Download citation
Download citation
link to html
The title salt, K[Co(C2H8N2)(CO3)2]·H2O, consists of a distorted octahedral cobalt complex anion and a seven-coordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C2 axis passing through the Co atom and C-C bond, and another along a short K-O (water) bond of 2.600 Å (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101006692/fr1331sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101006692/fr1331Isup2.hkl
Contains datablock I

CCDC reference: 169927

Comment top

Carbonato complexes of cobalt(III) are important intermediates, allowing access to a wide range of cobalt complexes (Kitamura & Shibata, 1993; Shibata, 1983). There have been several reports of the structure of [CoCO3(en)2]+ with various anions (Bigoli et al., 1980; Healy et al., 1981; Bernal et al., 1993; Garcia-Granda et al., 1993; Hu et al., 1997) (en is ethylenediamine). Structures of other monocarbonato cobalt(III) complexes have also been reported. To our knowledge the only previous structure report of a cobalt(III) complex containing two coordinated carbonates on a single Co atom is the binuclear complex (NH3)4Co(µ –NH2)(µ –OH)Co(CO3)2 (Churchill et al., 1979). \sch

The title salt, K[Co(CO3)2(NH2CH2CH2NH2)]·H2O, (I), contains a distorted octahedral cobalt(III) anion (Fig. 1) with a crystallographic twofold axis passing through the Co and the C–C bond of the en ligand. The main distortions from octahedral geometry arise from the narrow 'bite' of the carbonato ligand, with a O1—Co—O2 angle of 69.12 (4)°. The C1O3 bond is slightly shorter (by about 0.07 Å) than C1O1 and C1O2, suggesting partial localization of the charge on the coordinated carbonate. Other distances and angles of the anion are as expected.

The potassium cation is seven-coordinate (Fig. 2). The carbonate is bidentate to Co through O1 and O2, and also bidentate to K through O2 and O3. The water oxygen O4 is bound to K along a crystallographic twofold axis, and carbonates from two neighboring anions bind in a monodentate fashion through O1. The two O1 carbonate O atoms and the O4 water oxygen form a trigonal plane with the K atom, having O—K—O angles of 124.28 (2), 124.28 (2) and 111.43 (5)°. The remaining O atoms from the bidentate carbonates form another approximate plane nearly perpendicular to the trigonal plane. Thus the K coordination might be described as a type of trigonal bipyramidal geometry where each axial ligand is split in two. This arrangement, which is facilitated by the small bite angle of carbonate [the O2—K—O3 angle is 46.68 (3)°], allows the O4 water oxygen to have less steric interaction with the other O atoms around the K atom. This partially accounts for the short O4—K distance of 2.583 (2) Å.

In addition the displacement ellipsoid of O4 is elongated along an axis perpendicular to the K—O bond indicating a librational shortening of the bond length. A libration calculation using the full Schomaker-Trueblood tensor analysis (Schomaker & Trueblood, 1968) yielded a corrected K—O4 bond length of 2.598 Å, while the `riding model' correction (Johnson, 1970) was similar, giving a corrected length of 2.600 Å with an upper limit of 2.638 Å. Use of the riding model was justified based on parallel and perpendicular RMS amplitudes of K and O4.

Experimental top

The compound was synthesized using literature methods (Kitamura & Shibata, 1993). Suitable crystals were obtained by evaporation of an aqueous solution of (I) containing excess KHCO3.

Refinement top

H atoms were refined isotropically in observed positions. Final N—H distances were 0.80 (2) and 0.87 (2) Å; C—H distances were 0.95 (2) and 0.924 (18) Å; the O—H distance was 0.72 (2) Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the anion. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the potassium coordination sphere. Displacement ellipsoids are drawn at the 50% probability level. Symmetry operations; (i) 1/2 + x, 1 - y, 1/2 + z; (ii) -x, 1 - y, 1 - z; (iii) 1/2 - x, y, 3/2 - z; (iv) 1/2 - x, y, 3/2 - z.
[Figure 3] Fig. 3. The unit-cell packing viewed down b.
Potassium bis(carbonato-O,O')(ethylenediamine-N,N')cobaltate(III) monohydrate top
Crystal data top
K[Co(CO3)2(C2H8N2)]·H2OF(000) = 300
Mr = 296.17Dx = 2.005 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 8.2527 (13) ÅCell parameters from 4154 reflections
b = 7.3864 (12) Åθ = 2.5–28.3°
c = 8.5085 (14) ŵ = 2.19 mm1
β = 108.947 (2)°T = 173 K
V = 490.56 (14) Å3Block, purple
Z = 20.24 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
1193 independent reflections
Radiation source: normal-focus sealed tube1139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1010
Tmin = 0.538, Tmax = 0.645k = 99
5227 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021All H-atom parameters refined
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.04P)2 + 0.12P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1193 reflectionsΔρmax = 0.44 e Å3
91 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=3DkFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (3)
Crystal data top
K[Co(CO3)2(C2H8N2)]·H2OV = 490.56 (14) Å3
Mr = 296.17Z = 2
Monoclinic, P2/nMo Kα radiation
a = 8.2527 (13) ŵ = 2.19 mm1
b = 7.3864 (12) ÅT = 173 K
c = 8.5085 (14) Å0.24 × 0.20 × 0.20 mm
β = 108.947 (2)°
Data collection top
Bruker SMART CCD area detector
diffractometer
1193 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
1139 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.645Rint = 0.022
5227 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.057All H-atom parameters refined
S = 1.07Δρmax = 0.44 e Å3
1193 reflectionsΔρmin = 0.52 e Å3
91 parameters
Special details top

Experimental. An approximate sphere of data was collected to 0.75 Å resolution with 98% coverage and 4.3 average redundancy. Crystal stability was monitored by recollection of the first fifty frames after data collection was complete. No significant change was observed in the 87 reflections measured.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.25000.49378 (3)0.25000.01380 (11)
N0.20522 (17)0.30274 (17)0.08522 (15)0.0183 (2)
O10.02113 (13)0.53391 (14)0.24827 (13)0.0189 (2)
O20.24457 (12)0.67035 (13)0.41367 (12)0.0178 (2)
O30.01352 (14)0.72829 (16)0.44064 (13)0.0254 (2)
O40.25001.0228 (3)0.75000.0466 (6)
C10.07802 (18)0.65065 (18)0.37111 (17)0.0181 (3)
C20.1848 (2)0.1283 (2)0.16346 (19)0.0230 (3)
K0.25000.67304 (6)0.75000.01818 (13)
H0A0.113 (3)0.331 (3)0.005 (3)0.026 (5)*
H0B0.280 (3)0.303 (3)0.044 (3)0.025 (5)*
H2A0.205 (3)0.029 (3)0.102 (3)0.034 (6)*
H2B0.075 (2)0.123 (2)0.168 (2)0.018 (4)*
H4A0.181 (3)1.080 (3)0.702 (3)0.041 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01435 (16)0.01518 (16)0.01043 (16)0.0000.00203 (10)0.000
N0.0191 (6)0.0200 (6)0.0141 (5)0.0001 (5)0.0030 (5)0.0017 (4)
O10.0157 (5)0.0221 (5)0.0175 (5)0.0011 (4)0.0035 (4)0.0005 (4)
O20.0187 (5)0.0194 (5)0.0145 (4)0.0011 (4)0.0042 (4)0.0023 (4)
O30.0253 (5)0.0315 (6)0.0214 (5)0.0094 (4)0.0104 (4)0.0034 (4)
O40.0483 (13)0.0203 (9)0.0467 (13)0.0000.0185 (11)0.000
C10.0197 (6)0.0197 (6)0.0141 (6)0.0022 (5)0.0046 (5)0.0041 (5)
C20.0266 (7)0.0177 (7)0.0230 (7)0.0033 (5)0.0060 (6)0.0025 (5)
K0.0173 (2)0.0207 (2)0.0155 (2)0.0000.00406 (15)0.000
Geometric parameters (Å, º) top
Co—O1i1.9073 (11)O2—K2.8475 (10)
Co—O11.9073 (11)O3—C11.2409 (17)
Co—O21.9190 (10)O3—K2.8473 (11)
Co—O2i1.9190 (10)O4—K2.583 (2)
Co—N1.9383 (12)O4—H4A0.72 (2)
Co—Ni1.9383 (12)C2—C2i1.516 (3)
N—C21.4846 (19)C2—H2A0.95 (2)
N—H0A0.87 (2)C2—H2B0.924 (18)
N—H0B0.80 (2)K—O1ii2.7138 (11)
O1—C11.3182 (18)K—O1iii2.7138 (11)
O1—Kii2.7138 (11)K—O3iv2.8473 (11)
O2—C11.3109 (17)K—O2iv2.8475 (11)
O1i—Co—O1162.12 (7)O3—C1—O1124.41 (13)
O1i—Co—O298.35 (4)O2—C1—O1111.30 (12)
O1—Co—O269.12 (4)N—C2—C2i106.70 (9)
O1i—Co—O2i69.12 (4)N—C2—H2A111.2 (14)
O1—Co—O2i98.35 (4)C2i—C2—H2A109.8 (15)
O2—Co—O2i94.37 (6)N—C2—H2B108.2 (11)
O1i—Co—N94.27 (5)C2i—C2—H2B110.8 (11)
O1—Co—N98.73 (5)H2A—C2—H2B110.1 (18)
O2—Co—N167.36 (5)O4—K—O1ii124.28 (2)
O2i—Co—N90.79 (5)O4—K—O1iii124.28 (2)
O1i—Co—Ni98.73 (5)O1ii—K—O1iii111.43 (5)
O1—Co—Ni94.27 (5)O4—K—O3iv81.76 (3)
O2—Co—Ni90.79 (5)O1ii—K—O3iv117.34 (3)
O2i—Co—Ni167.36 (5)O1iii—K—O3iv72.67 (3)
N—Co—Ni86.56 (8)O4—K—O381.76 (3)
C2—N—Co109.27 (9)O1ii—K—O372.67 (3)
C2—N—H0A111.4 (13)O1iii—K—O3117.34 (3)
Co—N—H0A107.8 (13)O3iv—K—O3163.52 (5)
C2—N—H0B114.6 (14)O4—K—O2iv90.40 (2)
Co—N—H0B108.4 (14)O1ii—K—O2iv74.61 (3)
H0A—N—H0B105.1 (19)O1iii—K—O2iv104.93 (3)
C1—O1—Co89.92 (8)O3iv—K—O2iv46.68 (3)
C1—O1—Kii116.50 (8)O3—K—O2iv133.48 (3)
Co—O1—Kii136.77 (5)O4—K—O290.40 (2)
C1—O2—Co89.63 (8)O1ii—K—O2104.93 (3)
C1—O2—K87.21 (7)O1iii—K—O274.61 (3)
Co—O2—K137.52 (5)O3iv—K—O2133.48 (3)
C1—O3—K88.51 (8)O3—K—O246.68 (3)
K—O4—H4A126 (2)O2iv—K—O2179.20 (4)
O3—C1—O2124.27 (13)
O1i—Co—N—C2112.70 (10)K—O3—C1—O238.95 (13)
O1—Co—N—C279.61 (10)K—O3—C1—O1139.00 (13)
O2—Co—N—C264.0 (2)K—O2—C1—O338.99 (13)
O2i—Co—N—C2178.18 (10)K—O2—C1—O1139.19 (10)
Ni—Co—N—C214.19 (7)Kii—O1—C1—O332.16 (17)
O1i—Co—O1—C148.52 (18)Kii—O1—C1—O2146.01 (8)
O2—Co—O1—C11.07 (7)Co—N—C2—C2i38.67 (17)
O2i—Co—O1—C192.59 (8)N—C2—C2i—Ni50.1 (2)
N—Co—O1—C1175.31 (8)C1—O3—K—O4117.60 (9)
Ni—Co—O1—C188.14 (8)C1—O3—K—O1ii112.50 (9)
O1i—Co—O1—Kii179.06 (7)C1—O3—K—O1iii6.86 (10)
O2—Co—O1—Kii131.62 (8)C1—O3—K—O3iv117.60 (9)
O2i—Co—O1—Kii136.86 (7)C1—O3—K—O2iv159.73 (8)
N—Co—O1—Kii44.77 (8)C1—O3—K—O219.19 (8)
Ni—Co—O1—Kii42.40 (8)C1—O2—K—O496.40 (7)
O1i—Co—O2—C1167.86 (7)Co—O2—K—O4177.20 (6)
O1—Co—O2—C11.08 (7)C1—O2—K—O1ii29.39 (8)
O2i—Co—O2—C198.36 (8)Co—O2—K—O1ii57.01 (7)
N—Co—O2—C115.5 (2)C1—O2—K—O1iii137.98 (8)
Ni—Co—O2—C193.19 (8)Co—O2—K—O1iii51.59 (6)
O1i—Co—O2—K106.67 (7)C1—O2—K—O3iv175.40 (7)
O1—Co—O2—K86.54 (7)Co—O2—K—O3iv98.21 (7)
O2i—Co—O2—K176.18 (9)C1—O2—K—O318.15 (7)
N—Co—O2—K70.0 (2)Co—O2—K—O3104.55 (8)
Ni—Co—O2—K7.73 (7)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1v0.87 (2)2.30 (2)3.0910 (17)150.8 (17)
N—H0B···O3vi0.80 (2)2.17 (2)2.9678 (17)173.3 (19)
O4—H4A···O3vii0.72 (2)2.07 (2)2.7866 (17)171 (3)
Symmetry codes: (v) x, y+1, z; (vi) x+1/2, y+1, z1/2; (vii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaK[Co(CO3)2(C2H8N2)]·H2O
Mr296.17
Crystal system, space groupMonoclinic, P2/n
Temperature (K)173
a, b, c (Å)8.2527 (13), 7.3864 (12), 8.5085 (14)
β (°) 108.947 (2)
V3)490.56 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.538, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
5227, 1193, 1139
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.057, 1.07
No. of reflections1193
No. of parameters91
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.44, 0.52

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Co—O11.9073 (11)O2—C11.3109 (17)
Co—O21.9190 (10)O2—K2.8475 (10)
Co—N1.9383 (12)O3—C11.2409 (17)
N—C21.4846 (19)O3—K2.8473 (11)
O1—C11.3182 (18)O4—K2.583 (2)
O1—Ki2.7138 (11)C2—C2ii1.516 (3)
O1ii—Co—O1162.12 (7)O4—K—O381.76 (3)
O1—Co—O269.12 (4)O1i—K—O372.67 (3)
O1—Co—O2ii98.35 (4)O1iii—K—O3117.34 (3)
O2—Co—O2ii94.37 (6)O3iv—K—O3163.52 (5)
O1ii—Co—N94.27 (5)O4—K—O290.40 (2)
O1—Co—N98.73 (5)O1i—K—O2104.93 (3)
O2—Co—N167.36 (5)O1iii—K—O274.61 (3)
O2ii—Co—N90.79 (5)O3iv—K—O2133.48 (3)
N—Co—Nii86.56 (8)O3—K—O246.68 (3)
O4—K—O1i124.28 (2)O2iv—K—O2179.20 (4)
O1i—K—O1iii111.43 (5)
Co—N—C2—C2ii38.67 (17)N—C2—C2ii—Nii50.1 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O1v0.87 (2)2.30 (2)3.0910 (17)150.8 (17)
N—H0B···O3vi0.80 (2)2.17 (2)2.9678 (17)173.3 (19)
O4—H4A···O3vii0.72 (2)2.07 (2)2.7866 (17)171 (3)
Symmetry codes: (v) x, y+1, z; (vi) x+1/2, y+1, z1/2; (vii) x, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds