Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, 4-hydroxy-5-oxo-1,3,6-cyclo­heptatriene-1-carbo­nitrile, C8H5NO2, (I), and 2-hydroxy-5-nitro-2,4,6-cyclo­heptatrien-1-one, C7H5NO4, (II), have intra- and intermolecular hydrogen bonds. The structure of (II) contains two crystallographically independent mol­ecules, (IIa) and (IIb). An intermolecular π–π interaction and an intermolecular NO2...π–π interaction are present in (I) and (II), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101002463/fr1319sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002463/fr1319Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002463/fr1319IIsup3.hkl
Contains datablock II

CCDC references: 164666; 164667

Comment top

Troponoids have been an important building block for constructing liquid crystals (Mori et al., 1992; Mori & Takeshita, 1995), ionophores (Mori et al., 1996; Kubo et al., 1999) and dyes (Takeshita et al., 1989; Mori et al., 1993). The troponoid moiety plays an important role to generate new properties in molecular assemblies. Recently, we have prepared liquid crystals with a tropolone core such as 5-hydroxy- (Mori & Takeshita, 1995), 5-phenyl- (Mori et al., 1992), 5-nitro- and 5-cyanotropolones (Hashimoto et al., 2000). The cores enhanced formation of smectic phases when compared with the corresponding benzenoids. The crystal structure analyses of tropolone (Shimanouchi & Sasada, 1973) and of metal complexes such as copper (Berg et al., 1978) and iron (Hamor & Watkin, 1969) tropolones have been carried out. However, the crystal structures of 5-hydroxy-, 5-phenyl-, 5-nitro- and 5-cyanotropolone have not been elucidated. We now report the structures of 5-cyano- and 5-nitrotropolone, (I) and (II), with the aim of contributing to a deeper understanding of troponoids and molecular assemblies. \sch

The structure of (II) contains two crystallographically independent molecules, (IIa) and (IIb), related by a non-crystallographic screw axis in the a axis direction located at x, 1/4, 1/2. The planarities of (I) and (II) are fairly good; the deviations of atoms from the least-squares plane of (I), (IIa), and (IIb) are within 0.03 (1), 0.07 (2) and and 0.23 (2) Å for (IIb), respectively. The C—C bond-length patterns of the seven-membered ring of (I), (IIa), and (IIb) are similar to those of tropolone (Shimanouchi & Sasada, 1973).

Compounds (I) and (II) form hydrogen-bonded dimers about inversion centres, in which the OH group and an intermolecular component, carbonyl oxygen O1 being the acceptor in both cases. These bonds are tabulated in Tables 2 and 4, and illustrated in Figs. 3 and 4. The distances are close to that [2.746 Å] of tropolone. Intermolecular ππ interactions between the tropolone dimer planes (head-to-head) of (I) and between the tropolone dimer planes (head-to-tail) of (II) are observed. The distances between intermolecular tropolone planes are 3.791 (5) Å for C1—C1iv (iv: x, y, z - 1) of (I) and 3.399 (2) Å for C1—C5v (v: -x, 1 - y, 1 - z) of (II), respectively, which are within the range associated with ππ interaction (3.3–3.8 Å). The value is similar to that (3.715 Å) of the intermolecular C1—C3vi (vi: 1 + x, 1/2 - y, 1/2 + z) of tropolone (Shimanouchi & Sasada, 1973) and the type of ππ packing of (I) and (II) are distinct from that of tropolone (Shimanouchi & Sasada, 1973).

Compound (II) has two independent molecules in the lattice. Furthermore, intermolecular interaction between a nitro group and a seven-membered ring of (II) is observed. The distances between a nitro group and a seven-membered ring are 3.611 (2) Å for C7—N11 3.602 (2) Å for C6—O13 3.123 (2) Å for C1—O14, respectively. Thus, the substituent at C-5 differentiated the crystal packing in the lattice.

Related literature top

For related literature, see: Berg et al. (1978); Cook et al. (1954); Doering & Knox (1951); Hamor & Watkin (1969); Hashimoto et al. (2000); Kubo et al. (1999); Mori & Takeshita (1995); Mori et al. (1992, 1993, 1996); Shimanouchi & Sasada (1973); Takeshita et al. (1989).

Experimental top

Compound (I) was synthesized by diazotization and cyanidation of 5-aminotropolone (Cook et al., 1954). Compound (II) was synthesized by the nitration of tropolone (Doering & Knox, 1951). The single crystals of (I) and (II) were obtained by recrystallization from chloroform.

Refinement top

All H atoms were located at ideal positions with C—H 0.93 Å and O—H 0.82 Å, and restrained with Uiso held fixed to 1.2 times Ueq of the parent atoms.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (I); SIR97 (Altomare et al., 1997) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal_GX (Hall & du Boulay, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular structures of (II) showing 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of (I) viewed approximately down the b axis, with hydrogen bonds dotted.
[Figure 4] Fig. 4. Packing diagram of (II) viewed down the c axis, with hydrogen bonds dotted.
(I) top
Crystal data top
C8H5NO2Z = 2
Mr = 147.13F(000) = 152
Triclinic, P1Dx = 1.443 Mg m3
a = 7.1995 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6309 (14) ÅCell parameters from 25 reflections
c = 3.7913 (3) Åθ = 6.8–18.4°
α = 90.805 (9)°µ = 0.11 mm1
β = 99.905 (7)°T = 296 K
γ = 94.116 (8)°Prism, yellow
V = 338.63 (5) Å30.53 × 0.30 × 0.13 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1311 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 28.0°, θmin = 2.9°
ω–2θ scansh = 99
Absorption correction: ψ
via ψ scans (North et al.,, 1968)
k = 1616
Tmin = 0.918, Tmax = 0.986l = 40
1854 measured reflections3 standard reflections every 120 min
1611 independent reflections intensity decay: 2.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.060P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1611 reflectionsΔρmax = 0.28 e Å3
102 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.120 (17)
Crystal data top
C8H5NO2γ = 94.116 (8)°
Mr = 147.13V = 338.63 (5) Å3
Triclinic, P1Z = 2
a = 7.1995 (5) ÅMo Kα radiation
b = 12.6309 (14) ŵ = 0.11 mm1
c = 3.7913 (3) ÅT = 296 K
α = 90.805 (9)°0.53 × 0.30 × 0.13 mm
β = 99.905 (7)°
Data collection top
Enraf-Nonius CAD4
diffractometer
1311 reflections with I > 2σ(I)
Absorption correction: ψ
via ψ scans (North et al.,, 1968)
Rint = 0.011
Tmin = 0.918, Tmax = 0.9863 standard reflections every 120 min
1854 measured reflections intensity decay: 2.2%
1611 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
1611 reflectionsΔρmin = 0.14 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.2110 (2)0.06845 (11)1.4031 (4)0.0607 (4)
O10.70738 (14)0.46957 (8)0.5649 (3)0.0525 (3)
O20.43186 (13)0.34112 (8)0.6722 (3)0.0542 (3)
H20.44000.40190.60060.081*
C10.75720 (17)0.38706 (9)0.7189 (3)0.0351 (3)
C20.60469 (17)0.30987 (10)0.7836 (3)0.0369 (3)
C30.61546 (18)0.21179 (10)0.9332 (4)0.0408 (3)
H30.49950.17520.94100.049*
C40.77349 (18)0.15816 (10)1.0760 (3)0.0387 (3)
H40.74800.09131.16380.046*
C50.96163 (17)0.19141 (9)1.1035 (3)0.0356 (3)
C61.04004 (17)0.28809 (10)0.9865 (3)0.0371 (3)
H61.17140.29661.03110.045*
C70.95330 (17)0.37035 (9)0.8195 (3)0.0360 (3)
H71.03530.42490.76070.043*
C81.0987 (2)0.12109 (10)1.2707 (4)0.0433 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0551 (8)0.0517 (7)0.0737 (9)0.0164 (6)0.0007 (7)0.0174 (6)
O10.0404 (5)0.0425 (5)0.0751 (7)0.0076 (4)0.0079 (5)0.0263 (5)
O20.0307 (5)0.0480 (6)0.0839 (8)0.0057 (4)0.0069 (5)0.0267 (5)
C10.0350 (6)0.0323 (6)0.0383 (6)0.0032 (4)0.0065 (5)0.0076 (4)
C20.0313 (6)0.0382 (6)0.0414 (7)0.0040 (5)0.0061 (5)0.0078 (5)
C30.0348 (6)0.0372 (6)0.0503 (7)0.0011 (5)0.0079 (5)0.0102 (5)
C40.0438 (7)0.0311 (6)0.0414 (7)0.0030 (5)0.0077 (5)0.0080 (5)
C50.0395 (6)0.0333 (6)0.0345 (6)0.0084 (5)0.0049 (5)0.0046 (4)
C60.0303 (5)0.0392 (6)0.0417 (7)0.0037 (4)0.0048 (5)0.0047 (5)
C70.0325 (6)0.0337 (6)0.0418 (7)0.0002 (4)0.0071 (5)0.0068 (5)
C80.0454 (7)0.0377 (6)0.0466 (7)0.0079 (5)0.0052 (6)0.0085 (5)
Geometric parameters (Å, º) top
N1—C81.1377 (18)C3—H30.9300
O1—C11.2468 (14)C4—C51.3750 (18)
O2—C21.3330 (15)C4—H40.9300
O2—H20.8200C5—C61.4175 (17)
C1—C71.4294 (17)C5—C81.4461 (16)
C1—C21.4704 (16)C6—C71.3588 (17)
C2—C31.3716 (17)C6—H60.9300
C3—C41.3984 (18)C7—H70.9300
C2—O2—H2109.5C3—C4—H4115.8
O1—C1—C7120.41 (11)C4—C5—C6127.61 (11)
O1—C1—C2116.39 (11)C4—C5—C8117.53 (11)
C7—C1—C2123.19 (10)C6—C5—C8114.85 (11)
O2—C2—C3116.69 (11)C7—C6—C5130.11 (12)
O2—C2—C1113.70 (10)C7—C6—H6114.9
C3—C2—C1129.60 (11)C5—C6—H6114.9
C2—C3—C4130.12 (12)C6—C7—C1130.84 (11)
C2—C3—H3114.9C6—C7—H7114.6
C4—C3—H3114.9C1—C7—H7114.6
C5—C4—C3128.47 (11)N1—C8—C5177.77 (15)
C5—C4—H4115.8
O1—C1—C2—O21.32 (18)C3—C4—C5—C8178.70 (13)
C7—C1—C2—O2179.44 (12)C4—C5—C6—C70.6 (2)
O1—C1—C2—C3177.41 (14)C8—C5—C6—C7179.49 (13)
C7—C1—C2—C31.8 (2)C5—C6—C7—C12.2 (2)
O2—C2—C3—C4179.31 (14)O1—C1—C7—C6179.95 (13)
C1—C2—C3—C42.0 (3)C2—C1—C7—C60.7 (2)
C2—C3—C4—C50.3 (2)C4—C5—C8—N1166 (4)
C3—C4—C5—C61.2 (2)C6—C5—C8—N114 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.052.761 (2)145
O2—H2···O10.822.082.563 (2)118
Symmetry code: (i) x+1, y+1, z+1.
(II) top
Crystal data top
C7H5NO4Z = 4
Mr = 167.12F(000) = 344
Triclinic, P1Dx = 1.617 Mg m3
a = 7.5701 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.496 (3) ÅCell parameters from 25 reflections
c = 6.4945 (7) Åθ = 10.8–18.3°
α = 90.751 (14)°µ = 0.14 mm1
β = 104.796 (8)°T = 296 K
γ = 94.410 (13)°Prism, yellow
V = 686.7 (2) Å30.40 × 0.30 × 0.23 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
2493 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 28.0°, θmin = 2.8°
ω–2θ scansh = 99
Absorption correction: ψ
via ψ scans (North et al., 1968)
k = 190
Tmin = 0.914, Tmax = 0.969l = 88
3438 measured reflections3 standard reflections every 120 min
3309 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.1579P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3309 reflectionsΔρmax = 0.29 e Å3
220 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.141 (9)
Crystal data top
C7H5NO4γ = 94.410 (13)°
Mr = 167.12V = 686.7 (2) Å3
Triclinic, P1Z = 4
a = 7.5701 (10) ÅMo Kα radiation
b = 14.496 (3) ŵ = 0.14 mm1
c = 6.4945 (7) ÅT = 296 K
α = 90.751 (14)°0.40 × 0.30 × 0.23 mm
β = 104.796 (8)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2493 reflections with I > 2σ(I)
Absorption correction: ψ
via ψ scans (North et al., 1968)
Rint = 0.009
Tmin = 0.914, Tmax = 0.9693 standard reflections every 120 min
3438 measured reflections intensity decay: 0.5%
3309 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3309 reflectionsΔρmin = 0.18 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25178 (18)0.30941 (10)0.1946 (2)0.0470 (3)
O10.28301 (16)0.47812 (9)0.94339 (18)0.0542 (3)
O20.48839 (15)0.43210 (10)0.70233 (19)0.0569 (3)
H20.50940.45550.82270.085*
O30.23379 (19)0.28045 (13)0.0255 (2)0.0798 (5)
O40.40023 (17)0.31145 (12)0.2321 (2)0.0768 (5)
C10.1988 (2)0.43735 (10)0.7734 (2)0.0379 (3)
C20.30936 (19)0.41137 (11)0.6274 (2)0.0390 (3)
C30.2522 (2)0.37069 (11)0.4275 (2)0.0408 (3)
H30.34550.36120.36200.049*
C40.0752 (2)0.34116 (10)0.3061 (2)0.0380 (3)
H40.06710.31580.17140.046*
C50.08634 (19)0.34488 (10)0.3604 (2)0.0358 (3)
C60.1194 (2)0.37814 (10)0.5509 (2)0.0390 (3)
H60.24100.37240.55770.047*
C70.0037 (2)0.41758 (11)0.7260 (2)0.0396 (3)
H70.04790.43490.83470.048*
N110.13714 (17)0.18383 (9)0.7945 (2)0.0407 (3)
O110.31610 (16)0.02160 (9)0.05243 (17)0.0510 (3)
O120.63329 (15)0.08343 (10)0.28423 (19)0.0543 (3)
H120.59730.05560.16850.081*
O130.02239 (17)0.15694 (10)0.7807 (2)0.0636 (4)
O140.22838 (18)0.23618 (9)0.9379 (2)0.0575 (4)
C110.31226 (19)0.06151 (10)0.2222 (2)0.0369 (3)
C120.49053 (19)0.09777 (11)0.3617 (2)0.0388 (3)
C130.52839 (19)0.14325 (11)0.5555 (2)0.0426 (4)
H130.65190.16090.61510.051*
C140.4102 (2)0.16753 (10)0.6789 (2)0.0387 (3)
H140.46520.19850.80840.046*
C150.22434 (19)0.15096 (9)0.6306 (2)0.0338 (3)
C160.10273 (18)0.10841 (10)0.4486 (2)0.0368 (3)
H160.02070.10520.44760.044*
C170.14100 (19)0.07114 (11)0.2729 (2)0.0396 (3)
H170.03840.04800.16780.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0367 (7)0.0564 (8)0.0448 (7)0.0021 (6)0.0076 (6)0.0126 (6)
O10.0455 (6)0.0709 (8)0.0417 (6)0.0002 (5)0.0053 (5)0.0168 (5)
O20.0321 (6)0.0888 (9)0.0468 (7)0.0026 (6)0.0064 (5)0.0165 (6)
O30.0514 (8)0.1265 (13)0.0560 (8)0.0107 (8)0.0112 (6)0.0454 (8)
O40.0333 (6)0.1205 (13)0.0739 (9)0.0065 (7)0.0144 (6)0.0332 (9)
C10.0394 (7)0.0410 (8)0.0325 (7)0.0047 (6)0.0078 (6)0.0023 (6)
C20.0293 (6)0.0474 (8)0.0404 (8)0.0061 (6)0.0082 (6)0.0004 (6)
C30.0324 (7)0.0537 (9)0.0396 (7)0.0088 (6)0.0137 (6)0.0049 (6)
C40.0374 (7)0.0443 (8)0.0336 (7)0.0064 (6)0.0109 (6)0.0069 (6)
C50.0320 (7)0.0383 (7)0.0360 (7)0.0022 (5)0.0072 (5)0.0049 (6)
C60.0332 (7)0.0464 (8)0.0402 (7)0.0033 (6)0.0149 (6)0.0038 (6)
C70.0391 (7)0.0476 (8)0.0354 (7)0.0041 (6)0.0156 (6)0.0050 (6)
N110.0404 (7)0.0466 (7)0.0370 (6)0.0103 (5)0.0118 (5)0.0059 (5)
O110.0456 (6)0.0713 (8)0.0372 (6)0.0120 (5)0.0111 (5)0.0135 (5)
O120.0345 (6)0.0798 (9)0.0508 (7)0.0045 (5)0.0162 (5)0.0179 (6)
O130.0396 (6)0.0951 (10)0.0600 (8)0.0035 (6)0.0219 (6)0.0199 (7)
O140.0568 (7)0.0658 (8)0.0497 (7)0.0027 (6)0.0154 (6)0.0263 (6)
C110.0353 (7)0.0445 (8)0.0307 (7)0.0068 (6)0.0073 (5)0.0025 (6)
C120.0303 (7)0.0471 (8)0.0407 (7)0.0060 (6)0.0116 (6)0.0010 (6)
C130.0271 (6)0.0548 (9)0.0433 (8)0.0005 (6)0.0055 (6)0.0089 (7)
C140.0345 (7)0.0454 (8)0.0336 (7)0.0022 (6)0.0050 (5)0.0083 (6)
C150.0338 (7)0.0366 (7)0.0323 (7)0.0055 (5)0.0101 (5)0.0035 (5)
C160.0275 (6)0.0453 (8)0.0372 (7)0.0034 (5)0.0079 (5)0.0044 (6)
C170.0310 (7)0.0512 (8)0.0336 (7)0.0011 (6)0.0040 (5)0.0089 (6)
Geometric parameters (Å, º) top
N1—O41.2117 (18)N11—O131.2205 (17)
N1—O31.2139 (18)N11—O141.2220 (17)
N1—C51.4800 (19)N11—C151.4796 (17)
O1—C11.2411 (17)O11—C111.2463 (17)
O2—C21.3268 (18)O12—C121.3317 (17)
O2—H20.8200O12—H120.8200
C1—C71.435 (2)C11—C171.433 (2)
C1—C21.478 (2)C11—C121.474 (2)
C2—C31.370 (2)C12—C131.366 (2)
C3—C41.401 (2)C13—C141.405 (2)
C3—H30.9300C13—H130.9300
C4—C51.361 (2)C14—C151.3626 (19)
C4—H40.9300C14—H140.9300
C5—C61.4096 (19)C15—C161.4012 (19)
C6—C71.359 (2)C16—C171.3620 (19)
C6—H60.9300C16—H160.9300
C7—H70.9300C17—H170.9300
O4—N1—O3122.57 (14)O13—N11—O14123.05 (13)
O4—N1—C5118.62 (13)O13—N11—C15118.43 (12)
O3—N1—C5118.81 (13)O14—N11—C15118.52 (13)
C2—O2—H2109.5C12—O12—H12109.5
O1—C1—C7120.24 (13)O11—C11—C17120.36 (13)
O1—C1—C2116.69 (14)O11—C11—C12116.42 (13)
C7—C1—C2123.07 (13)C17—C11—C12123.22 (12)
O2—C2—C3116.53 (13)O12—C12—C13116.56 (13)
O2—C2—C1114.40 (13)O12—C12—C11114.07 (13)
C3—C2—C1129.06 (13)C13—C12—C11129.37 (13)
C2—C3—C4130.09 (13)C12—C13—C14130.18 (14)
C2—C3—H3115.0C12—C13—H13114.9
C4—C3—H3115.0C14—C13—H13114.9
C5—C4—C3128.22 (13)C15—C14—C13127.50 (14)
C5—C4—H4115.9C15—C14—H14116.3
C3—C4—H4115.9C13—C14—H14116.3
C4—C5—C6129.51 (13)C14—C15—C16129.92 (13)
C4—C5—N1115.29 (13)C14—C15—N11115.11 (12)
C6—C5—N1115.20 (12)C16—C15—N11114.97 (12)
C7—C6—C5128.31 (14)C17—C16—C15128.69 (13)
C7—C6—H6115.8C17—C16—H16115.7
C5—C6—H6115.8C15—C16—H16115.7
C6—C7—C1131.63 (13)C16—C17—C11131.05 (13)
C6—C7—H7114.2C16—C17—H17114.5
C1—C7—H7114.2C11—C17—H17114.5
O1—C1—C2—O22.6 (2)O11—C11—C12—O120.7 (2)
C7—C1—C2—O2177.42 (15)C17—C11—C12—O12178.70 (14)
O1—C1—C2—C3176.34 (16)O11—C11—C12—C13179.38 (16)
C7—C1—C2—C33.6 (3)C17—C11—C12—C131.2 (3)
O2—C2—C3—C4179.91 (16)O12—C12—C13—C14179.17 (17)
C1—C2—C3—C41.0 (3)C11—C12—C13—C140.9 (3)
C2—C3—C4—C50.9 (3)C12—C13—C14—C150.4 (3)
C3—C4—C5—C60.6 (3)C13—C14—C15—C161.6 (3)
C3—C4—C5—N1178.94 (15)C13—C14—C15—N11179.16 (15)
O4—N1—C5—C4179.41 (16)O13—N11—C15—C14166.88 (15)
O3—N1—C5—C40.3 (2)O14—N11—C15—C1412.7 (2)
O4—N1—C5—C60.2 (2)O13—N11—C15—C1613.8 (2)
O3—N1—C5—C6179.31 (16)O14—N11—C15—C16166.65 (14)
C4—C5—C6—C72.2 (3)C14—C15—C16—C171.1 (3)
N1—C5—C6—C7177.32 (15)N11—C15—C16—C17179.65 (15)
C5—C6—C7—C10.2 (3)C15—C16—C17—C111.9 (3)
O1—C1—C7—C6176.81 (16)O11—C11—C17—C16177.43 (16)
C2—C1—C7—C63.1 (3)C12—C11—C17—C163.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.052.743 (2)142
O2—H2···O10.822.102.586 (2)117
O12—H12···O11ii0.822.072.771 (2)143
O12—H12···O110.822.092.573 (2)118
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC8H5NO2C7H5NO4
Mr147.13167.12
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)296296
a, b, c (Å)7.1995 (5), 12.6309 (14), 3.7913 (3)7.5701 (10), 14.496 (3), 6.4945 (7)
α, β, γ (°)90.805 (9), 99.905 (7), 94.116 (8)90.751 (14), 104.796 (8), 94.410 (13)
V3)338.63 (5)686.7 (2)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.110.14
Crystal size (mm)0.53 × 0.30 × 0.130.40 × 0.30 × 0.23
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correctionψ
via ψ scans (North et al.,, 1968)
ψ
via ψ scans (North et al., 1968)
Tmin, Tmax0.918, 0.9860.914, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
1854, 1611, 1311 3438, 3309, 2493
Rint0.0110.009
(sin θ/λ)max1)0.6600.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.03 0.039, 0.119, 1.03
No. of reflections16113309
No. of parameters102220
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.140.29, 0.18

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, MolEN (Fair, 1990), SIR97 (Altomare et al., 1999), SIR97 (Altomare et al., 1997), SHELXL97 (Sheldrick, 1997), Xtal_GX (Hall & du Boulay, 1995), SHELXL97.

Selected bond lengths (Å) for (I) top
N1—C81.1377 (18)C3—C41.3984 (18)
O1—C11.2468 (14)C4—C51.3750 (18)
O2—C21.3330 (15)C5—C61.4175 (17)
C1—C71.4294 (17)C5—C81.4461 (16)
C1—C21.4704 (16)C6—C71.3588 (17)
C2—C31.3716 (17)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.052.761 (2)145
O2—H2···O10.822.082.563 (2)118
Symmetry code: (i) x+1, y+1, z+1.
Selected bond lengths (Å) for (II) top
N1—O41.2117 (18)N11—O131.2205 (17)
N1—O31.2139 (18)N11—O141.2220 (17)
N1—C51.4800 (19)N11—C151.4796 (17)
O1—C11.2411 (17)O11—C111.2463 (17)
O2—C21.3268 (18)O12—C121.3317 (17)
C1—C71.435 (2)C11—C171.433 (2)
C1—C21.478 (2)C11—C121.474 (2)
C2—C31.370 (2)C12—C131.366 (2)
C3—C41.401 (2)C13—C141.405 (2)
C4—C51.361 (2)C14—C151.3626 (19)
C5—C61.4096 (19)C15—C161.4012 (19)
C6—C71.359 (2)C16—C171.3620 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.052.743 (2)142
O2—H2···O10.822.102.586 (2)117
O12—H12···O11ii0.822.072.771 (2)143
O12—H12···O110.822.092.573 (2)118
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds