Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of 9-(4-vinyl­benzyl)­adenine, C14H13N5, and 1-(4-vinyl­benzyl)­uracil, C13H12N2O2, are composed of zigzag ribbon-like structures that are stabilized by conventional (N—H...N-type) hydrogen bonds for the former and conventional (N—H...O-type) and non-conventional (C—H...O-type) hydrogen bonds for the latter; the hydrogen-bonding patterns are represented by graph-sets R^2_2(9) and R^2_2(8), respectively. The adenine and uracil moieties in these alkyl­ated derivatives are planar and are inclined at angles of 84.44 (4) and 79.07 (7)°, respectively, with respect to the phenyl rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102007515/fr1366sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007515/fr1366Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007515/fr1366IIsup3.hkl
Contains datablock II

CCDC references: 192965; 192966

Comment top

Our current research efforts are focused towards developing metallated nucleobase polymeric resins possessing catalytic activity towards phosphate ester hydrolysis (Srivatsan & Verma, 2000, 2001; Madhavaiah et al., 2002). These resins are generally prepared by AIBN-initiated free-radical polymerization of functional monomers such as 9-allyladenine followed by metallation by a copper salt. We have performed extensive kinetic analyses of phosphate ester hydrolysis using copper-metallated nucleobase resins as catalysts and have found significant rate acceleration of hydrolytic reactions over the uncatalyzed rate, using model substrates. We report the preparation of two new reactive nucleobase monomers, 9-(4-vinylbenzyl)adenine, (I), and 1-(4-vinylbenzyl)uracil, (II), for incorporation in polymeric resins to design multiple usage catalysts for phosphate ester hydrolysis. X-Ray crystallographic studies were performed to unequivocally establish the site of alkylation. The structures of (I) and (II) are presented in this paper.

Compound (I), the vinylated adenine monomer wherein a vinylbenzyl group is substituted atthe N9 position of adenine (Fig. 1), utilizes both Watson–Crick and Hoogsteen hydrogen-bonding faces (Saenger, 1984), with the participation of two exocyclic amino H atoms, with inequivalent H···N distances of 2.11 and 2.20 Å, and almost linear N—H···N angles, resulting in a zigzag chain structure that is stabilized by conventional hydrogen bonds (Fig. 2). The hydrogen-bonding pattern in the polymeric motif can be best described by graph-set R22(9) (Etter et al., 1990). The molecular dimensions in (I) are normal and lie within expected values for corresponding bond distances and angles (Orpen et al., 1994). The adenine moiety is almost planar [maximum deviation of 0.0260 (10) Å for N19] and is inclined at an angle 84.44 (4)° to the mean plane of the phenyl ring. The vinyl group is almost coplanar with the phenyl ring; the mean planes of the two groups are inclined at an angle of 6.8 (3)° with respect to one another.

In compound (II), wherein alkylation has taken place at the expected N1 position of uracil (Fig. 3), the H atom attached to C5 in the pyrimidine ring acts as a donor to form a weak hydrogen bond with a carbonyl (O1) acceptor. This O atom behaves as a double acceptor forming a H-bond with an N—H donor as well, thus aiding in the formation of an extended ribbon-like structure that derives stability both from conventional and non-conventional hydrogen bonds (Fig. 4). Details of hydrogen-bonding geometry are given in Table 4. The hydrogen-bonding pattern in the polymeric motif of (II) can also be described by graph-set R22(8) (Etter et al., 1990). A similar structure has been reported for uracil (Stewart & Jensen, 1967), based on a similar hydrogen-bonding pattern. The molecular dimensions in (II) are also normal and lie within expected ranges. The uracil moiety in (II) is essentially planar [maximum deviation of 0.0085 (12) Å] and is oriented at an angle of 79.07 (7)° with respect to the phenyl ring. However, the vinyl group in (II) is not coplanar with the phenyl ring; the mean planes of the two groups are inclined at an angle of 15.4 (3)° with respect to one another.

The formation and co-operativity of hydrogen bonds dictate the structural stability of biological macromolecules such as nucleic acids and proteins (Saenger, 1984). These interactions are responsible for ensuring precise biomolecular recognition and are utilized extensively for stabilization of protein and ribonucleic acid folding events (Rose & Wolfenden, 1993; Moore, 1999). Recently, non-conventional hydrogen-bonding interactions have received significant recognition owing to their occurrence and contribution to the overall stability of biological systems (Wahl & Sundaralingam, 1997; Desiraju & Steiner, 1999). The two reactive nucleobase monomers reported in this paper display both conventional and non-conventional hydrogen bonds in their respective crystal structures, and these interactions have been invoked to stabilize an extended array of modified nucleobases. We intend to harness observed hydrogen-bonding interactions in (I) and (II) to engineer specificity in our polymeric constructs for enhancing substrate–catalyst recognition.

Experimental top

Compounds (I) and (II) were prepared by alkylation of adenine and uracil with 4-vinylbenzyl chloride, using anhydrous carbonate in dimethyl sulfoxide. These analogs were thoroughly characterized by usual spectroscopic techniques (Srivatsan & Verma, 2002). Compound (I) was recrystallized from methanol/chloroform (1:1), while (II) was recrystallized from methanol. Details of the syntheses and characterization of these derivatives will be reported elsewhere.

Refinement top

In (I) and (II), most of the H atoms were visible from difference Fourier syntheses and all were included in the refinements at geometrically idealized positions, with C—H distances in the range 0.95–0.99 Å and N—H distances of 0.88 Å, utilizing riding models; H atoms attached to N19 in (I) were allowed to refine. H atoms were given Uiso values of 1.2 times the equivalent isotropic displacement parameters of the atoms to which they were bonded. The absolute structures could not be determined in this analysis.

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I), with displacement ellipsoids plotted at the 50% probability level.
[Figure 2] Fig. 2. Stereoview of the unit cell of (I) showing the hydrogen-bonded polymeric chains. H atoms attached to C atoms have been omitted for clarity.
[Figure 3] Fig. 3. ORTEPII (Johnson, 1976) drawing of (II), with displacement ellipsoids plotted at the 50% probability level.
[Figure 4] Fig. 4. Stereoview of the unit cell of (II) showing the hydrogen-bonding pattern. H atoms not involved in hydrogen bonds have been omitted for clarity.
(I) 9-(4-vinylbenzyl)adenine top
Crystal data top
C14H13N5Dx = 1.340 Mg m3
Mr = 251.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9411 reflections
a = 5.2885 (1) Åθ = 1.0–30.5°
b = 8.1643 (2) ŵ = 0.09 mm1
c = 28.8446 (5) ÅT = 170 K
V = 1245.42 (4) Å3Block, colourless
Z = 40.25 × 0.22 × 0.20 mm
F(000) = 528
Data collection top
Nonius KappaCCD
diffractometer
2201 independent reflections
Radiation source: fine-focus sealed tube1988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and ϕ scansθmax = 30.5°, θmin = 3.7°
Absorption correction: multi-scan
(SORTAV: Blessing, 1995, 1997)
h = 67
Tmin = 0.979, Tmax = 0.983k = 1111
9411 measured reflectionsl = 4041
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0774P)2 + 0.0463P]
where P = (Fo2 + 2Fc2)/3
2201 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H13N5V = 1245.42 (4) Å3
Mr = 251.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.2885 (1) ŵ = 0.09 mm1
b = 8.1643 (2) ÅT = 170 K
c = 28.8446 (5) Å0.25 × 0.22 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
2201 independent reflections
Absorption correction: multi-scan
(SORTAV: Blessing, 1995, 1997)
1988 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.052
9411 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2201 reflectionsΔρmin = 0.22 e Å3
178 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7308 (3)0.35469 (15)0.22489 (4)0.0294 (3)
C20.5350 (3)0.39463 (18)0.19748 (5)0.0317 (3)
H20.49120.50750.19730.038*
N30.3936 (3)0.29980 (16)0.17058 (4)0.0321 (3)
C40.4712 (3)0.14274 (17)0.17367 (5)0.0266 (3)
C50.6706 (3)0.08190 (17)0.20015 (4)0.0254 (3)
C60.8046 (3)0.19602 (17)0.22750 (4)0.0260 (3)
N70.6933 (3)0.08633 (15)0.19380 (4)0.0286 (3)
C80.5115 (3)0.12184 (18)0.16470 (5)0.0298 (3)
H80.48020.22990.15390.036*
N90.3706 (3)0.00982 (15)0.15116 (4)0.0293 (3)
C100.1710 (3)0.0130 (2)0.11618 (5)0.0320 (3)
H10A0.06790.11310.12050.038*
H10B0.05900.08280.12070.038*
C110.2737 (3)0.01014 (18)0.06718 (5)0.0263 (3)
C120.4913 (3)0.0964 (2)0.05489 (5)0.0303 (3)
H120.58300.15500.07790.036*
C130.1441 (3)0.0759 (2)0.03292 (5)0.0305 (3)
H130.00220.13730.04090.037*
C140.5745 (3)0.0972 (2)0.00921 (5)0.0313 (3)
H140.72410.15550.00150.038*
C150.2262 (3)0.0730 (2)0.01278 (5)0.0321 (3)
H150.13380.13110.03580.038*
C160.4433 (3)0.01417 (18)0.02551 (5)0.0286 (3)
C170.5366 (3)0.0235 (2)0.07373 (5)0.0361 (4)
H170.69450.07670.07810.043*
C180.4268 (5)0.0329 (3)0.11093 (6)0.0618 (6)
H18A0.26850.08720.10860.074*
H18B0.50520.01960.14030.074*
N190.9936 (3)0.15772 (16)0.25591 (5)0.0318 (3)
H19A1.091 (4)0.245 (2)0.2703 (7)0.038*
H19B1.058 (4)0.048 (3)0.2561 (7)0.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0368 (7)0.0221 (5)0.0292 (6)0.0017 (5)0.0005 (5)0.0010 (4)
C20.0400 (8)0.0242 (6)0.0309 (7)0.0046 (6)0.0015 (6)0.0028 (5)
N30.0373 (7)0.0287 (6)0.0303 (6)0.0053 (6)0.0005 (5)0.0024 (5)
C40.0303 (7)0.0281 (6)0.0215 (5)0.0013 (6)0.0026 (5)0.0008 (5)
C50.0309 (7)0.0229 (6)0.0222 (5)0.0003 (6)0.0020 (5)0.0015 (5)
C60.0314 (7)0.0238 (6)0.0227 (6)0.0010 (6)0.0030 (5)0.0022 (5)
N70.0353 (6)0.0228 (5)0.0276 (5)0.0004 (5)0.0001 (5)0.0007 (4)
C80.0370 (8)0.0254 (6)0.0271 (6)0.0017 (6)0.0010 (6)0.0005 (5)
N90.0324 (6)0.0301 (6)0.0255 (5)0.0001 (6)0.0015 (5)0.0008 (5)
C100.0262 (6)0.0421 (8)0.0279 (6)0.0024 (7)0.0009 (5)0.0003 (6)
C110.0243 (6)0.0278 (6)0.0268 (6)0.0008 (6)0.0011 (5)0.0013 (5)
C120.0262 (6)0.0351 (7)0.0296 (6)0.0051 (6)0.0030 (5)0.0009 (6)
C130.0269 (7)0.0314 (7)0.0331 (7)0.0037 (6)0.0012 (6)0.0013 (6)
C140.0257 (7)0.0345 (7)0.0336 (7)0.0030 (6)0.0007 (5)0.0018 (6)
C150.0323 (7)0.0333 (7)0.0307 (7)0.0020 (7)0.0042 (6)0.0048 (6)
C160.0298 (7)0.0283 (7)0.0277 (6)0.0041 (6)0.0002 (5)0.0011 (5)
C170.0379 (8)0.0387 (8)0.0318 (7)0.0019 (7)0.0044 (6)0.0009 (6)
C180.0686 (14)0.0886 (17)0.0283 (7)0.0208 (14)0.0002 (8)0.0012 (9)
N190.0392 (7)0.0222 (5)0.0340 (6)0.0012 (6)0.0083 (6)0.0006 (5)
Geometric parameters (Å, º) top
N1—C21.343 (2)C11—C131.393 (2)
N1—C61.3550 (17)C11—C121.395 (2)
C2—N31.327 (2)C12—C141.389 (2)
C2—H20.9500C12—H120.9500
N3—C41.3494 (18)C13—C151.388 (2)
C4—N91.3720 (19)C13—H130.9500
C4—C51.393 (2)C14—C161.394 (2)
C5—N71.3909 (18)C14—H140.9500
C5—C61.412 (2)C15—C161.400 (2)
C6—N191.330 (2)C15—H150.9500
N7—C81.309 (2)C16—C171.4777 (19)
C8—N91.3648 (19)C17—C181.304 (3)
C8—H80.9500C17—H170.9500
N9—C101.4608 (19)C18—H18A0.9500
C10—C111.5144 (19)C18—H18B0.9500
C10—H10A0.9900N19—H19A0.97 (2)
C10—H10B0.9900N19—H19B0.96 (2)
C2—N1—C6119.13 (13)C13—C11—C12118.71 (13)
N3—C2—N1129.58 (14)C13—C11—C10119.57 (13)
N3—C2—H2115.2C12—C11—C10121.68 (13)
N1—C2—H2115.2C14—C12—C11120.28 (14)
C2—N3—C4110.13 (13)C14—C12—H12119.9
N3—C4—N9127.04 (14)C11—C12—H12119.9
N3—C4—C5127.25 (14)C15—C13—C11120.74 (14)
N9—C4—C5105.71 (12)C15—C13—H13119.6
N7—C5—C4110.20 (13)C11—C13—H13119.6
N7—C5—C6133.00 (14)C12—C14—C16121.45 (14)
C4—C5—C6116.80 (13)C12—C14—H14119.3
N19—C6—N1118.39 (13)C16—C14—H14119.3
N19—C6—C5124.51 (13)C13—C15—C16120.96 (14)
N1—C6—C5117.09 (13)C13—C15—H15119.5
C8—N7—C5103.86 (13)C16—C15—H15119.5
N7—C8—N9114.21 (13)C14—C16—C15117.84 (13)
N7—C8—H8122.9C14—C16—C17119.00 (14)
N9—C8—H8122.9C15—C16—C17123.16 (14)
C8—N9—C4106.02 (12)C18—C17—C16127.42 (18)
C8—N9—C10127.31 (13)C18—C17—H17116.3
C4—N9—C10126.38 (13)C16—C17—H17116.3
N9—C10—C11112.66 (12)C17—C18—H18A120.0
N9—C10—H10A109.1C17—C18—H18B120.0
C11—C10—H10A109.1H18A—C18—H18B120.0
N9—C10—H10B109.1C6—N19—H19A119.3 (12)
C11—C10—H10B109.1C6—N19—H19B119.4 (12)
H10A—C10—H10B107.8H19A—N19—H19B119.6 (17)
C6—N1—C2—N30.6 (2)C5—C4—N9—C80.20 (16)
N1—C2—N3—C40.3 (2)N3—C4—N9—C105.4 (2)
C2—N3—C4—N9179.68 (14)C5—C4—N9—C10174.36 (13)
C2—N3—C4—C50.7 (2)C8—N9—C10—C1176.27 (19)
N3—C4—C5—N7179.37 (14)C4—N9—C10—C1196.67 (17)
N9—C4—C5—N70.34 (16)N9—C10—C11—C13143.69 (14)
N3—C4—C5—C61.2 (2)N9—C10—C11—C1238.5 (2)
N9—C4—C5—C6179.11 (12)C13—C11—C12—C140.6 (2)
C2—N1—C6—N19177.91 (14)C10—C11—C12—C14177.18 (14)
C2—N1—C6—C51.0 (2)C12—C11—C13—C151.4 (2)
N7—C5—C6—N191.7 (3)C10—C11—C13—C15176.39 (15)
C4—C5—C6—N19177.58 (14)C11—C12—C14—C160.7 (2)
N7—C5—C6—N1179.45 (14)C11—C13—C15—C161.0 (2)
C4—C5—C6—N11.25 (19)C12—C14—C16—C151.2 (2)
C4—C5—N7—C80.34 (16)C12—C14—C16—C17178.14 (15)
C6—C5—N7—C8178.99 (16)C13—C15—C16—C140.3 (2)
C5—N7—C8—N90.21 (17)C13—C15—C16—C17178.96 (15)
N7—C8—N9—C40.01 (18)C14—C16—C17—C18173.2 (2)
N7—C8—N9—C10174.08 (13)C15—C16—C17—C186.1 (3)
N3—C4—N9—C8179.51 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···N7i0.97 (2)2.07 (2)3.0351 (19)174 (2)
N19—H19B···N1ii0.96 (2)2.01 (2)2.9242 (19)159 (2)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
(II) 1-(4-vinylbenzyl)uracil top
Crystal data top
C13H12N2O2Dx = 1.395 Mg m3
Mr = 228.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6507 reflections
a = 5.9603 (2) Åθ = 1.0–30.6°
b = 7.0132 (2) ŵ = 0.10 mm1
c = 25.9571 (9) ÅT = 170 K
V = 1085.03 (6) Å3Prism, colourless
Z = 40.18 × 0.15 × 0.14 mm
F(000) = 480
Data collection top
Nonius KappaCCD
diffractometer
1901 independent reflections
Radiation source: fine-focus sealed tube1525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ω and ϕ scansθmax = 30.6°, θmin = 3.7°
Absorption correction: multi-scan
(SORTAV: Blessing, 1995, 1997)
h = 88
Tmin = 0.983, Tmax = 0.986k = 510
6507 measured reflectionsl = 3537
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.3792P]
where P = (Fo2 + 2Fc2)/3
1901 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H12N2O2V = 1085.03 (6) Å3
Mr = 228.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9603 (2) ŵ = 0.10 mm1
b = 7.0132 (2) ÅT = 170 K
c = 25.9571 (9) Å0.18 × 0.15 × 0.14 mm
Data collection top
Nonius KappaCCD
diffractometer
1901 independent reflections
Absorption correction: multi-scan
(SORTAV: Blessing, 1995, 1997)
1525 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.986Rint = 0.098
6507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
1901 reflectionsΔρmin = 0.32 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0003 (3)0.3922 (3)0.24879 (7)0.0292 (4)
O20.5017 (3)0.7921 (2)0.32375 (6)0.0282 (4)
N10.5612 (3)0.4711 (3)0.33265 (7)0.0223 (4)
C20.4449 (4)0.6285 (3)0.31491 (8)0.0221 (5)
N30.2548 (3)0.5856 (3)0.28640 (7)0.0225 (4)
H30.17660.68280.27470.027*
C40.1757 (4)0.4059 (4)0.27443 (8)0.0218 (5)
C50.3071 (4)0.2493 (4)0.29408 (8)0.0239 (5)
H50.26440.12120.28740.029*
C60.4905 (4)0.2884 (3)0.32191 (8)0.0242 (5)
H60.57620.18490.33490.029*
C70.7642 (4)0.5008 (4)0.36394 (8)0.0251 (5)
H7A0.83240.62460.35440.030*
H7B0.87410.39950.35570.030*
C80.7199 (4)0.4996 (3)0.42150 (8)0.0218 (4)
C90.5221 (4)0.5691 (4)0.44304 (8)0.0249 (5)
H90.40580.61440.42120.030*
C100.8878 (4)0.4340 (4)0.45403 (9)0.0252 (5)
H101.02380.38660.43990.030*
C110.4935 (4)0.5727 (4)0.49629 (8)0.0251 (5)
H110.35760.62070.51040.030*
C120.8585 (4)0.4372 (4)0.50729 (9)0.0253 (5)
H120.97480.39110.52900.030*
C130.6610 (4)0.5071 (4)0.52922 (8)0.0235 (5)
C140.6372 (5)0.5091 (4)0.58588 (8)0.0281 (5)
H140.77060.49290.60540.034*
C150.4486 (5)0.5313 (4)0.61217 (9)0.0351 (6)
H15A0.31060.54810.59440.042*
H15B0.45140.53050.64880.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0293 (8)0.0285 (9)0.0297 (7)0.0018 (8)0.0100 (7)0.0011 (7)
O20.0324 (10)0.0266 (8)0.0257 (8)0.0033 (8)0.0031 (8)0.0013 (7)
N10.0212 (9)0.0294 (11)0.0163 (7)0.0002 (8)0.0017 (7)0.0002 (7)
C20.0232 (11)0.0281 (11)0.0151 (8)0.0007 (9)0.0005 (8)0.0002 (8)
N30.0245 (10)0.0232 (9)0.0198 (8)0.0003 (9)0.0025 (8)0.0007 (7)
C40.0246 (11)0.0259 (11)0.0150 (8)0.0022 (10)0.0018 (8)0.0005 (8)
C50.0298 (12)0.0226 (10)0.0193 (9)0.0001 (10)0.0015 (10)0.0006 (8)
C60.0262 (13)0.0263 (11)0.0200 (9)0.0020 (10)0.0011 (10)0.0016 (9)
C70.0188 (10)0.0379 (13)0.0187 (9)0.0015 (10)0.0011 (8)0.0004 (10)
C80.0234 (11)0.0242 (10)0.0177 (8)0.0004 (9)0.0020 (8)0.0001 (9)
C90.0220 (11)0.0326 (11)0.0200 (9)0.0038 (11)0.0039 (9)0.0025 (9)
C100.0221 (11)0.0301 (12)0.0234 (10)0.0038 (10)0.0015 (8)0.0017 (9)
C110.0251 (11)0.0293 (11)0.0209 (9)0.0040 (11)0.0008 (9)0.0000 (9)
C120.0254 (11)0.0277 (11)0.0229 (9)0.0039 (10)0.0071 (9)0.0001 (9)
C130.0284 (11)0.0237 (10)0.0183 (8)0.0012 (10)0.0013 (9)0.0005 (9)
C140.0355 (13)0.0313 (13)0.0174 (9)0.0011 (12)0.0041 (9)0.0009 (10)
C150.0457 (15)0.0397 (15)0.0200 (10)0.0022 (13)0.0029 (10)0.0003 (10)
Geometric parameters (Å, º) top
O1—C41.243 (3)C8—C101.388 (3)
O2—C21.218 (3)C8—C91.393 (3)
N1—C61.377 (3)C9—C111.393 (3)
N1—C21.382 (3)C9—H90.9500
N1—C71.472 (3)C10—C121.394 (3)
C2—N31.386 (3)C10—H100.9500
N3—C41.381 (3)C11—C131.393 (3)
N3—H30.8800C11—H110.9500
C4—C51.442 (3)C12—C131.396 (3)
C5—C61.338 (3)C12—H120.9500
C5—H50.9500C13—C141.478 (3)
C6—H60.9500C14—C151.324 (4)
C7—C81.517 (3)C14—H140.9500
C7—H7A0.9900C15—H15A0.9500
C7—H7B0.9900C15—H15B0.9500
C6—N1—C2121.47 (19)C10—C8—C9118.81 (19)
C6—N1—C7119.7 (2)C10—C8—C7118.4 (2)
C2—N1—C7118.9 (2)C9—C8—C7122.7 (2)
O2—C2—N1123.4 (2)C8—C9—C11120.6 (2)
O2—C2—N3122.1 (2)C8—C9—H9119.7
N1—C2—N3114.5 (2)C11—C9—H9119.7
C4—N3—C2126.7 (2)C8—C10—C12120.6 (2)
C4—N3—H3116.7C8—C10—H10119.7
C2—N3—H3116.7C12—C10—H10119.7
O1—C4—N3118.6 (2)C13—C11—C9121.0 (2)
O1—C4—C5126.0 (2)C13—C11—H11119.5
N3—C4—C5115.5 (2)C9—C11—H11119.5
C6—C5—C4118.6 (2)C10—C12—C13121.0 (2)
C6—C5—H5120.7C10—C12—H12119.5
C4—C5—H5120.7C13—C12—H12119.5
C5—C6—N1123.3 (2)C11—C13—C12118.05 (19)
C5—C6—H6118.3C11—C13—C14122.6 (2)
N1—C6—H6118.3C12—C13—C14119.4 (2)
N1—C7—C8113.53 (18)C15—C14—C13126.6 (2)
N1—C7—H7A108.9C15—C14—H14116.7
C8—C7—H7A108.9C13—C14—H14116.7
N1—C7—H7B108.9C14—C15—H15A120.0
C8—C7—H7B108.9C14—C15—H15B120.0
H7A—C7—H7B107.7H15A—C15—H15B120.0
C6—N1—C2—O2179.7 (2)N1—C7—C8—C10149.0 (2)
C7—N1—C2—O20.1 (3)N1—C7—C8—C933.9 (4)
C6—N1—C2—N30.4 (3)C10—C8—C9—C110.0 (4)
C7—N1—C2—N3179.22 (18)C7—C8—C9—C11177.1 (2)
O2—C2—N3—C4179.7 (2)C9—C8—C10—C120.2 (4)
N1—C2—N3—C40.4 (3)C7—C8—C10—C12177.4 (2)
C2—N3—C4—O1179.2 (2)C8—C9—C11—C130.1 (4)
C2—N3—C4—C50.0 (3)C8—C10—C12—C130.4 (4)
O1—C4—C5—C6178.8 (2)C9—C11—C13—C120.1 (4)
N3—C4—C5—C60.3 (3)C9—C11—C13—C14179.8 (2)
C4—C5—C6—N10.3 (3)C10—C12—C13—C110.3 (4)
C2—N1—C6—C50.1 (3)C10—C12—C13—C14179.6 (2)
C7—N1—C6—C5179.54 (19)C11—C13—C14—C1515.5 (5)
C6—N1—C7—C885.9 (3)C12—C13—C14—C15164.6 (3)
C2—N1—C7—C893.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.881.912.788 (3)178
C5—H5···O1ii0.952.443.296 (3)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H13N5C13H12N2O2
Mr251.29228.25
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)170170
a, b, c (Å)5.2885 (1), 8.1643 (2), 28.8446 (5)5.9603 (2), 7.0132 (2), 25.9571 (9)
V3)1245.42 (4)1085.03 (6)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.10
Crystal size (mm)0.25 × 0.22 × 0.200.18 × 0.15 × 0.14
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV: Blessing, 1995, 1997)
Multi-scan
(SORTAV: Blessing, 1995, 1997)
Tmin, Tmax0.979, 0.9830.983, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9411, 2201, 1988 6507, 1901, 1525
Rint0.0520.098
(sin θ/λ)max1)0.7140.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.111, 1.04 0.054, 0.135, 1.00
No. of reflections22011901
No. of parameters178154
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.220.31, 0.32

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
N1—C21.343 (2)C5—N71.3909 (18)
N1—C61.3550 (17)C6—N191.330 (2)
C2—N31.327 (2)C8—N91.3648 (19)
N3—C41.3494 (18)N9—C101.4608 (19)
C4—N91.3720 (19)C17—C181.304 (3)
C2—N1—C6119.13 (13)C8—N9—C4106.02 (12)
C2—N3—C4110.13 (13)C8—N9—C10127.31 (13)
C8—N7—C5103.86 (13)C4—N9—C10126.38 (13)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N19—H19A···N7i0.97 (2)2.07 (2)3.0351 (19)174 (2)
N19—H19B···N1ii0.96 (2)2.01 (2)2.9242 (19)159 (2)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
O1—C41.243 (3)N1—C71.472 (3)
O2—C21.218 (3)N3—C41.381 (3)
N1—C61.377 (3)C14—C151.324 (4)
N1—C21.382 (3)
C6—N1—C2121.47 (19)C2—N1—C7118.9 (2)
C6—N1—C7119.7 (2)C4—N3—C2126.7 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.881.912.788 (3)178
C5—H5···O1ii0.952.443.296 (3)150
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds