Download citation
Download citation
link to html
The title compound, [Ni(C6H4NO2)2], crystallized in a three-dimensional framework consisting of three interpenetrating diamond-like nets. The Ni atom is on a twofold axis, the coordination is `(O2)2N2' in a cis arrangement and the ligands are bridging.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000859/fr1362sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000859/fr1362Isup2.hkl
Contains datablock I

CCDC reference: 182971

Comment top

Molecules containing bifunctional and multi-functional pyridine or carboxylate groups, such as 4,4'-bipyridine (Fujita et al., 1994; Stang et al., 1995; Yaghi & Li, 1995; Kondo et al., 1997; Hagrman et al., 1997; Kumar et al., 1998; Keller & Lopez, 1999; Biradha et al., 1999; Gudbjartson et al., 1999; Zhang et al., 1999), benzene-1,4-dicarboxylate (Eddaoudi et al., 2001; Groeneman et al., 1998; Guilera & Steed, 1999; Lo et al., 2000), pyridine-4-carboxylate (pyca) (MacGillivary et al., 1998; Evans, et al., 1999; Evans, Xiong et al., 1999; Ma et al., 1999; Evans & Lin, 2000), benzene-1,3,5-tricarboxylate (Chui et al., 1999; Chen et al., 2001; Choi & Suh, 1998) and other bridging molecules (Batten & Robson, 1998; Batten, 2001; Leininger et al., 2000; Fujita et al., 2001; Yaghi et al., 1998) are often used as ligands to construct coordination polymers with different nanostructures and interpenetrating nets. Diamond-related nets constitute the largest class of interpenetrating structures and most of these involve ZnII, CdII, CuI and AgI metals (Batten & Robson, 1998). So far, no diamond-like net arrangement has been reported with NiII as the transition metal (Allen et al., 1983).

The NiII in (I) is six-coordinated by two cis-pyridyl N atoms of two µ-pyca anions and two chelating carboxylate groups of two additional µ-pyca anions (Fig. 1). The two Ni—O bond distances of the chelating µ-pyca anion are significantly different. One [Ni1—O2 2.074 (3) Å] is significantly longer than the Ni—N bond distance [Ni1—N1 2.041 (3) Å], and the other [Ni1—O1 2.208 (2) Å] is much longer. The angles around the NiII ion are also very different. The O1—Ni1—O2 and N1_8—Ni1—O1 angles are 61.88 (9) and 156.06 (10)°, respectively, while the other angles are closer to 90° [88.22 (10)–100.65 (15)°] and 180° [166.71 (14)°]; thus, the octahedral geometry of the NiII ion is highly distorted. The pyca ligand is not planar and has a dihedral angle of 19.5 (2)° between the planes defined by the carboxylate group and the pyridine moiety.

The extended arrangement consists of each NiII connected with four neighboring NiII ions through pyca bridges forming a three-dimensional diamond-like net (Fig. 2). Three independent three-dimensional diamond-like nets interpenetrate with each other (Fig. 3). The Ni to Ni atom separation in each three-dimensional net is 8.760 (5) Å.

Experimental top

A mixture of Eu2O3 (0.088 g, 0.25 mmol), NiCl2·6H2O (0.119 g, 0.5 mmol), pyridine-4-carboxylic acid (0.246 g, 0.2 mmol) and water (15 ml) was sealed in a 35 ml Teflon-capped ace pressure tube, heated to 453 K and held at that temperature for 12 h. During this time, the solid Eu2O3 dissolved completely and deep-green crystals of (I) (10% based on nickel) formed at the bottom of the tube. When the tube was cooled to room temperature, blue crystals of trans-tetraaquabis(pyridine-4-carboxylate-κN)nickel(II) (Batten & Harris, 2001) (40% based on nickel) formed. These were mechanically separated from the green crystals under a microscope. In this reaction, the Eu2O3 compound is presumably acting as a weak base. If the reaction temperature is below 413 K, only trans-tetraaquabis(pyridine-4-carboxylate-κN)nickel(II) is obtained (Batten & Harris, 2001). This suggests that the formation of the highly distorted structure in (I) requires more vigorous reaction conditions.

Refinement top

H atoms were treated as riding, with C—H distances of 0.93 Å and isotropic displacement parameters set to 1.2 times the equivalent isotropic displacement parameter of the C atoms to which they were attached.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of (I) shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The three-dimensional framework of (I).
[Figure 3] Fig. 3. Stereoview of (I) using the Ni, C1 and N1 atoms connected by lines displaying the threefold interpenetrating diamond-like nets.
(I) top
Crystal data top
[Ni(C6H4NO2)2]Dx = 1.703 Mg m3
Mr = 302.90Mo Kα radiation, λ = 0.71069 Å
Tetragonal, P43212Cell parameters from 25 reflections
a = 11.678 (3) Åθ = 10–15°
c = 8.6608 (12) ŵ = 1.65 mm1
V = 1181.1 (4) Å3T = 293 K
Z = 4Prism, green
F(000) = 6160.50 × 0.45 × 0.40 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.04
non–profiled ω/2θ scansθmax = 25.0°, θmin = 2.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 013
Tmin = 0.451, Tmax = 0.516k = 013
1448 measured reflectionsl = 110
1043 independent reflections3 standard reflections every 166 min
1021 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0667P)2 + 0.3267P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max = 0.003
wR(F2) = 0.092Δρmax = 0.29 e Å3
S = 1.18Δρmin = 0.37 e Å3
1043 reflectionsAbsolute structure: (Flack, 1983), 327 Friedel pairs
87 parametersAbsolute structure parameter: 0.01 (3)
0 restraints
Crystal data top
[Ni(C6H4NO2)2]Z = 4
Mr = 302.90Mo Kα radiation
Tetragonal, P43212µ = 1.65 mm1
a = 11.678 (3) ÅT = 293 K
c = 8.6608 (12) Å0.50 × 0.45 × 0.40 mm
V = 1181.1 (4) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
1021 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.04
Tmin = 0.451, Tmax = 0.5163 standard reflections every 166 min
1448 measured reflections intensity decay: 1%
1043 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.29 e Å3
S = 1.18Δρmin = 0.37 e Å3
1043 reflectionsAbsolute structure: (Flack, 1983), 327 Friedel pairs
87 parametersAbsolute structure parameter: 0.01 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.22114 (3)0.22114 (3)0.50.0195 (2)
O10.1316 (2)0.1257 (2)0.3159 (3)0.0302 (5)
O20.1041 (2)0.3091 (2)0.3643 (3)0.0300 (5)
N10.1474 (2)0.2525 (2)0.0989 (3)0.0249 (6)
C10.0862 (3)0.2208 (3)0.2831 (3)0.0251 (7)
C20.0077 (3)0.2309 (3)0.1439 (4)0.0245 (7)
C30.0441 (3)0.1351 (3)0.0806 (4)0.0274 (7)
H30.0280.06240.11870.033*
C40.1210 (3)0.1493 (3)0.0414 (4)0.0261 (7)
H40.15510.08480.08430.031*
C50.0938 (3)0.3448 (3)0.0400 (4)0.0296 (7)
H50.10910.41630.08250.036*
C60.0163 (3)0.3377 (3)0.0821 (4)0.0301 (7)
H60.01850.40320.12110.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0208 (2)0.0208 (2)0.0169 (3)0.00097 (18)0.00042 (15)0.00042 (15)
O10.0311 (14)0.0280 (13)0.0315 (11)0.0010 (8)0.0104 (10)0.0049 (10)
O20.0346 (12)0.0306 (13)0.0250 (11)0.0030 (10)0.0083 (11)0.0051 (10)
N10.0252 (12)0.0260 (14)0.0234 (13)0.0002 (10)0.0028 (11)0.0009 (11)
C10.0224 (14)0.0317 (16)0.0212 (15)0.0030 (12)0.0001 (12)0.0041 (14)
C20.0230 (14)0.0274 (16)0.0232 (14)0.0025 (12)0.0020 (13)0.0002 (13)
C30.0318 (17)0.0252 (15)0.0251 (15)0.0041 (13)0.0024 (14)0.0020 (14)
C40.0301 (17)0.0217 (15)0.0265 (17)0.0001 (12)0.0045 (12)0.0018 (13)
C50.0361 (17)0.0211 (15)0.0318 (17)0.0010 (12)0.0070 (15)0.0024 (13)
C60.0317 (17)0.0248 (15)0.0339 (17)0.0029 (14)0.0084 (15)0.0005 (13)
Geometric parameters (Å, º) top
Ni1—N1i2.041 (3)N1—C51.347 (4)
Ni1—N1ii2.041 (3)N1—Ni1iv2.041 (3)
Ni1—O22.074 (2)C1—C21.519 (4)
Ni1—O2iii2.074 (2)C2—C31.385 (5)
Ni1—O12.208 (2)C2—C61.386 (4)
Ni1—O1iii2.208 (2)C3—C41.396 (4)
Ni1—C12.452 (3)C3—H30.93
Ni1—C1iii2.452 (3)C4—H40.93
O1—C11.263 (4)C5—C61.393 (4)
O2—C11.265 (4)C5—H50.93
N1—C41.340 (4)C6—H60.93
N1i—Ni1—N1ii100.65 (15)C1—Ni1—C1iii125.80 (15)
N1i—Ni1—O295.19 (11)C1—O1—Ni185.28 (18)
N1ii—Ni1—O293.29 (11)C1—O2—Ni191.19 (19)
N1i—Ni1—O2iii93.29 (11)C4—N1—C5118.2 (3)
N1ii—Ni1—O2iii95.19 (11)C4—N1—Ni1iv123.2 (2)
O2—Ni1—O2iii166.71 (14)C5—N1—Ni1iv118.2 (2)
N1i—Ni1—O1156.06 (10)O1—C1—O2121.4 (3)
N1ii—Ni1—O188.22 (10)O1—C1—C2120.0 (3)
O2—Ni1—O161.88 (9)O2—C1—C2118.6 (3)
O2iii—Ni1—O1108.13 (10)O1—C1—Ni163.84 (16)
N1i—Ni1—O1iii88.22 (10)O2—C1—Ni157.75 (16)
N1ii—Ni1—O1iii156.06 (10)C2—C1—Ni1174.7 (2)
O2—Ni1—O1iii108.13 (10)C3—C2—C6119.0 (3)
O2iii—Ni1—O1iii61.88 (9)C3—C2—C1121.0 (3)
O1—Ni1—O1iii92.51 (12)C6—C2—C1119.9 (3)
N1i—Ni1—C1126.12 (11)C2—C3—C4119.0 (3)
N1ii—Ni1—C189.55 (10)C2—C3—H3120.5
O2—Ni1—C131.06 (10)C4—C3—H3120.5
O2iii—Ni1—C1138.70 (10)N1—C4—C3122.4 (3)
O1—Ni1—C130.88 (10)N1—C4—H4118.8
O1iii—Ni1—C1103.20 (10)C3—C4—H4118.8
N1i—Ni1—C1iii89.55 (10)N1—C5—C6122.8 (3)
N1ii—Ni1—C1iii126.12 (11)N1—C5—H5118.6
O2—Ni1—C1iii138.70 (10)C6—C5—H5118.6
O2iii—Ni1—C1iii31.06 (10)C2—C6—C5118.5 (3)
O1—Ni1—C1iii103.20 (10)C2—C6—H6120.7
O1iii—Ni1—C1iii30.88 (10)C5—C6—H6120.7
Symmetry codes: (i) y+1/2, x+1/2, z+3/4; (ii) x+1/2, y+1/2, z+1/4; (iii) y, x, z+1; (iv) x1/2, y+1/2, z+1/4.

Experimental details

Crystal data
Chemical formula[Ni(C6H4NO2)2]
Mr302.90
Crystal system, space groupTetragonal, P43212
Temperature (K)293
a, c (Å)11.678 (3), 8.6608 (12)
V3)1181.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.65
Crystal size (mm)0.50 × 0.45 × 0.40
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.451, 0.516
No. of measured, independent and
observed [I > 2σ(I)] reflections
1448, 1043, 1021
Rint0.04
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.092, 1.18
No. of reflections1043
No. of parameters87
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.37
Absolute structure(Flack, 1983), 327 Friedel pairs
Absolute structure parameter0.01 (3)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds