Download citation
Download citation
link to html
The title compound, [Fe(C6H5O2)(C7H7O)], adopts a conformation involving partial staggering of its rings and aggregates in the solid as acid-to-ketone hydrogen-bonding dimers [O...O = 2.720 (4) Å and O—H...O = 164°] having centro­symmetrically related components. Close intermolecular C—H...O contacts were found to both carboxyl O atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101021771/fr1360sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101021771/fr1360Isup2.hkl
Contains datablock I

CCDC reference: 181988

Comment top

Placing a ketone and a carboxylic acid within the same molecule brings together a single hydrogen-bond donor with two potential acceptors. The result, in the absence of other hydrogen-bonding groups, is five known modes of hydrogen bonding. Our continuing study of keto-acid crystal structures has so far explored these modes and the factors that control them for some 70 compounds. Two of the modes do not involve the ketone, and correspond to the common pairing and much rarer chain modes of simple acids (Leiserowitz, 1976; Lalancette et al., 1998). Of the three known acid-to-ketone modes, chains (catemers) constitute a sizable overall minority of cases, while intramolecular hydrogen bonds are only very occasionally observed (Coté et al., 1996). Instances of acid-to-ketone dimerization, however, are so rare (with only four literature examples) that until our examination of the presently reported compound, this hydrogen-bonding mode had remained the only one we ourselves had never observed. Compound (I) belongs at least formally to the category of δ-keto acids, one generally rich in hydrogen-bonding types, embracing catemers of the screw, translation and glide types, as well as dimers and hydrated patterns.

Fig. 1 presents a view of the asymmetric unit of (I) with its numbering. The energy difference between staggered and eclipsed rotational conformations in ferrocene itself is about 2 kcal mol-1 (Butler & Harrod, 1989), with an energy barrier of only 2–5 kcal mol-1 (Schlögl, 1967). The barrier is ca 3 kcal mol-1 for decamethylferrocene (Aime et al., 1992), and is generally so low for simple substituted ferrocenes that conformations in crystals are expected to be determined mainly by associational forces (Cotton & Wilkinson, 1966). Indeed, examples of both eclipsed and staggered conformations (and ones in between) are found in crystal structures, although the former are more common (Kerber, 1995).

Where perfect staggering of the two rings in ferrocene requires a rotational offset of 36°, the conformation adopted by (I) involves only 20.7 (5)° of axial twist, placing the two substituents roughly half-way between an eclipsed and a `synclinal' arrangement. The two rings are not quite parallel, having a dihedral angle of 1.5 (3)°. The substituents lie nearly coplanar with their respective rings; the dihedral angle for the carboxyl versus its ring is 2.3 (3)°, while that for the acetyl group is 6.2 (3)°, with the two carbonyl dipoles aligned in the same direction.

Averaging of C—O bond lengths and C—C—O angles by disorder is often observed in carboxyl acids, but only in the acid-to-acid dimerization mode (Leiserowitz, 1976), which permits the averaging processes. In (I), these C—O bond lengths are 1.214 (4)/1.334 (5) Å, with angles of 123.7 (4)/112.9 (3)°. Our own survey of 56 keto acid structures which are not acid dimers gives average values of 1.200 (10)/1.32 (2) Å and 124.5 (14)/112.7 (17)°, respectively, for these lengths and angles, in accord with typical values of 1.21/1.31 Å and 123/112° cited for highly ordered dimeric carboxyls (Borthwick, 1980). The methyl group displays no detectable rotational disorder.

Fig. 2 shows the centrosymmetric pairing of asymmetric units via mutual acid-to-ketone hydrogen bonds [O···O = 2.720 (4) Å and O—H···O = 164°]. In the packing of the chosen cell, all the dimerization occurs at the boundaries, across the b and c edges. In the X-ray literature, such acid-to-ketone dimerization is the least often reported among keto-acid hydrogen-bonding modes, and (I) joins a very small number of other examples: Cambridge Structural Database (CSD; Cambridge Structural Database, 1999) reference codes BOZTUF (Peeters et al., 1983), FAZGAO (Nuhrich et al., 1986), JIKDEM (Abell et al., 1991) and TEVGIK (Kosela et al., 1995).

We have characterized the geometry of hydrogen bonding to carbonyls using a combination of H···OC angle and H···OC—C torsional angle. These describe the approach of the acid H atom to the O in terms of its deviation from, respectively, CO axiality (ideal = 120°) and planarity with the carbonyl (ideal = 0°). In (I), the values for these two angles are 129 and -10°, respectively.

Close intermolecular C—H···O contacts were found for O2 (2.52 Å to a methyl hydrogen, H12A, in the dimeric partner and 2.46 Å to H10 in a c translation of the dimeric partner), as well as for O3 (2.56 Å to H2 in a c translation of a glide-related molecule). These contacts all lie within the 2.7 Å range we usually employ for non-bonded H···O packing interactions (Steiner, 1997). Using compiled data for a large number of C—H···O contacts, Steiner & Desiraju (1998) have found significant statistical directionality even as far out as 3.0 Å, and conclude that these are legitimately viewed as `weak hydrogen bonds', with a greater contribution to packing forces than simple van der Waals attractions.

The solid-state (KBr) IR spectrum of (I) has a CO stretching absorption at 1720 cm-1 (acid), plus a poorly resolved pair of peaks at 1637 and 1633 cm-1 (ketone), consistent with known shifts produced when hydrogen bonding is removed from carboxyl CO and added to a ketone. In CHCl3 solution, these bands appear at 1712 and 1671 cm-1.

Experimental top

When the procedure of Yamakawa et al. (1963) failed to yield any useful product, compound (I) was prepared via acetylation of N,N-diphenylcarbamylferrocene according to the procedure of Little & Eisenthal (1960). Flash chromatography followed by sublimation and crystallization from diethyl ether gave crystals (m.p. 431 K) suitable for X-ray analysis.

Refinement top

All the H atoms in (I) were found in electron-density difference maps but were placed in calculated positions (0.96 Å for methyl H atoms, 0.98 Å for ferrocene H atoms,and 0.82 Å for the carboxyl H atom) and allowed to refine as riding models on their respective C and O atoms. Their displacement parameters were fixed at 120% of those of their respective C atoms and 150% of the respective O atom.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I) with the atom-numbering scheme. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram showing the acid-to-ketone dimerization across the b and c edges of the chosen cell. Displacement ellipsoids are shown at the 20% probability level.
1-Acetylferrocene-1'-carboxylic acid top
Crystal data top
[Fe(C6H5O2)(C7H7O)]Dx = 1.623 Mg m3
Mr = 272.08Melting point: 431 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.331 (5) ÅCell parameters from 26 reflections
b = 8.769 (5) Åθ = 2.7–8.4°
c = 13.616 (8) ŵ = 1.35 mm1
β = 92.290 (16)°T = 296 K
V = 1113.2 (11) Å3Flat plate, red–orange
Z = 40.42 × 0.30 × 0.06 mm
F(000) = 560
Data collection top
Siemens P4
diffractometer
1441 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
2θ/θ scansh = 111
Absorption correction: numerical
(SHELXTL; Sheldrick, 1997)
k = 101
Tmin = 0.68, Tmax = 0.92l = 1616
2676 measured reflections3 standard reflections every 97 reflections
1957 independent reflections intensity decay: variation <2\</A>
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.034P)2 + 0.3257P]
where P = (Fo2 + 2Fc2)/3
1957 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Fe(C6H5O2)(C7H7O)]V = 1113.2 (11) Å3
Mr = 272.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.331 (5) ŵ = 1.35 mm1
b = 8.769 (5) ÅT = 296 K
c = 13.616 (8) Å0.42 × 0.30 × 0.06 mm
β = 92.290 (16)°
Data collection top
Siemens P4
diffractometer
1441 reflections with I > 2σ(I)
Absorption correction: numerical
(SHELXTL; Sheldrick, 1997)
Rint = 0.034
Tmin = 0.68, Tmax = 0.923 standard reflections every 97 reflections
2676 measured reflections intensity decay: variation <2\</A>
1957 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
1957 reflectionsΔρmin = 0.31 e Å3
155 parameters
Special details top

Experimental. crystal mounted on glass fiber using epoxy resin

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.30043 (6)0.14200 (6)0.84878 (4)0.02607 (18)
O10.0382 (3)0.2786 (3)1.0421 (2)0.0432 (7)
O20.3090 (3)0.5335 (4)0.9714 (2)0.0606 (10)
O30.1319 (3)0.5328 (3)0.85491 (19)0.0430 (8)
C10.1279 (4)0.0974 (4)0.9329 (3)0.0290 (9)
C20.1219 (4)0.0065 (5)0.8436 (3)0.0356 (10)
C30.2457 (5)0.0860 (5)0.8445 (3)0.0375 (10)
C40.3299 (5)0.0548 (4)0.9306 (3)0.0362 (10)
C50.2599 (4)0.0596 (4)0.9858 (3)0.0325 (9)
C60.3286 (4)0.3709 (4)0.8323 (2)0.0312 (9)
C70.2763 (5)0.3046 (5)0.7421 (3)0.0361 (10)
C80.3794 (5)0.1943 (5)0.7131 (3)0.0424 (11)
C90.4925 (5)0.1923 (5)0.7861 (3)0.0438 (11)
C100.4631 (4)0.3014 (5)0.8596 (3)0.0376 (10)
C110.0244 (4)0.2142 (5)0.9612 (3)0.0338 (9)
C120.0973 (4)0.2525 (5)0.8903 (3)0.0468 (11)
C130.2584 (4)0.4872 (5)0.8935 (3)0.0343 (9)
H3A0.09290.58880.89400.064*
H20.04490.00790.79250.043*
H30.27040.15830.79300.045*
H40.42260.10170.94860.043*
H50.29440.10301.04870.039*
H70.18690.33110.70590.043*
H80.37240.13020.65420.051*
H90.57660.12530.78620.053*
H100.52330.32430.91830.045*
H12A0.14190.34560.91030.056*
H12B0.16660.17150.88950.056*
H12C0.06150.26510.82570.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0265 (3)0.0264 (3)0.0253 (3)0.0008 (3)0.0019 (2)0.0006 (3)
O10.0424 (18)0.0471 (18)0.0405 (16)0.0076 (16)0.0054 (14)0.0065 (15)
O20.049 (2)0.068 (2)0.0631 (19)0.0134 (19)0.0179 (17)0.0315 (19)
O30.0418 (18)0.0424 (18)0.0443 (15)0.0145 (15)0.0039 (14)0.0077 (14)
C10.027 (2)0.033 (2)0.0277 (18)0.0047 (18)0.0039 (16)0.0008 (16)
C20.037 (2)0.033 (2)0.037 (2)0.011 (2)0.0012 (18)0.0031 (19)
C30.042 (2)0.026 (2)0.044 (2)0.003 (2)0.005 (2)0.0039 (18)
C40.038 (2)0.029 (2)0.041 (2)0.006 (2)0.0020 (19)0.0089 (19)
C50.035 (2)0.034 (2)0.0281 (18)0.000 (2)0.0019 (17)0.0048 (18)
C60.034 (2)0.027 (2)0.033 (2)0.002 (2)0.0005 (17)0.0007 (18)
C70.046 (3)0.035 (2)0.0270 (19)0.006 (2)0.0067 (18)0.0071 (17)
C80.058 (3)0.037 (2)0.032 (2)0.001 (2)0.015 (2)0.0004 (19)
C90.036 (3)0.043 (2)0.054 (3)0.003 (2)0.019 (2)0.002 (2)
C100.027 (2)0.038 (2)0.049 (2)0.007 (2)0.0062 (19)0.002 (2)
C110.033 (2)0.035 (2)0.034 (2)0.003 (2)0.0058 (18)0.0080 (19)
C120.034 (2)0.052 (3)0.054 (3)0.006 (2)0.000 (2)0.004 (2)
C130.030 (2)0.033 (2)0.040 (2)0.007 (2)0.0015 (19)0.0014 (19)
Geometric parameters (Å, º) top
Fe1—C62.038 (4)C6—C71.428 (5)
Fe1—C72.042 (4)C6—C101.430 (5)
Fe1—C22.046 (4)C6—C131.485 (5)
Fe1—C52.050 (4)C7—C81.430 (6)
Fe1—C12.050 (4)C8—C91.420 (6)
Fe1—C92.063 (4)C9—C101.419 (6)
Fe1—C102.064 (4)C11—C121.500 (5)
Fe1—C32.064 (4)O3—H3A0.8200
Fe1—C42.066 (4)C2—H20.9800
Fe1—C82.067 (4)C3—H30.9800
O1—C111.240 (5)C4—H40.9800
O2—C131.214 (4)C5—H50.9800
O3—C131.334 (5)C7—H70.9800
C1—C51.440 (5)C8—H80.9800
C1—C21.453 (5)C9—H90.9800
C1—C111.469 (6)C10—H100.9800
C2—C31.412 (6)C12—H12A0.9600
C3—C41.412 (5)C12—H12B0.9600
C4—C51.427 (5)C12—H12C0.9600
C6—Fe1—C2132.61 (16)C7—C6—C13128.2 (4)
C7—Fe1—C2108.34 (17)C10—C6—C13123.3 (3)
C6—Fe1—C5118.47 (15)C7—C6—Fe169.7 (2)
C7—Fe1—C5151.02 (16)C10—C6—Fe170.6 (2)
C2—Fe1—C569.31 (16)C13—C6—Fe1123.6 (3)
C6—Fe1—C1110.90 (15)C6—C7—C8107.5 (4)
C7—Fe1—C1117.64 (16)C6—C7—Fe169.4 (2)
C6—Fe1—C968.04 (16)C8—C7—Fe170.6 (2)
C7—Fe1—C968.25 (18)C9—C8—C7107.8 (4)
C2—Fe1—C9146.07 (17)C9—C8—Fe169.7 (2)
C5—Fe1—C9130.30 (17)C7—C8—Fe168.7 (2)
C1—Fe1—C9170.48 (16)C10—C9—C8109.0 (4)
C7—Fe1—C1068.76 (17)C10—C9—Fe169.9 (2)
C2—Fe1—C10172.50 (17)C8—C9—Fe170.1 (2)
C5—Fe1—C10109.63 (16)C9—C10—C6107.3 (4)
C1—Fe1—C10132.90 (16)C9—C10—Fe169.8 (2)
C6—Fe1—C3169.74 (15)C6—C10—Fe168.6 (2)
C7—Fe1—C3129.52 (16)O1—C11—C1120.3 (3)
C5—Fe1—C368.26 (16)O1—C11—C12121.3 (4)
C1—Fe1—C368.42 (16)C1—C11—C12118.4 (4)
C9—Fe1—C3114.42 (18)O2—C13—O3123.4 (4)
C10—Fe1—C3146.97 (17)O2—C13—C6123.7 (4)
C6—Fe1—C4150.08 (16)O3—C13—C6112.9 (3)
C7—Fe1—C4167.26 (15)C13—O3—H3A109.5
C2—Fe1—C467.91 (17)C3—C2—H2126.2
C1—Fe1—C468.29 (16)C1—C2—H2126.2
C9—Fe1—C4107.61 (18)Fe1—C2—H2126.2
C10—Fe1—C4116.45 (17)C2—C3—H3125.5
C6—Fe1—C868.35 (15)C4—C3—H3125.5
C2—Fe1—C8114.66 (17)Fe1—C3—H3125.5
C5—Fe1—C8167.60 (17)C3—C4—H4125.6
C1—Fe1—C8149.02 (17)C5—C4—H4125.6
C10—Fe1—C868.04 (17)Fe1—C4—H4125.6
C3—Fe1—C8106.65 (17)C4—C5—H5126.3
C4—Fe1—C8128.51 (17)C1—C5—H5126.3
C5—C1—C2107.2 (3)Fe1—C5—H5126.3
C5—C1—C11125.9 (3)C6—C7—H7126.2
C2—C1—C11126.8 (3)C8—C7—H7126.2
C5—C1—Fe169.4 (2)Fe1—C7—H7126.2
C2—C1—Fe169.0 (2)C9—C8—H8126.1
C11—C1—Fe1123.6 (3)C7—C8—H8126.1
C3—C2—C1107.7 (3)Fe1—C8—H8126.1
C3—C2—Fe170.6 (2)C10—C9—H9125.5
C1—C2—Fe169.4 (2)C8—C9—H9125.5
C2—C3—C4108.9 (4)Fe1—C9—H9125.5
C2—C3—Fe169.2 (2)C9—C10—H10126.4
C4—C3—Fe170.1 (2)C6—C10—H10126.4
C3—C4—C5108.8 (4)Fe1—C10—H10126.4
C3—C4—Fe169.9 (2)C11—C12—H12A109.5
C5—C4—Fe169.1 (2)C11—C12—H12B109.5
C4—C5—C1107.4 (3)H12A—C12—H12B109.5
C4—C5—Fe170.3 (2)C11—C12—H12C109.5
C1—C5—Fe169.5 (2)H12A—C12—H12C109.5
C7—C6—C10108.4 (4)H12B—C12—H12C109.5
C6—Fe1—C1—C5109.8 (2)C8—Fe1—C6—C738.2 (3)
C7—Fe1—C1—C5154.4 (2)C7—Fe1—C6—C10119.2 (3)
C2—Fe1—C1—C5118.8 (3)C2—Fe1—C6—C10174.8 (2)
C10—Fe1—C1—C568.5 (3)C5—Fe1—C6—C1087.5 (3)
C3—Fe1—C1—C581.2 (2)C1—Fe1—C6—C10132.3 (2)
C4—Fe1—C1—C538.1 (2)C9—Fe1—C6—C1037.6 (2)
C8—Fe1—C1—C5167.8 (3)C3—Fe1—C6—C10143.5 (9)
C6—Fe1—C1—C2131.4 (2)C4—Fe1—C6—C1049.8 (4)
C7—Fe1—C1—C286.8 (3)C8—Fe1—C6—C1081.0 (3)
C5—Fe1—C1—C2118.8 (3)C7—Fe1—C6—C13123.1 (4)
C10—Fe1—C1—C2172.7 (2)C2—Fe1—C6—C1357.1 (4)
C3—Fe1—C1—C237.6 (2)C5—Fe1—C6—C1330.2 (4)
C4—Fe1—C1—C280.7 (3)C1—Fe1—C6—C1314.6 (4)
C8—Fe1—C1—C249.0 (4)C9—Fe1—C6—C13155.3 (4)
C6—Fe1—C1—C1110.4 (3)C10—Fe1—C6—C13117.7 (4)
C7—Fe1—C1—C1134.1 (4)C3—Fe1—C6—C1398.8 (9)
C2—Fe1—C1—C11121.0 (4)C4—Fe1—C6—C1367.9 (5)
C5—Fe1—C1—C11120.2 (4)C8—Fe1—C6—C13161.3 (4)
C10—Fe1—C1—C1151.7 (4)C10—C6—C7—C80.4 (4)
C3—Fe1—C1—C11158.6 (3)C13—C6—C7—C8177.9 (4)
C4—Fe1—C1—C11158.3 (3)Fe1—C6—C7—C860.6 (3)
C8—Fe1—C1—C1172.0 (4)C10—C6—C7—Fe160.2 (3)
C5—C1—C2—C31.4 (4)C13—C6—C7—Fe1117.3 (4)
C11—C1—C2—C3177.4 (4)C2—Fe1—C7—C6134.9 (2)
Fe1—C1—C2—C360.5 (3)C5—Fe1—C7—C654.7 (4)
C5—C1—C2—Fe159.2 (3)C1—Fe1—C7—C690.6 (3)
C11—C1—C2—Fe1116.9 (4)C9—Fe1—C7—C681.1 (3)
C6—Fe1—C2—C3169.4 (2)C10—Fe1—C7—C637.7 (2)
C7—Fe1—C2—C3130.3 (2)C3—Fe1—C7—C6174.6 (2)
C5—Fe1—C2—C380.4 (2)C4—Fe1—C7—C6154.4 (7)
C1—Fe1—C2—C3118.4 (3)C8—Fe1—C7—C6118.3 (4)
C9—Fe1—C2—C352.2 (4)C6—Fe1—C7—C8118.3 (4)
C4—Fe1—C2—C336.7 (2)C2—Fe1—C7—C8106.8 (3)
C8—Fe1—C2—C386.8 (3)C5—Fe1—C7—C8173.0 (3)
C6—Fe1—C2—C172.1 (3)C1—Fe1—C7—C8151.0 (3)
C7—Fe1—C2—C1111.3 (2)C9—Fe1—C7—C837.2 (3)
C5—Fe1—C2—C138.0 (2)C10—Fe1—C7—C880.6 (3)
C9—Fe1—C2—C1170.7 (3)C3—Fe1—C7—C867.1 (3)
C3—Fe1—C2—C1118.4 (3)C4—Fe1—C7—C836.0 (9)
C4—Fe1—C2—C181.7 (2)C6—C7—C8—C90.8 (5)
C8—Fe1—C2—C1154.7 (2)Fe1—C7—C8—C959.0 (3)
C1—C2—C3—C40.7 (5)C6—C7—C8—Fe159.8 (3)
Fe1—C2—C3—C459.0 (3)C6—Fe1—C8—C981.2 (3)
C1—C2—C3—Fe159.7 (3)C7—Fe1—C8—C9119.6 (4)
C6—Fe1—C3—C249.4 (10)C2—Fe1—C8—C9150.6 (3)
C7—Fe1—C3—C269.8 (3)C5—Fe1—C8—C944.5 (9)
C5—Fe1—C3—C283.3 (3)C1—Fe1—C8—C9176.0 (3)
C1—Fe1—C3—C238.9 (2)C10—Fe1—C8—C937.0 (3)
C9—Fe1—C3—C2151.0 (2)C3—Fe1—C8—C9108.3 (3)
C10—Fe1—C3—C2176.1 (3)C4—Fe1—C8—C970.0 (3)
C4—Fe1—C3—C2120.4 (3)C6—Fe1—C8—C738.4 (2)
C8—Fe1—C3—C2108.7 (3)C2—Fe1—C8—C789.9 (3)
C6—Fe1—C3—C4169.8 (8)C5—Fe1—C8—C7164.0 (7)
C7—Fe1—C3—C4169.8 (2)C1—Fe1—C8—C756.4 (4)
C2—Fe1—C3—C4120.4 (3)C9—Fe1—C8—C7119.6 (4)
C5—Fe1—C3—C437.1 (2)C10—Fe1—C8—C782.5 (3)
C1—Fe1—C3—C481.5 (3)C3—Fe1—C8—C7132.1 (3)
C9—Fe1—C3—C488.6 (3)C4—Fe1—C8—C7170.5 (2)
C10—Fe1—C3—C455.8 (4)C7—C8—C9—C101.0 (5)
C8—Fe1—C3—C4130.9 (3)Fe1—C8—C9—C1059.3 (3)
C2—C3—C4—C50.2 (5)C7—C8—C9—Fe158.3 (3)
Fe1—C3—C4—C558.3 (3)C6—Fe1—C9—C1038.1 (2)
C2—C3—C4—Fe158.5 (3)C7—Fe1—C9—C1082.4 (3)
C6—Fe1—C4—C3176.4 (3)C2—Fe1—C9—C10173.2 (3)
C7—Fe1—C4—C338.3 (9)C5—Fe1—C9—C1071.3 (3)
C2—Fe1—C4—C336.9 (2)C3—Fe1—C9—C10152.8 (2)
C5—Fe1—C4—C3120.5 (4)C4—Fe1—C9—C10110.4 (3)
C1—Fe1—C4—C381.9 (3)C8—Fe1—C9—C10120.1 (4)
C9—Fe1—C4—C3107.2 (3)C6—Fe1—C9—C882.0 (3)
C10—Fe1—C4—C3149.8 (2)C7—Fe1—C9—C837.7 (3)
C8—Fe1—C4—C367.7 (3)C2—Fe1—C9—C853.1 (4)
C6—Fe1—C4—C555.9 (4)C5—Fe1—C9—C8168.6 (2)
C7—Fe1—C4—C5158.8 (7)C10—Fe1—C9—C8120.1 (4)
C2—Fe1—C4—C583.6 (3)C3—Fe1—C9—C887.2 (3)
C1—Fe1—C4—C538.6 (2)C4—Fe1—C9—C8129.5 (3)
C9—Fe1—C4—C5132.3 (2)C8—C9—C10—C60.7 (5)
C10—Fe1—C4—C589.7 (3)Fe1—C9—C10—C658.6 (3)
C3—Fe1—C4—C5120.5 (4)C8—C9—C10—Fe159.3 (3)
C8—Fe1—C4—C5171.8 (2)C7—C6—C10—C90.2 (4)
C3—C4—C5—C11.1 (4)C13—C6—C10—C9177.4 (4)
Fe1—C4—C5—C159.8 (3)Fe1—C6—C10—C959.4 (3)
C3—C4—C5—Fe158.8 (3)C7—C6—C10—Fe159.6 (3)
C2—C1—C5—C41.5 (4)C13—C6—C10—Fe1118.0 (4)
C11—C1—C5—C4177.6 (4)C6—Fe1—C10—C9118.9 (4)
Fe1—C1—C5—C460.4 (3)C7—Fe1—C10—C981.0 (3)
C2—C1—C5—Fe158.9 (3)C5—Fe1—C10—C9129.9 (3)
C11—C1—C5—Fe1117.2 (4)C1—Fe1—C10—C9170.4 (2)
C6—Fe1—C5—C4152.0 (2)C3—Fe1—C10—C949.9 (4)
C7—Fe1—C5—C4170.5 (3)C4—Fe1—C10—C986.3 (3)
C2—Fe1—C5—C479.8 (3)C8—Fe1—C10—C937.1 (3)
C1—Fe1—C5—C4118.2 (3)C7—Fe1—C10—C637.9 (2)
C9—Fe1—C5—C467.6 (3)C5—Fe1—C10—C6111.2 (2)
C10—Fe1—C5—C4108.1 (3)C1—Fe1—C10—C670.7 (3)
C3—Fe1—C5—C436.6 (2)C9—Fe1—C10—C6118.9 (4)
C8—Fe1—C5—C431.2 (9)C3—Fe1—C10—C6168.8 (3)
C6—Fe1—C5—C189.8 (2)C4—Fe1—C10—C6154.8 (2)
C7—Fe1—C5—C152.3 (4)C8—Fe1—C10—C681.9 (2)
C2—Fe1—C5—C138.4 (2)C5—C1—C11—O18.3 (6)
C9—Fe1—C5—C1174.2 (2)C2—C1—C11—O1176.4 (4)
C10—Fe1—C5—C1133.7 (2)Fe1—C1—C11—O195.9 (4)
C3—Fe1—C5—C181.6 (2)C5—C1—C11—C12171.9 (4)
C4—Fe1—C5—C1118.2 (3)C2—C1—C11—C123.5 (6)
C8—Fe1—C5—C1149.5 (7)Fe1—C1—C11—C1284.2 (4)
C2—Fe1—C6—C766.0 (3)C7—C6—C13—O2177.3 (4)
C5—Fe1—C6—C7153.3 (2)C10—C6—C13—O20.2 (6)
C1—Fe1—C6—C7108.5 (2)Fe1—C6—C13—O287.8 (5)
C9—Fe1—C6—C781.7 (3)C7—C6—C13—O31.0 (6)
C10—Fe1—C6—C7119.2 (3)C10—C6—C13—O3178.2 (3)
C3—Fe1—C6—C724.3 (10)Fe1—C6—C13—O390.6 (4)
C4—Fe1—C6—C7169.0 (3)

Experimental details

Crystal data
Chemical formula[Fe(C6H5O2)(C7H7O)]
Mr272.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.331 (5), 8.769 (5), 13.616 (8)
β (°) 92.290 (16)
V3)1113.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.42 × 0.30 × 0.06
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick, 1997)
Tmin, Tmax0.68, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
2676, 1957, 1441
Rint0.034
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.03
No. of reflections1957
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.31

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O2—C131.214 (4)O3—C131.334 (5)
O2—C13—C6123.7 (4)O3—C13—C6112.9 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds