Download citation
Download citation
link to html
The title compound, [Cu(C24H46N6O2)]Cl2·8H2O, contains a centrosymmetric cation, with the anions and water mol­ecules on general sites. The coordination geometry around the CuII ion is an axially elongated octahedron, with Cu-N distances of 2.0448 (17) and 2.0847 (17) Å, and a Cu-O1 distance of 2.3138 (16) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101004024/fr1322sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101004024/fr1322Isup2.hkl
Contains datablock I

CCDC reference: 173339

Comment top

The transition metal(II) complexes of partially N-functionalized 14-membered tetraaza macrocycles have been studied much less extensively than those of the fully N-functionalized analogs. This may be due to the fact that the synthesis of partially N-substituted macrocycles is complicated and requires several steps (Pallavicini et al., 1987). The crystal structure of the title compound, [2,13-bis(acetamido)-5,16-dimethyl-2,6,13,17-tetraazatricyclo[16.4.0.07,12]- docosane]copper(II) dichloride octahydrate, (I), exhibits a tetragonally elongated octahedral geometry with bonds from the CuII atom to the secondary and tertiary amines of the macrocycle and to two O atoms of the pendant acetamide groups.

In the complex [Cu(C24H46N6O2)]2+ cation, the two acetamide groups are attached to the less sterically hindered N atoms of the macrocyclic ligand. The Cu—N2(tertiary amine) distance of 2.0847 (17) Å is slightly longer than the Cu—N1(secondary amine) distance [2.0438 (16) Å]. The axial Cu—O1 distance of 2.3138 (16) Å is considerably longer than the equatorial Cu—N distances. This long axial Cu—O distance may be due to the well established Jahn–Teller effect. The equatorial Cu—N and axial Cu—O bond lengths are typical of tetraaza macrocyclic copper(II) complexes (Choi et al., 1999). The axial N2—Cu—O1 bond angle [99.91 (6)°] on the five-membered chelate ring is expected for the bite angle of this type of macrocyclic ligand. The other angle [N1—Cu—O1 83.64 (6)°] may be due to steric hindrance involving the C13 methyl group. The O1C15 bond length [1.234 (3) Å] clearly shows double-bond character. The two pendant acetamide groups in the complex are trans with respect to one another, and the configuration of the ligand is trans-III in the solid state. Interestingly, the acetamide N3 and secondary amine N1 atoms of the macrocycle form hydrogen bonds with the water molecules. The hydrogen bonds among N1, N3, four water molecules and a chloride ion form a three-dimensional molecular network and are presumably responsible for the stability of this crystal (Tbale 2).

Experimental top

The ligand 2,13-bis(acetamido)-5,16-dimethyl-2,6,13,17-tetraazatricyclo- [14,4,01.18,07.12]docosane was synthesized according to the method of Maumela et al. (1995). A methanol solution (20 ml) of CuCl2·6H2O (185 mg, 0.5 mmol) and the free ligand (225 mg, 0.5 mmol) was heated under reflux for 1 h and then cooled to room temperature. The solution was filtered and left at room temperature until deep-blue crystals formed. The product was filtered and recrystallized from a hot water–acetonitrile (1:1, 10 ml) mixture.

Refinement top

The eight H atoms of the water molecules were found from a difference Fourier map, their positions were constrained using DFIX (0.90 0.03) and their displacement parameters were refined as a common variable [0.079 (4) Å2]. The positions of all remaining H atoms were calculated geometrically and constrained to ride on their attached atoms, with isotropic displacement parameters fixed at 1.2 (C or N) or 1.5 (methyl C) times the equivalent isotropic displacement parameters of their parent atoms. The highest peak and deepest hole in the final difference density map were 1.09 Å from Cu and 0.76 Å from Cl, respectively.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View (Farrugia, 1997) of (I) with 20% probability displacement ellipsoids. The Cu atom occupies an inversion center and only the asymmetric unit is labelled.
(I) top
Crystal data top
[Cu(C24H46N6O2)]Cl2·8H2OF(000) = 782
Mr = 729.24Dx = 1.388 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.210 (4) ÅCell parameters from 25 reflections
b = 17.709 (3) Åθ = 11.4–12.7°
c = 9.2126 (16) ŵ = 0.84 mm1
β = 107.423 (19)°T = 293 K
V = 1745.0 (8) Å3Block, dark blue
Z = 20.48 × 0.46 × 0.30 mm
Data collection top
Enraf Nonius CAD-4
diffractometer
2551 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
non–profiled ω/2θ scansh = 1312
Absorption correction: ψ scan
North et al. (1968)
k = 021
Tmin = 0.662, Tmax = 0.778l = 010
3262 measured reflections3 standard reflections every 300 min
3060 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.4858P]
where P = (Fo2 + 2Fc2)/3
3060 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.46 e Å3
8 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu(C24H46N6O2)]Cl2·8H2OV = 1745.0 (8) Å3
Mr = 729.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.210 (4) ŵ = 0.84 mm1
b = 17.709 (3) ÅT = 293 K
c = 9.2126 (16) Å0.48 × 0.46 × 0.30 mm
β = 107.423 (19)°
Data collection top
Enraf Nonius CAD-4
diffractometer
2551 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al. (1968)
Rint = 0.044
Tmin = 0.662, Tmax = 0.7783 standard reflections every 300 min
3262 measured reflections intensity decay: 3%
3060 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0358 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
3060 reflectionsΔρmin = 0.28 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.00000.00000.02560 (13)
O10.44703 (15)0.10022 (8)0.16824 (18)0.0373 (4)
N10.40756 (16)0.06110 (10)0.12108 (19)0.0289 (4)
H10.37660.10110.05930.035*
N20.66258 (16)0.04273 (9)0.15320 (19)0.0281 (4)
N30.2973 (2)0.13230 (12)0.3816 (3)0.0578 (6)
H3A0.33110.17540.38660.069*
H3B0.22930.11970.44980.069*
C40.5005 (2)0.09631 (12)0.2547 (2)0.0317 (5)
H40.52220.05940.33780.038*
C50.4492 (2)0.16715 (14)0.3101 (3)0.0461 (6)
H5A0.41900.20200.22580.055*
H5B0.37900.15330.34570.055*
C60.5479 (3)0.20625 (15)0.4380 (3)0.0538 (7)
H6A0.51300.25190.46720.065*
H6B0.57280.17320.52600.065*
C70.6611 (3)0.22610 (14)0.3888 (3)0.0513 (7)
H7A0.72390.24940.47300.062*
H7B0.63740.26220.30590.062*
C80.7155 (2)0.15571 (13)0.3374 (3)0.0452 (6)
H8A0.74710.12200.42350.054*
H8B0.78510.17010.30120.054*
C90.6174 (2)0.11408 (11)0.2105 (2)0.0305 (5)
H90.59210.14880.12390.037*
C100.7559 (2)0.06315 (13)0.0731 (3)0.0372 (5)
H10A0.82870.08470.14670.045*
H10B0.71990.10190.00150.045*
C110.2017 (2)0.00187 (14)0.0069 (3)0.0432 (6)
H11A0.12570.01340.02850.052*
H11B0.18070.04410.06320.052*
C120.2945 (2)0.02965 (14)0.1549 (3)0.0384 (5)
H120.25450.07130.19270.046*
C130.3276 (3)0.03044 (17)0.2778 (3)0.0521 (7)
H13A0.37530.06960.24910.078*
H13B0.25230.05150.29010.078*
H13C0.37620.00820.37200.078*
C140.2820 (2)0.01113 (11)0.2800 (3)0.0347 (5)
H14A0.19620.02110.28310.042*
H14B0.28020.01300.37510.042*
C150.3496 (2)0.08574 (12)0.2698 (2)0.0329 (5)
Cl0.05446 (10)0.20212 (5)0.14520 (10)0.0814 (3)
O110.2494 (2)0.20522 (14)0.0449 (3)0.0703 (6)
O120.0286 (2)0.43540 (14)0.1453 (3)0.0720 (6)
O130.0676 (2)0.41444 (13)0.1009 (3)0.0702 (6)
O140.0969 (3)0.31582 (16)0.2904 (3)0.0853 (8)
H1110.192 (3)0.2032 (19)0.000 (4)0.079 (4)*
H1120.211 (3)0.2286 (18)0.129 (3)0.079 (4)*
H1210.002 (3)0.4158 (19)0.080 (3)0.079 (4)*
H1220.048 (3)0.3978 (16)0.194 (4)0.079 (4)*
H1310.056 (3)0.3884 (18)0.177 (3)0.079 (4)*
H1320.057 (3)0.4589 (15)0.138 (4)0.079 (4)*
H1410.061 (3)0.307 (2)0.386 (3)0.079 (4)*
H1420.058 (3)0.2826 (17)0.257 (4)0.079 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02301 (19)0.0240 (2)0.0269 (2)0.00059 (15)0.00319 (14)0.00252 (15)
O10.0395 (9)0.0322 (8)0.0371 (9)0.0062 (7)0.0066 (7)0.0018 (7)
N10.0288 (9)0.0280 (9)0.0280 (9)0.0021 (7)0.0059 (7)0.0007 (7)
N20.0272 (9)0.0221 (9)0.0308 (9)0.0014 (7)0.0021 (7)0.0015 (7)
N30.0670 (15)0.0396 (12)0.0507 (13)0.0125 (11)0.0067 (11)0.0183 (11)
C40.0377 (12)0.0291 (11)0.0246 (10)0.0004 (9)0.0040 (9)0.0003 (9)
C50.0521 (15)0.0420 (14)0.0425 (14)0.0041 (12)0.0116 (12)0.0123 (11)
C60.0739 (19)0.0420 (15)0.0403 (14)0.0033 (14)0.0091 (13)0.0160 (12)
C70.0646 (18)0.0333 (13)0.0446 (14)0.0053 (12)0.0008 (13)0.0117 (11)
C80.0468 (14)0.0335 (13)0.0462 (14)0.0074 (11)0.0002 (11)0.0084 (11)
C90.0370 (12)0.0211 (10)0.0282 (11)0.0000 (9)0.0021 (9)0.0006 (9)
C100.0310 (12)0.0368 (13)0.0410 (13)0.0078 (10)0.0067 (10)0.0021 (10)
C110.0259 (11)0.0487 (14)0.0535 (15)0.0029 (11)0.0096 (10)0.0068 (12)
C120.0313 (12)0.0435 (13)0.0433 (14)0.0008 (10)0.0155 (10)0.0055 (11)
C130.0508 (16)0.0626 (16)0.0496 (16)0.0119 (14)0.0251 (13)0.0042 (14)
C140.0314 (11)0.0279 (12)0.0368 (12)0.0031 (9)0.0018 (9)0.0066 (9)
C150.0376 (12)0.0300 (11)0.0313 (12)0.0021 (10)0.0106 (10)0.0010 (10)
Cl0.1048 (7)0.0825 (6)0.0655 (5)0.0051 (5)0.0388 (5)0.0079 (4)
O110.0616 (14)0.0821 (16)0.0682 (15)0.0137 (12)0.0211 (11)0.0152 (12)
O120.0768 (16)0.0663 (15)0.0810 (17)0.0086 (12)0.0361 (13)0.0051 (12)
O130.0833 (16)0.0666 (15)0.0527 (13)0.0038 (13)0.0081 (12)0.0057 (11)
O140.0785 (17)0.0862 (19)0.0936 (19)0.0144 (14)0.0294 (15)0.0209 (16)
Geometric parameters (Å, º) top
Cu—N1i2.0448 (17)C8—C91.533 (3)
Cu—N12.0448 (17)C8—H8A0.9700
Cu—N22.0847 (17)C8—H8B0.9700
Cu—N2i2.0847 (17)C9—H90.9800
Cu—O1i2.3138 (16)C10—C11i1.518 (3)
Cu—O12.3138 (16)C10—H10A0.9700
O1—C151.234 (3)C10—H10B0.9700
N1—C41.490 (3)C11—C10i1.518 (3)
N1—C121.500 (3)C11—C121.527 (3)
N1—H10.9100C11—H11A0.9700
N2—C14i1.492 (3)C11—H11B0.9700
N2—C101.494 (3)C12—C131.517 (4)
N2—C91.514 (3)C12—H120.9800
N3—C151.312 (3)C13—H13A0.9600
N3—H3A0.8600C13—H13B0.9600
N3—H3B0.8600C13—H13C0.9600
C4—C91.518 (3)C14—N2i1.492 (3)
C4—C51.530 (3)C14—C151.512 (3)
C4—H40.9800C14—H14A0.9700
C5—C61.521 (4)C14—H14B0.9700
C5—H5A0.9700O11—H1110.86 (2)
C5—H5B0.9700O11—H1120.87 (2)
C6—C71.510 (4)O12—H1210.82 (2)
C6—H6A0.9700O12—H1220.86 (2)
C6—H6B0.9700O13—H1310.82 (2)
C7—C81.525 (4)O13—H1320.85 (2)
C7—H7A0.9700O14—H1410.86 (2)
C7—H7B0.9700O14—H1420.84 (2)
N1i—Cu—N1180.00 (11)C6—C7—H7B109.5
N1i—Cu—N294.49 (7)C8—C7—H7B109.5
N1—Cu—N285.51 (7)H7A—C7—H7B108.1
N1i—Cu—N2i85.51 (7)C7—C8—C9111.6 (2)
N1—Cu—N2i94.49 (7)C7—C8—H8A109.3
N2—Cu—N2i180.00 (7)C9—C8—H8A109.3
N1i—Cu—O1i83.64 (6)C7—C8—H8B109.3
N1—Cu—O1i96.36 (6)C9—C8—H8B109.3
N2—Cu—O1i80.09 (6)H8A—C8—H8B108.0
N2i—Cu—O1i99.91 (6)N2—C9—C4109.06 (16)
N1i—Cu—O196.36 (6)N2—C9—C8115.39 (18)
N1—Cu—O183.64 (6)C4—C9—C8112.04 (19)
N2—Cu—O199.91 (6)N2—C9—H9106.6
N2i—Cu—O180.09 (6)C4—C9—H9106.6
O1i—Cu—O1180.00 (8)C8—C9—H9106.6
C15—O1—Cu109.87 (13)N2—C10—C11i115.05 (18)
C4—N1—C12114.15 (17)N2—C10—H10A108.5
C4—N1—Cu109.20 (13)C11i—C10—H10A108.5
C12—N1—Cu120.96 (14)N2—C10—H10B108.5
C4—N1—H1103.4C11i—C10—H10B108.5
C12—N1—H1103.4H10A—C10—H10B107.5
Cu—N1—H1103.4C10i—C11—C12116.7 (2)
C14i—N2—C10110.66 (17)C10i—C11—H11A108.1
C14i—N2—C9111.41 (17)C12—C11—H11A108.1
C10—N2—C9109.08 (16)C10i—C11—H11B108.1
C14i—N2—Cu111.87 (12)C12—C11—H11B108.1
C10—N2—Cu110.66 (13)H11A—C11—H11B107.3
C9—N2—Cu102.89 (12)N1—C12—C13112.46 (19)
C15—N3—H3A120.0N1—C12—C11109.03 (18)
C15—N3—H3B120.0C13—C12—C11112.9 (2)
H3A—N3—H3B120.0N1—C12—H12107.4
N1—C4—C9108.15 (17)C13—C12—H12107.4
N1—C4—C5112.29 (18)C11—C12—H12107.4
C9—C4—C5111.15 (19)C12—C13—H13A109.5
N1—C4—H4108.4C12—C13—H13B109.5
C9—C4—H4108.4H13A—C13—H13B109.5
C5—C4—H4108.4C12—C13—H13C109.5
C6—C5—C4111.9 (2)H13A—C13—H13C109.5
C6—C5—H5A109.2H13B—C13—H13C109.5
C4—C5—H5A109.2N2i—C14—C15115.29 (17)
C6—C5—H5B109.2N2i—C14—H14A108.5
C4—C5—H5B109.2C15—C14—H14A108.5
H5A—C5—H5B107.9N2i—C14—H14B108.5
C7—C6—C5110.8 (2)C15—C14—H14B108.5
C7—C6—H6A109.5H14A—C14—H14B107.5
C5—C6—H6A109.5O1—C15—N3123.4 (2)
C7—C6—H6B109.5O1—C15—C14122.81 (19)
C5—C6—H6B109.5N3—C15—C14113.8 (2)
H6A—C6—H6B108.1H111—O11—H112102 (3)
C6—C7—C8110.7 (2)H121—O12—H122105 (3)
C6—C7—H7A109.5H131—O13—H132102 (3)
C8—C7—H7A109.5H141—O14—H14296 (4)
N1i—Cu—O1—C1584.90 (15)C9—C4—C5—C654.0 (3)
N1—Cu—O1—C1595.10 (15)C4—C5—C6—C756.8 (3)
N2—Cu—O1—C15179.39 (15)C5—C6—C7—C857.3 (3)
N2i—Cu—O1—C150.61 (15)C6—C7—C8—C955.9 (3)
N2—Cu—N1—C44.59 (13)C14i—N2—C9—C472.0 (2)
N2i—Cu—N1—C4175.41 (13)C10—N2—C9—C4165.50 (17)
O1i—Cu—N1—C474.90 (13)Cu—N2—C9—C447.97 (17)
O1—Cu—N1—C4105.10 (13)C14i—N2—C9—C855.1 (2)
N2—Cu—N1—C12140.16 (16)C10—N2—C9—C867.4 (2)
N2i—Cu—N1—C1239.84 (16)Cu—N2—C9—C8175.08 (16)
O1i—Cu—N1—C1260.67 (16)N1—C4—C9—N255.0 (2)
O1—Cu—N1—C12119.33 (16)C5—C4—C9—N2178.72 (17)
N1i—Cu—N2—C14i83.76 (15)N1—C4—C9—C8175.99 (17)
N1—Cu—N2—C14i96.24 (15)C5—C4—C9—C852.3 (2)
O1i—Cu—N2—C14i1.03 (14)C7—C8—C9—N2179.30 (19)
O1—Cu—N2—C14i178.97 (14)C7—C8—C9—C453.7 (3)
N1i—Cu—N2—C1040.13 (14)C14i—N2—C10—C11i64.0 (2)
N1—Cu—N2—C10139.87 (14)C9—N2—C10—C11i173.12 (18)
O1i—Cu—N2—C10122.86 (14)Cu—N2—C10—C11i60.6 (2)
O1—Cu—N2—C1057.14 (14)C4—N1—C12—C1359.0 (3)
N1i—Cu—N2—C9156.54 (12)Cu—N1—C12—C1374.5 (2)
N1—Cu—N2—C923.46 (12)C4—N1—C12—C11174.90 (18)
O1i—Cu—N2—C9120.73 (13)Cu—N1—C12—C1151.5 (2)
O1—Cu—N2—C959.27 (13)C10i—C11—C12—N163.9 (3)
C12—N1—C4—C9171.14 (17)C10i—C11—C12—C1361.9 (3)
Cu—N1—C4—C932.28 (19)Cu—O1—C15—N3179.8 (2)
C12—N1—C4—C565.8 (2)Cu—O1—C15—C142.3 (3)
Cu—N1—C4—C5155.29 (16)N2i—C14—C15—O13.3 (3)
N1—C4—C5—C6175.3 (2)N2i—C14—C15—N3178.9 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.912.353.220 (3)160
N3—H3A···O11ii0.862.583.217 (3)132
N3—H3B···O13ii0.862.022.878 (3)177
O11—H111···Cl0.86 (2)2.32 (2)3.184 (3)174 (3)
O11—H112···Clii0.87 (2)2.59 (3)3.447 (3)167 (3)
O12—H121···O130.82 (2)2.04 (3)2.812 (4)156 (4)
O12—H122···O140.86 (2)1.87 (2)2.734 (4)177 (4)
O13—H131···Clii0.82 (2)2.29 (2)3.090 (2)167 (3)
O13—H132···O12iii0.85 (2)1.90 (3)2.706 (4)158 (3)
O14—H141···Cliv0.86 (2)2.36 (2)3.216 (3)172 (3)
O14—H142···Cl0.84 (2)2.34 (2)3.175 (3)173 (3)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C24H46N6O2)]Cl2·8H2O
Mr729.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.210 (4), 17.709 (3), 9.2126 (16)
β (°) 107.423 (19)
V3)1745.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.48 × 0.46 × 0.30
Data collection
DiffractometerEnraf Nonius CAD-4
diffractometer
Absorption correctionψ scan
North et al. (1968)
Tmin, Tmax0.662, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
3262, 3060, 2551
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.08
No. of reflections3060
No. of parameters222
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.28

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu—N1i2.0448 (17)Cu—O1i2.3138 (16)
Cu—N12.0448 (17)Cu—O12.3138 (16)
Cu—N22.0847 (17)O1—C151.234 (3)
Cu—N2i2.0847 (17)N3—C151.312 (3)
N1—Cu—O183.64 (6)N2—Cu—O199.91 (6)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O110.912.353.220 (3)159.5
N3—H3A···O11ii0.862.583.217 (3)132.2
N3—H3B···O13ii0.862.022.878 (3)176.5
O11—H111···Cl0.86 (2)2.32 (2)3.184 (3)174 (3)
O11—H112···Clii0.87 (2)2.59 (3)3.447 (3)167 (3)
O12—H121···O130.82 (2)2.04 (3)2.812 (4)156 (4)
O12—H122···O140.86 (2)1.87 (2)2.734 (4)177 (4)
O13—H131···Clii0.82 (2)2.29 (2)3.090 (2)167 (3)
O13—H132···O12iii0.85 (2)1.90 (3)2.706 (4)158 (3)
O14—H141···Cliv0.86 (2)2.36 (2)3.216 (3)172 (3)
O14—H142···Cl0.84 (2)2.34 (2)3.175 (3)173 (3)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds