1—C2—C3178.8 (4)C10—C11—C12—C130.1 (5)
C1—C2—C3—C40.4 (5)C11—C12—C13—C140.1 (5)
C1—C2—C3—C7178.1 (3)C12—C13—C14—C90.4 (5)
C2—C3—C4—C51.1 (4)C10—C9—C14—C130.8 (5)
C7—C3—C4—C5179.5 (3)C8—C9—C14—C13178.7 (3)
C2—C3—C4—C15176.4 (3)C22—C17—C18—C190.7 (5)
C7—C3—C4—C152.1 (5)C16—C17—C18—C19178.8 (3)
C3—C4—C5—C61.7 (5)C17—C18—C19—C200.1 (5)
C15—C4—C5—C6175.9 (3)C18—C19—C20—C210.6 (5)
C4—C5—C6—C10.8 (5)C19—C20—C21—C220.3 (5)
C2—C1—C6—C50.6 (5)C20—C21—C22—C170.5 (5)
C1i—C1—C6—C5179.4 (4)C18—C17—C22—C211.0 (5)
C14—C9—C10—C110.7 (5)C16—C17—C22—C21178.5 (3)
C8—C9—C10—C11178.8 (3)
Symmetry code: (i) x, y+1, z+2.
(II) top
Crystal data top
C44H26OF(000) = 1192.00
Mr = 570.65Dx = 1.209 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 4736 reflections
a = 35.483 (10) Åθ = 0.6–26.5°
b = 5.8875 (15) ŵ = 0.07 mm1
c = 15.919 (5) ÅT = 300 K
β = 109.932 (6)°Block, colorless
V = 3126.4 (14) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
3203 independent reflections
Radiation source: X-ray tube1964 reflections with I > 2.00σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 7.314 pixels mm-1θmax = 26.5°, θmin = 3.5°
ω scansh = 4444
Absorption correction: multi-scan
(Jacobson, 1998)
k = 77
Tmin = 0.983, Tmax = 0.986l = 1919
15387 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0853P)2]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C44H26OV = 3126.4 (14) Å3
Mr = 570.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 35.483 (10) ŵ = 0.07 mm1
b = 5.8875 (15) ÅT = 300 K
c = 15.919 (5) Å0.30 × 0.20 × 0.20 mm
β = 109.932 (6)°
Data collection top
Rigaku Mercury CCD
diffractometer
3203 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
1964 reflections with I > 2.00σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.052
15387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.15Δρmax = 0.13 e Å3
3202 reflectionsΔρmin = 0.13 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50001.2889 (4)0.25000.0760 (7)
C10.51935 (7)1.1672 (5)0.20143 (15)0.0637 (6)
C20.55477 (6)1.2509 (4)0.19903 (15)0.0590 (6)
H20.56561.38240.23030.071*
C30.57481 (6)1.1381 (4)0.14935 (14)0.0559 (6)
C40.55817 (7)0.9410 (4)0.10147 (15)0.0642 (6)
C50.52185 (8)0.8621 (5)0.10544 (19)0.0805 (8)
H50.51050.73150.07430.097*
C60.50241 (8)0.9740 (5)0.15469 (19)0.0821 (8)
H60.47810.91990.15650.098*
C70.61279 (7)1.2186 (4)0.14826 (14)0.0620 (6)
C80.64433 (7)1.2791 (4)0.14442 (14)0.0633 (6)
C90.68203 (6)1.3452 (4)0.13828 (13)0.0557 (6)
C100.69882 (7)1.5564 (5)0.16715 (16)0.0668 (6)
H100.68511.66040.19000.080*
C110.73565 (8)1.6124 (5)0.16205 (19)0.0769 (7)
H110.74681.75370.18170.092*
C120.75585 (8)1.4590 (6)0.1279 (2)0.0845 (9)
H120.78081.49620.12490.101*
C130.73938 (8)1.2529 (6)0.09850 (19)0.0821 (8)
H130.75311.15050.07490.098*
C140.70271 (7)1.1948 (5)0.10337 (16)0.0679 (6)
H140.69171.05340.08310.081*
C150.57749 (7)0.8224 (5)0.04879 (16)0.0682 (7)
C160.59235 (8)0.7199 (5)0.00317 (16)0.0681 (6)
C170.60854 (7)0.5880 (4)0.05270 (14)0.0605 (6)
C180.64050 (8)0.6618 (5)0.07597 (17)0.0705 (7)
H180.65250.80060.05500.085*
C190.65490 (8)0.5303 (6)0.13052 (18)0.0806 (8)
H190.67640.58140.14620.097*
C200.63756 (9)0.3255 (5)0.16143 (19)0.0810 (8)
H200.64720.23820.19840.097*
C210.60625 (8)0.2494 (5)0.13828 (18)0.0788 (8)
H210.59460.10970.15910.095*
C220.59170 (8)0.3799 (5)0.08370 (17)0.0730 (7)
H220.57040.32680.06780.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0736 (15)0.0784 (17)0.0938 (17)0.0000.0515 (14)0.000
C10.0560 (12)0.0758 (17)0.0666 (13)0.0008 (12)0.0303 (11)0.0005 (12)
C20.0575 (13)0.0661 (15)0.0592 (12)0.0047 (11)0.0272 (10)0.0003 (11)
C30.0538 (12)0.0635 (15)0.0527 (11)0.0040 (10)0.0212 (9)0.0040 (10)
C40.0626 (14)0.0742 (16)0.0604 (12)0.0027 (12)0.0271 (11)0.0039 (12)
C50.0705 (16)0.090 (2)0.0870 (17)0.0235 (14)0.0339 (14)0.0258 (15)
C60.0612 (15)0.100 (2)0.0946 (18)0.0221 (15)0.0383 (14)0.0219 (17)
C70.0616 (14)0.0714 (16)0.0576 (12)0.0025 (12)0.0260 (11)0.0013 (11)
C80.0585 (13)0.0762 (16)0.0601 (13)0.0022 (12)0.0268 (11)0.0017 (11)
C90.0499 (11)0.0680 (15)0.0511 (11)0.0029 (10)0.0198 (9)0.0029 (10)
C100.0637 (14)0.0678 (16)0.0725 (14)0.0020 (12)0.0277 (12)0.0034 (12)
C110.0651 (15)0.0760 (19)0.0883 (17)0.0139 (13)0.0245 (13)0.0030 (14)
C120.0605 (15)0.104 (2)0.0950 (19)0.0064 (15)0.0341 (14)0.0184 (18)
C130.0735 (17)0.096 (2)0.0910 (18)0.0119 (16)0.0463 (15)0.0045 (16)
C140.0676 (14)0.0706 (16)0.0701 (14)0.0031 (12)0.0295 (12)0.0013 (12)
C150.0672 (15)0.0748 (17)0.0653 (13)0.0016 (12)0.0260 (12)0.0026 (13)
C160.0704 (15)0.0718 (17)0.0636 (13)0.0042 (13)0.0247 (12)0.0046 (12)
C170.0618 (13)0.0655 (16)0.0549 (11)0.0025 (11)0.0205 (10)0.0004 (11)
C180.0694 (15)0.0720 (17)0.0718 (14)0.0069 (13)0.0263 (12)0.0009 (13)
C190.0709 (17)0.098 (2)0.0827 (17)0.0005 (15)0.0386 (14)0.0057 (16)
C200.0887 (19)0.084 (2)0.0778 (16)0.0136 (16)0.0385 (15)0.0062 (15)
C210.0885 (19)0.0666 (18)0.0847 (17)0.0033 (14)0.0341 (15)0.0113 (14)
C220.0734 (16)0.0769 (18)0.0740 (15)0.0100 (14)0.0319 (13)0.0078 (13)
Geometric parameters (Å, º) top
O1—C11.395 (3)C11—H110.9300
O1—C1i1.395 (3)C12—C131.360 (4)
C1—C21.363 (3)C12—H120.9300
C1—C61.382 (4)C13—C141.373 (3)
C2—C31.399 (3)C13—H130.9300
C2—H20.9300C14—H140.9300
C3—C41.405 (3)C15—C161.197 (3)
C3—C71.434 (3)C16—C171.440 (3)
C4—C51.392 (3)C17—C181.378 (3)
C4—C151.433 (3)C17—C221.380 (4)
C5—C61.376 (4)C18—C191.385 (4)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—C201.368 (4)
C7—C81.196 (3)C19—H190.9300
C8—C91.429 (3)C20—C211.360 (4)
C9—C141.383 (3)C20—H200.9300
C9—C101.389 (3)C21—C221.386 (4)
C10—C111.377 (3)C21—H210.9300
C10—H100.9300C22—H220.9300
C11—C121.376 (4)
C1—O1—C1i118.1 (3)C13—C12—C11120.1 (3)
C2—C1—C6121.3 (2)C13—C12—H12119.9
C2—C1—O1117.5 (2)C11—C12—H12119.9
C6—C1—O1121.1 (2)C12—C13—C14120.5 (3)
C1—C2—C3119.7 (2)C12—C13—H13119.7
C1—C2—H2120.2C14—C13—H13119.7
C3—C2—H2120.2C13—C14—C9120.4 (3)
C2—C3—C4120.0 (2)C13—C14—H14119.8
C2—C3—C7120.7 (2)C9—C14—H14119.8
C4—C3—C7119.4 (2)C16—C15—C4177.7 (3)
C5—C4—C3118.5 (2)C15—C16—C17177.0 (3)
C5—C4—C15119.9 (2)C18—C17—C22118.7 (2)
C3—C4—C15121.6 (2)C18—C17—C16122.3 (2)
C6—C5—C4121.1 (3)C22—C17—C16119.0 (2)
C6—C5—H5119.4C17—C18—C19120.3 (3)
C4—C5—H5119.4C17—C18—H18119.8
C5—C6—C1119.5 (2)C19—C18—H18119.8
C5—C6—H6120.3C20—C19—C18120.2 (3)
C1—C6—H6120.3C20—C19—H19119.9
C8—C7—C3177.1 (3)C18—C19—H19119.9
C7—C8—C9178.2 (3)C21—C20—C19120.2 (3)
C14—C9—C10118.8 (2)C21—C20—H20119.9
C14—C9—C8119.4 (2)C19—C20—H20119.9
C10—C9—C8121.9 (2)C20—C21—C22120.0 (3)
C11—C10—C9120.3 (2)C20—C21—H21120.0
C11—C10—H10119.9C22—C21—H21120.0
C9—C10—H10119.9C17—C22—C21120.6 (2)
C12—C11—C10119.9 (3)C17—C22—H22119.7
C12—C11—H11120.0C21—C22—H22119.7
C10—C11—H11120.0
C1i—O1—C1—C2142.0 (2)C8—C9—C10—C11178.5 (2)
C1i—O1—C1—C640.5 (2)C9—C10—C11—C120.2 (4)
C6—C1—C2—C30.9 (4)C10—C11—C12—C130.5 (4)
O1—C1—C2—C3178.40 (19)C11—C12—C13—C140.7 (4)
C1—C2—C3—C40.7 (3)C12—C13—C14—C90.0 (4)
C1—C2—C3—C7177.9 (2)C10—C9—C14—C130.8 (4)
C2—C3—C4—C50.4 (3)C8—C9—C14—C13178.7 (2)
C7—C3—C4—C5178.2 (2)C22—C17—C18—C190.9 (4)
C2—C3—C4—C15179.1 (2)C16—C17—C18—C19179.5 (2)
C7—C3—C4—C152.3 (3)C17—C18—C19—C200.2 (4)
C3—C4—C5—C60.2 (4)C18—C19—C20—C210.4 (4)
C15—C4—C5—C6179.3 (3)C19—C20—C21—C220.4 (4)
C4—C5—C6—C10.4 (5)C18—C17—C22—C211.0 (4)
C2—C1—C6—C50.7 (4)C16—C17—C22—C21179.4 (2)
O1—C1—C6—C5178.1 (3)C20—C21—C22—C170.3 (4)
C14—C9—C10—C110.9 (3)
Symmetry code: (i) x+1, y, z+1/2.
(III) top
Crystal data top
C47H32Z = 2
Mr = 596.73F(000) = 628
Triclinic, P1Dx = 1.187 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.323 (3) ÅCell parameters from 54 reflections
b = 14.575 (4) Åθ = 2.0–25.0°
c = 19.776 (4) ŵ = 0.07 mm1
α = 69.53 (3)°T = 173 K
β = 81.20 (4)°Needle, colorless
γ = 79.14 (4)°0.50 × 0.06 × 0.05 mm
V = 1669.3 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5860 independent reflections
Radiation source: normal-focus sealed tube3266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.0°, θmin = 1.1°
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
h = 77
Tmin = 0.924, Tmax = 0.997k = 1715
12148 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0491P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5860 reflectionsΔρmax = 0.20 e Å3
427 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (14)
Crystal data top
C47H32γ = 79.14 (4)°
Mr = 596.73V = 1669.3 (10) Å3
Triclinic, P1Z = 2
a = 6.323 (3) ÅMo Kα radiation
b = 14.575 (4) ŵ = 0.07 mm1
c = 19.776 (4) ÅT = 173 K
α = 69.53 (3)°0.50 × 0.06 × 0.05 mm
β = 81.20 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5860 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Blessing, 1995)
3266 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.997Rint = 0.048
12148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
5860 reflectionsΔρmin = 0.19 e Å3
427 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0457 (5)0.7671 (2)0.70667 (17)0.0372 (8)
C20.0915 (6)0.7211 (2)0.65219 (18)0.0495 (9)
H2A0.16360.66290.67820.074*
H2B0.04520.70120.62660.074*
H2C0.18520.76990.61710.074*
C30.2628 (5)0.8088 (3)0.7384 (2)0.0544 (10)
H3A0.35220.75580.76090.082*
H3B0.33720.86140.69960.082*
H3C0.23820.83580.77500.082*
C40.0834 (5)0.6863 (2)0.76476 (16)0.0334 (7)
C50.0058 (5)0.6542 (2)0.83755 (17)0.0421 (8)
H5A0.13100.68420.85290.051*
C60.1251 (6)0.5791 (2)0.88802 (18)0.0452 (9)
H6A0.06800.55830.93740.054*
C70.3250 (5)0.5339 (2)0.86818 (16)0.0365 (8)
C80.4056 (5)0.5647 (2)0.79428 (16)0.0325 (7)
C90.2852 (5)0.6411 (2)0.74483 (16)0.0333 (7)
H9A0.34290.66340.69560.040*
C100.4513 (6)0.4548 (3)0.91893 (17)0.0437 (9)
C110.5675 (6)0.3885 (3)0.95665 (17)0.0446 (9)
C120.7270 (6)0.3111 (2)0.99429 (16)0.0391 (8)
C130.9428 (6)0.3124 (2)0.96882 (17)0.0457 (9)
H13A0.98240.36600.92760.055*
C141.1023 (6)0.2384 (3)1.0014 (2)0.0558 (10)
H14A1.24990.24190.98350.067*
C151.0455 (7)0.1597 (3)1.0599 (2)0.0600 (11)
H15A1.15390.10751.08210.072*
C160.8329 (7)0.1563 (3)1.08630 (18)0.0589 (11)
H16A0.79490.10161.12680.071*
C170.6723 (6)0.2318 (3)1.05467 (17)0.0485 (9)
H17A0.52570.22931.07410.058*
C180.6045 (5)0.5131 (2)0.77096 (16)0.0350 (8)
C190.7627 (5)0.4637 (2)0.75351 (16)0.0370 (8)
C200.9517 (5)0.4035 (2)0.73393 (15)0.0327 (7)
C210.9460 (5)0.3554 (2)0.68436 (16)0.0373 (8)
H21A0.81580.36290.66330.045*
C221.1277 (5)0.2975 (2)0.66586 (16)0.0409 (8)
H22A1.12220.26530.63200.049*
C231.3182 (5)0.2855 (2)0.69609 (16)0.0406 (8)
H23A1.44380.24600.68270.049*
C241.3248 (5)0.3316 (2)0.74591 (17)0.0415 (8)
H24A1.45470.32260.76750.050*
C251.1434 (5)0.3907 (2)0.76449 (16)0.0401 (8)
H25A1.15000.42270.79840.048*
C260.0836 (5)0.8538 (2)0.66953 (16)0.0336 (7)
C270.1623 (5)0.8959 (2)0.71204 (15)0.0323 (7)
H27A0.14130.86780.76330.039*
C280.2708 (5)0.9779 (2)0.68199 (15)0.0303 (7)
C290.2980 (5)1.0220 (2)0.60597 (16)0.0348 (7)
C300.2235 (5)0.9786 (2)0.56352 (17)0.0429 (8)
H30A0.24481.00620.51220.052*
C310.1189 (5)0.8960 (2)0.59430 (17)0.0414 (8)
H31A0.07060.86770.56390.050*
C320.3652 (5)1.0140 (2)0.72833 (15)0.0334 (7)
C330.4540 (5)1.0385 (2)0.76692 (16)0.0353 (7)
C340.5688 (5)1.0676 (2)0.81134 (15)0.0325 (7)
C350.4803 (5)1.0693 (2)0.87957 (16)0.0409 (8)
H35A0.34151.05020.89780.049*
C360.5933 (6)1.0988 (3)0.92142 (17)0.0483 (9)
H36A0.53241.09870.96840.058*
C370.7926 (6)1.1282 (2)0.89541 (18)0.0479 (9)
H37A0.86841.14910.92400.057*
C380.8822 (5)1.1271 (2)0.82737 (17)0.0429 (8)
H38A1.02031.14710.80940.051*
C390.7728 (5)1.0972 (2)0.78537 (16)0.0378 (8)
H39A0.83591.09670.73870.045*
C400.4018 (5)1.1089 (2)0.57286 (16)0.0374 (8)
C410.4825 (5)1.1823 (2)0.54401 (16)0.0375 (8)
C420.5732 (5)1.2726 (2)0.51029 (16)0.0367 (8)
C430.7569 (6)1.2865 (3)0.53363 (17)0.0476 (9)
H43A0.82581.23530.57190.057*
C440.8403 (6)1.3746 (3)0.50135 (18)0.0534 (10)
H44A0.96571.38380.51790.064*
C450.7434 (6)1.4490 (3)0.44563 (18)0.0543 (10)
H45A0.80161.50930.42370.065*
C460.5609 (6)1.4359 (3)0.42161 (18)0.0505 (9)
H46A0.49311.48710.38320.061*
C470.4778 (5)1.3484 (2)0.45348 (17)0.0423 (8)
H47A0.35311.33950.43640.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (18)0.0292 (17)0.0526 (19)0.0038 (14)0.0072 (15)0.0128 (16)
C20.051 (2)0.042 (2)0.060 (2)0.0168 (17)0.0218 (19)0.0113 (18)
C30.031 (2)0.044 (2)0.080 (3)0.0051 (17)0.0034 (19)0.011 (2)
C40.0350 (19)0.0253 (16)0.0445 (18)0.0117 (14)0.0011 (15)0.0145 (15)
C50.038 (2)0.0385 (19)0.049 (2)0.0037 (16)0.0068 (16)0.0191 (17)
C60.056 (2)0.040 (2)0.0391 (19)0.0095 (18)0.0036 (17)0.0136 (17)
C70.043 (2)0.0319 (17)0.0361 (18)0.0084 (16)0.0028 (16)0.0116 (15)
C80.0355 (19)0.0256 (16)0.0379 (17)0.0066 (14)0.0036 (15)0.0112 (15)
C90.0365 (19)0.0316 (17)0.0341 (16)0.0105 (15)0.0001 (14)0.0121 (15)
C100.056 (2)0.043 (2)0.0345 (18)0.0101 (19)0.0043 (17)0.0139 (17)
C110.058 (2)0.040 (2)0.0350 (18)0.0120 (19)0.0092 (18)0.0077 (17)
C120.051 (2)0.0373 (19)0.0297 (16)0.0115 (17)0.0092 (16)0.0076 (15)
C130.055 (2)0.042 (2)0.0395 (19)0.0151 (19)0.0044 (18)0.0082 (17)
C140.055 (2)0.053 (2)0.061 (2)0.006 (2)0.017 (2)0.016 (2)
C150.074 (3)0.047 (2)0.061 (2)0.004 (2)0.033 (2)0.011 (2)
C160.089 (3)0.048 (2)0.039 (2)0.025 (2)0.026 (2)0.0020 (18)
C170.058 (2)0.056 (2)0.0344 (18)0.023 (2)0.0070 (17)0.0104 (18)
C180.039 (2)0.0283 (17)0.0365 (17)0.0093 (16)0.0045 (15)0.0063 (15)
C190.038 (2)0.0296 (17)0.0406 (18)0.0091 (16)0.0033 (16)0.0063 (16)
C200.0301 (18)0.0279 (16)0.0364 (17)0.0052 (14)0.0005 (14)0.0067 (15)
C210.0318 (19)0.0397 (19)0.0379 (17)0.0061 (15)0.0049 (15)0.0085 (16)
C220.045 (2)0.0385 (19)0.0406 (18)0.0072 (17)0.0030 (16)0.0144 (16)
C230.037 (2)0.0322 (18)0.0433 (19)0.0018 (15)0.0005 (16)0.0041 (16)
C240.0341 (19)0.043 (2)0.0457 (19)0.0079 (16)0.0077 (16)0.0093 (17)
C250.040 (2)0.0412 (19)0.0418 (18)0.0113 (16)0.0034 (16)0.0144 (16)
C260.0288 (18)0.0291 (17)0.0429 (18)0.0021 (14)0.0080 (15)0.0112 (15)
C270.0312 (17)0.0317 (17)0.0334 (16)0.0029 (14)0.0058 (14)0.0096 (15)
C280.0289 (17)0.0250 (16)0.0374 (17)0.0002 (13)0.0063 (14)0.0114 (14)
C290.0360 (18)0.0279 (17)0.0412 (18)0.0063 (14)0.0047 (15)0.0109 (15)
C300.055 (2)0.0390 (19)0.0354 (17)0.0118 (17)0.0079 (16)0.0089 (16)
C310.047 (2)0.0367 (19)0.047 (2)0.0087 (16)0.0109 (17)0.0176 (17)
C320.0360 (18)0.0289 (17)0.0338 (16)0.0068 (14)0.0018 (15)0.0097 (15)
C330.0415 (19)0.0294 (17)0.0349 (17)0.0080 (15)0.0035 (15)0.0091 (15)
C340.0375 (19)0.0276 (16)0.0321 (16)0.0049 (14)0.0074 (14)0.0078 (14)
C350.0382 (19)0.047 (2)0.0391 (18)0.0085 (16)0.0025 (15)0.0153 (17)
C360.054 (2)0.059 (2)0.0357 (18)0.0078 (19)0.0056 (17)0.0194 (18)
C370.053 (2)0.051 (2)0.048 (2)0.0102 (18)0.0152 (18)0.0211 (18)
C380.036 (2)0.046 (2)0.047 (2)0.0089 (16)0.0111 (16)0.0107 (17)
C390.0371 (19)0.0387 (19)0.0363 (17)0.0065 (15)0.0075 (15)0.0085 (16)
C400.0402 (19)0.0360 (19)0.0371 (17)0.0044 (16)0.0034 (15)0.0139 (16)
C410.046 (2)0.0349 (19)0.0325 (16)0.0100 (17)0.0013 (15)0.0121 (15)
C420.040 (2)0.0398 (19)0.0337 (16)0.0114 (16)0.0043 (15)0.0161 (16)
C430.055 (2)0.053 (2)0.0354 (18)0.0191 (19)0.0070 (17)0.0088 (17)
C440.059 (2)0.065 (3)0.047 (2)0.033 (2)0.0015 (19)0.024 (2)
C450.079 (3)0.044 (2)0.042 (2)0.028 (2)0.009 (2)0.0131 (18)
C460.063 (2)0.040 (2)0.0409 (19)0.0085 (19)0.0047 (18)0.0031 (17)
C470.044 (2)0.042 (2)0.0427 (18)0.0098 (17)0.0035 (16)0.0137 (17)
Geometric parameters (Å, º) top
C1—C31.528 (4)C35—C361.388 (4)
C1—C41.534 (4)C36—C371.373 (5)
C1—C261.536 (4)C37—C381.382 (4)
C1—C21.539 (4)C38—C391.379 (4)
C4—C91.388 (4)C40—C411.192 (4)
C4—C51.390 (4)C41—C421.435 (4)
C5—C61.385 (4)C42—C431.386 (4)
C6—C71.379 (4)C42—C471.391 (4)
C7—C81.413 (4)C43—C441.383 (4)
C7—C101.436 (5)C44—C451.373 (5)
C8—C91.387 (4)C45—C461.381 (5)
C8—C181.438 (4)C46—C471.373 (4)
C10—C111.194 (4)C3—H3B0.98
C11—C121.434 (5)C25—H25A0.95
C12—C131.382 (4)C3—H3C0.98
C12—C171.393 (4)C27—H27A0.95
C13—C141.378 (5)C5—H5A0.95
C14—C151.373 (5)C30—H30A0.95
C15—C161.369 (5)C6—H6A0.95
C16—C171.387 (5)C31—H31A0.95
C18—C191.197 (4)C9—H9A0.95
C19—C201.432 (4)C35—H35A0.95
C20—C251.389 (4)C13—H13A0.95
C20—C211.398 (4)C36—H36A0.95
C21—C221.374 (4)C14—H14A0.95
C22—C231.381 (4)C37—H37A0.95
C23—C241.381 (4)C15—H15A0.95
C24—C251.383 (4)C38—H38A0.95
C26—C271.391 (4)C16—H16A0.95
C26—C311.397 (4)C39—H39A0.95
C27—C281.392 (4)C17—H17A0.95
C28—C291.411 (4)C43—H43A0.95
C28—C321.448 (4)C21—H21A0.95
C29—C301.390 (4)C44—H44A0.95
C29—C401.436 (4)C22—H22A0.95
C30—C311.387 (4)C45—H45A0.95
C32—C331.193 (4)C23—H23A0.95
C33—C341.432 (4)C46—H46A0.95
C34—C351.386 (4)C24—H24A0.95
C34—C391.402 (4)C47—H47A0.95
C3—C1—C4112.4 (3)C44—C45—C46119.7 (3)
C3—C1—C26107.3 (3)C47—C46—C45119.8 (3)
C4—C1—C26109.6 (2)C46—C47—C42121.1 (3)
C3—C1—C2107.9 (3)C5—C6—H6A119.28
C4—C1—C2108.1 (2)C7—C6—H6A119.26
C26—C1—C2111.6 (3)C4—C9—H9A118.82
C9—C4—C5117.6 (3)C8—C9—H9A118.83
C9—C4—C1119.6 (3)C12—C13—H13A118.99
C5—C4—C1122.8 (3)C14—C13—H13A119.02
C6—C5—C4121.0 (3)C13—C14—H14A120.30
C7—C6—C5121.4 (3)C15—C14—H14A120.46
C6—C7—C8118.4 (3)C14—C15—H15A119.95
C6—C7—C10122.9 (3)C16—C15—H15A119.98
C8—C7—C10118.7 (3)C15—C16—H16A119.57
C9—C8—C7119.1 (3)C17—C16—H16A119.58
C9—C8—C18121.1 (3)C12—C17—H17A120.20
C7—C8—C18119.7 (3)C16—C17—H17A120.08
C8—C9—C4122.4 (3)C1—C2—H2A109.43
C11—C10—C7174.9 (4)C20—C21—H21A119.78
C10—C11—C12172.8 (4)C1—C2—H2B109.51
C13—C12—C17118.1 (3)C22—C21—H21A119.84
C13—C12—C11119.4 (3)C1—C2—H2C109.43
C17—C12—C11122.4 (3)C21—C22—H22A119.70
C14—C13—C12122.0 (3)H2A—C2—H2B109.46
C15—C14—C13119.3 (4)C23—C22—H22A119.66
C16—C15—C14120.0 (4)H2A—C2—H2C109.52
C15—C16—C17120.9 (3)C22—C23—H23A120.30
C16—C17—C12119.7 (4)H2B—C2—H2C109.48
C19—C18—C8175.0 (3)C24—C23—H23A120.24
C18—C19—C20179.0 (3)C1—C3—H3A109.41
C25—C20—C21118.7 (3)C23—C24—H24A119.76
C25—C20—C19120.7 (3)C1—C3—H3B109.46
C21—C20—C19120.6 (3)C25—C24—H24A119.84
C22—C21—C20120.4 (3)C1—C3—H3C109.47
C21—C22—C23120.6 (3)C20—C25—H25A119.84
C22—C23—C24119.5 (3)H3A—C3—H3B109.45
C23—C24—C25120.4 (3)C24—C25—H25A119.78
C24—C25—C20120.4 (3)H3A—C3—H3C109.50
C27—C26—C31117.6 (3)C26—C27—H27A118.89
C27—C26—C1119.1 (3)H3B—C3—H3C109.54
C31—C26—C1123.2 (3)C28—C27—H27A118.87
C26—C27—C28122.2 (3)C4—C5—H5A119.50
C27—C28—C29119.5 (3)C29—C30—H30A119.22
C27—C28—C32120.1 (3)C6—C5—H5A119.53
C29—C28—C32120.3 (3)C31—C30—H30A119.25
C30—C29—C28118.2 (3)C26—C31—H31A119.54
C30—C29—C40120.5 (3)C38—C39—H39A119.85
C28—C29—C40121.3 (3)C30—C31—H31A119.64
C31—C30—C29121.5 (3)C42—C43—H43A119.87
C30—C31—C26120.8 (3)C34—C35—H35A119.85
C33—C32—C28175.6 (3)C44—C43—H43A119.91
C32—C33—C34177.6 (3)C36—C35—H35A119.79
C35—C34—C39118.7 (3)C43—C44—H44A119.75
C35—C34—C33121.3 (3)C35—C36—H36A119.75
C39—C34—C33120.0 (3)C45—C44—H44A119.68
C34—C35—C36120.4 (3)C37—C36—H36A119.71
C37—C36—C35120.5 (3)C44—C45—H45A120.12
C36—C37—C38119.7 (3)C36—C37—H37A120.21
C39—C38—C37120.5 (3)C46—C45—H45A120.10
C38—C39—C34120.2 (3)C38—C37—H37A120.17
C41—C40—C29177.9 (3)C45—C46—H46A120.15
C40—C41—C42178.0 (4)C37—C38—H38A119.73
C43—C42—C47118.5 (3)C47—C46—H46A120.05
C43—C42—C41120.9 (3)C39—C38—H38A119.73
C47—C42—C41120.6 (3)C42—C47—H47A119.43
C44—C43—C42120.2 (3)C34—C39—H39A119.95
C45—C44—C43120.6 (3)C46—C47—H47A119.46
C3—C1—C4—C9179.7 (3)C3—C1—C26—C2770.0 (3)
C26—C1—C4—C960.5 (3)C4—C1—C26—C2752.3 (4)
C2—C1—C4—C961.3 (3)C2—C1—C26—C27172.0 (3)
C3—C1—C4—C51.3 (4)C3—C1—C26—C31107.1 (3)
C26—C1—C4—C5120.5 (3)C4—C1—C26—C31130.6 (3)
C2—C1—C4—C5117.6 (3)C2—C1—C26—C3110.9 (4)
C9—C4—C5—C60.7 (4)C31—C26—C27—C280.7 (4)
C1—C4—C5—C6178.3 (3)C1—C26—C27—C28176.5 (3)
C4—C5—C6—C70.3 (5)C26—C27—C28—C291.7 (4)
C5—C6—C7—C81.0 (4)C26—C27—C28—C32174.9 (3)
C5—C6—C7—C10179.0 (3)C27—C28—C29—C303.0 (4)
C6—C7—C8—C92.1 (4)C32—C28—C29—C30173.6 (3)
C10—C7—C8—C9179.9 (3)C27—C28—C29—C40177.7 (3)
C6—C7—C8—C18174.5 (3)C32—C28—C29—C405.7 (5)
C10—C7—C8—C183.5 (4)C28—C29—C30—C312.0 (5)
C7—C8—C9—C42.6 (4)C40—C29—C30—C31178.7 (3)
C18—C8—C9—C4174.0 (3)C29—C30—C31—C260.4 (5)
C5—C4—C9—C81.9 (4)C27—C26—C31—C301.7 (5)
C1—C4—C9—C8177.2 (2)C1—C26—C31—C30175.3 (3)
C17—C12—C13—C140.2 (5)C39—C34—C35—C360.7 (5)
C11—C12—C13—C14177.9 (3)C33—C34—C35—C36179.3 (3)
C12—C13—C14—C151.5 (5)C34—C35—C36—C371.1 (5)
C13—C14—C15—C161.4 (5)C35—C36—C37—C380.8 (5)
C14—C15—C16—C170.0 (6)C36—C37—C38—C390.3 (5)
C15—C16—C17—C121.3 (5)C37—C38—C39—C340.1 (5)
C13—C12—C17—C161.2 (5)C35—C34—C39—C380.1 (4)
C11—C12—C17—C16176.4 (3)C33—C34—C39—C38178.8 (3)
C25—C20—C21—C220.6 (4)C47—C42—C43—C440.9 (5)
C19—C20—C21—C22179.8 (3)C41—C42—C43—C44178.9 (3)
C20—C21—C22—C230.2 (5)C42—C43—C44—C450.4 (5)
C21—C22—C23—C240.7 (5)C43—C44—C45—C460.1 (5)
C22—C23—C24—C251.2 (4)C44—C45—C46—C470.1 (5)
C23—C24—C25—C200.8 (5)C45—C46—C47—C420.6 (5)
C21—C20—C25—C240.1 (4)C43—C42—C47—C461.0 (5)
C19—C20—C25—C24179.3 (3)C41—C42—C47—C46178.9 (3)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC44H26C44H26OC47H32
Mr554.65570.65596.73
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/cTriclinic, P1
Temperature (K)300300173
a, b, c (Å)13.299 (7), 5.229 (3), 21.196 (11)35.483 (10), 5.8875 (15), 15.919 (5)6.323 (3), 14.575 (4), 19.776 (4)
α, β, γ (°)90, 92.540 (15), 9090, 109.932 (6), 9069.53 (3), 81.20 (4), 79.14 (4)
V3)1472.4 (14)3126.4 (14)1669.3 (10)
Z242
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.070.070.07
Crystal size (mm)0.30 × 0.15 × 0.100.30 × 0.20 × 0.200.50 × 0.06 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Rigaku Mercury CCD
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Multi-scan
(Jacobson, 1998)
Empirical (using intensity measurements)
(SADABS; Blessing, 1995)
Tmin, Tmax0.987, 0.9930.983, 0.9860.924, 0.997
No. of measured, independent and
observed reflections
14417, 3021, 1664 [I > 2σ(I)]15387, 3203, 1964 [I > 2.00σ(I)]12148, 5860, 3266 [I > 2σ(I)]
Rint0.0910.0520.048
(sin θ/λ)max1)0.6270.6280.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.182, 1.15 0.065, 0.184, 1.15 0.064, 0.150, 1.02
No. of reflections302132025860
No. of parameters200204427
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.180.13, 0.130.20, 0.19

Computer programs: CrystalClear (Rigaku, 1998-2001), SMART (Bruker, 1998), CrystalClear, SMART and SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), SIR92 (Altomare et al., 1994), SHELXTL (Bruker. 1998).

Selected geometric parameters (Å, º) for (I) top
C1—C1i1.486 (6)C8—C91.430 (4)
C3—C71.430 (4)C15—C161.198 (4)
C4—C151.435 (4)C16—C171.413 (4)
C7—C81.207 (4)
C2—C1—C6117.1 (3)C7—C8—C9179.5 (4)
C2—C1—C1i121.4 (4)C10—C9—C14118.8 (3)
C6—C1—C1i121.6 (3)C10—C9—C8122.3 (3)
C2—C3—C4118.6 (3)C14—C9—C8118.9 (3)
C2—C3—C7120.2 (3)C16—C15—C4175.3 (4)
C4—C3—C7121.1 (3)C15—C16—C17177.4 (4)
C5—C4—C3118.9 (3)C18—C17—C22118.6 (3)
C5—C4—C15118.8 (3)C18—C17—C16121.1 (3)
C3—C4—C15122.3 (3)C22—C17—C16120.2 (3)
C8—C7—C3178.3 (3)
Symmetry code: (i) x, y+1, z+2.
Selected geometric parameters (Å, º) for (II) top
O1—C11.395 (3)C8—C91.429 (3)
C3—C71.434 (3)C15—C161.197 (3)
C4—C151.433 (3)C16—C171.440 (3)
C7—C81.196 (3)
C1—O1—C1i118.1 (3)C5—C4—C15119.9 (2)
C2—C1—C6121.3 (2)C3—C4—C15121.6 (2)
C2—C1—O1117.5 (2)C14—C9—C10118.8 (2)
C6—C1—O1121.1 (2)C14—C9—C8119.4 (2)
C2—C3—C4120.0 (2)C10—C9—C8121.9 (2)
C2—C3—C7120.7 (2)C18—C17—C22118.7 (2)
C4—C3—C7119.4 (2)C18—C17—C16122.3 (2)
C5—C4—C3118.5 (2)C22—C17—C16119.0 (2)
C1i—O1—C1—C2142.0 (2)
Symmetry code: (i) x+1, y, z+1/2.
Selected geometric parameters (Å, º) for (III) top
C1—C31.528 (4)C18—C191.197 (4)
C1—C41.534 (4)C19—C201.432 (4)
C1—C261.536 (4)C28—C321.448 (4)
C1—C21.539 (4)C29—C401.436 (4)
C7—C101.436 (5)C32—C331.193 (4)
C8—C181.438 (4)C33—C341.432 (4)
C10—C111.194 (4)C40—C411.192 (4)
C11—C121.434 (5)C41—C421.435 (4)
C3—C1—C4112.4 (3)C10—C11—C12172.8 (4)
C3—C1—C26107.3 (3)C19—C18—C8175.0 (3)
C4—C1—C26109.6 (2)C18—C19—C20179.0 (3)
C3—C1—C2107.9 (3)C33—C32—C28175.6 (3)
C4—C1—C2108.1 (2)C32—C33—C34177.6 (3)
C26—C1—C2111.6 (3)C41—C40—C29177.9 (3)
C11—C10—C7174.9 (4)C40—C41—C42178.0 (4)
Selected perpendicular π-stacking distances (Å) and dihedral angles (°). The distances are measured from the centroid of the first ring to the least-squares plane of the second ring. top
Ring 1Ring 2Distance 1–2Distance 2–1Dihedral angle
(I)C1–C6C9–C143.4513.4292.1 (2)
(I)C17–C22C9–C142.6303.4169.7 (2)
(II)C1–C6C1–C63.5193.5190
(II)C9–C14C17–C223.8483.71415.5 (2)
Trans-alkyne distances (Å) in the title BODA molecules top
C11···C19 (C8···C16)C33···C41 (C8···C16)
(I)4.262 (5)4.262 (5)
(II)4.061 (3)4.061 (3)
(III)3.844 (4)4.159 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds