Download citation
Download citation
link to html
In the structure of bis({N-[di­methyl(1η5-2,3,4,6-tetra­methyl­in­den­yl)­silyl]­cyclo­hexyl­amido-1κN}(methyl-3κC)-di-μ3-methyl­ene-1:2:3κ3C;1:3:3′κ3C-tris(pentafluorophenyl-2κC)titanium) benzene disolvate, [Me2Si(η5-2,3,4,6-Me4C9H2)(C6H11N)]Ti[(μ3-CH2)Al(C6F5)3][AlMe(μ3-CH2)]2 or [Ti2(C21H7AlF15)2(C21H31NSi)2]·2C6D6, the dimer is located on an inversion center, and the two Ti centers are linked by double Ti(μ3-CH2)Al(C6F5)3AlMe(μ3-CH2) heterocycles. The electron-deficient Ti centers are further stabilized by two α-agostic interactions between Ti and one H atom of each bridging methyl­ene group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101016754/fr1315sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101016754/fr1315IIsup2.hkl
Contains datablock II

CCDC reference: 180140

Comment top

Catalyst decomposition of activated metallocene and constrained geometry complexes is a key contribution to catalyst activity decay in catalytic homogeneous olefin polymerization (Chen & Marks, 2000). We were interested in the thermal stability of an activated catalyst, Me2Si(η5-2,3,4,6-Me4—C9H2)(C6H11N)Ti(CH3) (µ-CH3Al(C6F5)3)·(C6D6) (I), an example of the constrained geometry catalyst family (McKnight & Waymouth, 1998). Upon heating a C6D6 solution of (I) in a sealed NMR tube under Ar atmosphere at 333 K for 12 h, we have found that the dimer (II) is formed, the structure of which is reported here.

The molecular structure of the compound (II) is depicted in Fig.1 and selected geometric parameters are given in Table 1. Complex (II) crystallizes as a dimer having an inversion center. Each Ti metal center is coordinated in a distorted tetrahedral geometry [N1—Ti—C22 = 110.4 (2), N1—Ti—C23 = 105.6 (2), C22—Ti—C23 = 89.8 (2)°] by the η5-substituted indenyl ligand, dimethylsilyl bridged N-cyclohexyl amide, and two anionic methylene ligands. The openness of the coordination sphere about Ti is manifested by an obtuse Cp(centroid)-Ti—N angle of 108.1 (2)°. In addition to the above ligands coordinated to Ti, one of each bridging methylene H atoms (H22B and H23A) exhibit relatively close contacts to Ti, with Ti—H22B and Ti—H23A distances of 2.19 (3) and 2.26 (3) Å and acute Ti—C22—H22B and Ti—C23—H23A angles of 77 (2) and 80 (2)°, indicative of two α-agostic interactions to each Ti.

Two bridging methylene ligands are unsymmetrically bound to Ti with distances of 2.195 (3) and 2.230 (3) Å for Ti—C22 and Ti—C23, respectively, which are approximately 0.2 Å (average) longer than Ti(µ-CH2) distances in [(Cy2N)2Ti(µ-CH2)]2 (Scoles et al., 1994). These distances are slightly shorter than the Ti—CH3 bond in [CpTi(µ2-Me)(µ2-NPiPr3)(µ4-C)(µ2-AlMe2)2(AlMe2)] but substantially longer than the Ti—C (carbide) bond in the same molecule (Kickham et al., 2000). Linking the two Ti centers are three fused four-membered metallacycles with torsion angles of 126.5 (2) and 144.3 (2)° for C23—Al2—C22—Al2A and Ti—C22—Al2—C22A, respectively (Al2A and C22A are derived from Al2 and C22 by the symmetry 1 - x, 1 - y, -z). The middle four-membered ring is coplanar (C22—Al2—C22A—Al2A = 0°) while the other two adopt a 'puckered' conformation [Ti—C22—Al2—C23 = -17.8 (2)°]. Due to the presence of strain that arises from the metallacycles, the geometry at the Al center on the ring (Al2) is that of a highly distorted tetrahedron. The largest deviations from tetrahedral geometry are found in the obtuse C22—Al2—C23 angle of 99.2 (2)° and the significantly larger C23—Al2—C22A angle of 123.5 (2)°.

There is Al(C6F5)3 group attached to C23 (and C23A) and the Ti—C23—Al1 vector is close to linearity with angle of 170.7 (2)°, suggesting some degree of dipole-dipole component to the ion-ion interaction in this complex. Compared to the Ti—C22 bond distance, the Ti—C23 bond is only slightly elongated by the attached strongly Lewis acidic Al(C6F5)3 group, presumably due to the metallacycles formation. The C23—Al(C6F5)3 distance of 2.048 (3) Å is comparable to those in the anion µ-CH3—Al(C6F5)3- [2.084 (2) and 2.059 (2) Å] in a 'doubly activated' ansa-zirconocene complex (Chen, 2000) and to that in the µ-CH3—Al(C6F5)3- (2.033 (3) Å) in a 'constrained geometry' Ti complex (Chen et al., 2001).

Experimental top

All syntheses and manipulations of air-sensitive materials were carried out in an inert atmosphere (argon) glove box. NMR-scale reactions were conducted in Teflon-valve-sealed sample J-Young tubes. Solvents were first saturated with nitrogen and then dried by passage through activated alumina and Q-5TM catalyst prior to use. Deuterated NMR solvents were dried over sodium/potassium alloy and distilled and/or filtered prior to use. Me2Si(η5-2,3,4,6-Me4—C9H2) (C6H11N) Ti(CH3) (µ-CH3Al(C6F5)3) (I) was prepared from the reaction on Me2Si(η5-2,3,4,6-Me4—C9H2) (C6H11N) Ti(CH3)2 with Al(C6F5)3 in toluene or benzene at room temperature using a similar procedure as described previously by Chen et al. (2001). I was dissolved in benzene- d6 in a J-Young NMR tube and the solution was heated in an oil bath at 333 K for 12 h. The resulting dark red solution was stored at room temperature in a glove box for 5 d, after which time, dark red crystals of II had formed.

Refinement top

C—H distances of 0.98 and 0.99 Å were used for methyl and secondary C atoms respectively. A distance of 0.95 Å was used for aromatic C atoms. The H atoms thermal parameters were 1.2Ueq of the parent C; 1.5Ueq for the methyl atoms. The H atoms on C22 and C23 were obtained from a difference Fourier map and refined without any constraints. In addition to the complex, a molecule of benzene was found in a general position. Full data collection details are in the relevant -special-details section of the archived CIF and also reported elsewhere (Abboud et al., 1997).

Computing details top

Data collection: Bruker SMART (Bruker 1998); cell refinement: Bruker SMART & SAINT (Bruker 1998); data reduction: Bruker SHELXTL (Bruker 1998); program(s) used to solve structure: Bruker SHELXTL; program(s) used to refine structure: Bruker SHELXTL; molecular graphics: Bruker SHELXTL; software used to prepare material for publication: Bruker SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with 40% probability displacement ellipsoids, showing the atom-numbering scheme. Atoms Al1 and Al1A (where A = 1 - x, 1 - y, -z) have three open bonds around them, each representing a –C6F5 group which are not shown for clarity. The benzene solvent molecule has also been removed for clarity.
(II) top
Crystal data top
C84H76Al4N2Si2Ti2·2(C6D6)Z = 1
Mr = 2099.58F(000) = 1072
Triclinic, P1Dx = 1.489 Mg m3
a = 12.8651 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.7422 (7) ÅCell parameters from 4099 reflections
c = 15.2642 (9) Åθ = 2.0–27.5°
α = 70.595 (2)°µ = 0.34 mm1
β = 70.795 (2)°T = 173 K
γ = 71.944 (2)°Needle, black
V = 2341.9 (2) Å30.27 × 0.11 × 0.06 mm
Data collection top
SMART CCD area detector
diffractometer
10542 independent reflections
Radiation source: normal-focus sealed tube5884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: integration
Integration based on measured indexed crystal faces, SHELXTL (Bruker 1998)
h = 1516
Tmin = 0.925, Tmax = 0.985k = 1017
15647 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0481P)2]
where P = (Fo2 + 2Fc2)/3
10542 reflections(Δ/σ)max < 0.001
636 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C84H76Al4N2Si2Ti2·2(C6D6)γ = 71.944 (2)°
Mr = 2099.58V = 2341.9 (2) Å3
Triclinic, P1Z = 1
a = 12.8651 (7) ÅMo Kα radiation
b = 13.7422 (7) ŵ = 0.34 mm1
c = 15.2642 (9) ÅT = 173 K
α = 70.595 (2)°0.27 × 0.11 × 0.06 mm
β = 70.795 (2)°
Data collection top
SMART CCD area detector
diffractometer
10542 independent reflections
Absorption correction: integration
Integration based on measured indexed crystal faces, SHELXTL (Bruker 1998)
5884 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.985Rint = 0.037
15647 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.35 e Å3
10542 reflectionsΔρmin = 0.37 e Å3
636 parameters
Special details top

Experimental. A hemisphere of frames, 0.3° in ω, was collected. The first 50 frames were remeasured at the end of data collection to monitor instrument and crystal stability.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti0.42688 (4)0.27710 (4)0.09256 (4)0.02225 (14)
Si0.29320 (7)0.14645 (7)0.25173 (6)0.0279 (2)
Al10.74041 (7)0.27090 (7)0.13527 (7)0.0259 (2)
Al20.58022 (7)0.41061 (7)0.00737 (7)0.0248 (2)
N10.33080 (19)0.26909 (18)0.21819 (17)0.0246 (6)
C10.3560 (2)0.1341 (2)0.1263 (2)0.0245 (7)
C20.3111 (3)0.2100 (2)0.0486 (2)0.0266 (7)
C30.3986 (3)0.2235 (2)0.0360 (2)0.0288 (7)
C40.6109 (3)0.1200 (3)0.0753 (2)0.0340 (8)
C50.6896 (3)0.0474 (3)0.0310 (3)0.0398 (9)
H5A0.76390.02810.06930.048*
C60.6672 (3)0.0012 (2)0.0690 (3)0.0351 (8)
C70.5604 (3)0.0220 (2)0.1261 (2)0.0306 (7)
H7A0.54430.01170.19280.037*
C80.4740 (3)0.0969 (2)0.0846 (2)0.0253 (7)
C90.5009 (3)0.1503 (2)0.0158 (2)0.0252 (7)
C100.3662 (3)0.0417 (3)0.3398 (2)0.0412 (9)
H10A0.32620.04950.40480.062*
H10B0.44400.04860.32520.062*
H10C0.36670.02820.33580.062*
C110.1416 (3)0.1458 (3)0.2997 (3)0.0466 (10)
H11A0.09820.20470.25940.070*
H11B0.11640.15360.36550.070*
H11C0.12970.07870.29970.070*
C120.1890 (3)0.2676 (3)0.0568 (3)0.0370 (8)
H12A0.16330.30310.10880.056*
H12B0.14280.21680.07080.056*
H12C0.18160.32040.00380.056*
C130.3834 (3)0.2940 (3)0.1326 (2)0.0403 (9)
H13A0.37390.25250.16950.060*
H13B0.45010.32390.16740.060*
H13C0.31630.35160.12360.060*
C140.6385 (3)0.1581 (3)0.1833 (2)0.0451 (9)
H14A0.71820.12810.21000.068*
H14B0.62460.23560.20250.068*
H14C0.59080.13530.20770.068*
C150.7619 (3)0.0795 (3)0.1094 (3)0.0488 (10)
H15A0.73400.10630.17890.073*
H15B0.82320.04460.09660.073*
H15C0.79020.13860.07920.073*
C160.3005 (3)0.3441 (2)0.2785 (2)0.0265 (7)
H16A0.342 (2)0.398 (2)0.248 (2)0.026 (8)*
C170.1769 (3)0.4012 (3)0.2910 (2)0.0353 (8)
H17A0.12950.34830.32000.042*
H17B0.16310.44130.22720.042*
C180.1424 (3)0.4774 (3)0.3547 (3)0.0429 (9)
H18A0.18270.53560.32190.051*
H18B0.06030.50880.36490.051*
C190.1697 (3)0.4211 (3)0.4510 (3)0.0505 (10)
H19A0.12230.36880.48730.061*
H19B0.15190.47320.48860.061*
C200.2934 (3)0.3649 (3)0.4382 (3)0.0498 (10)
H20A0.30780.32530.50190.060*
H20B0.34040.41820.40870.060*
C210.3277 (3)0.2884 (3)0.3751 (2)0.0407 (9)
H21A0.40980.25690.36500.049*
H21B0.28740.23020.40820.049*
C220.4071 (3)0.4421 (2)0.0064 (3)0.0259 (7)
H22A0.391 (2)0.447 (2)0.046 (2)0.030 (9)*
H22B0.342 (3)0.445 (2)0.058 (3)0.045 (10)*
C230.5945 (3)0.2806 (3)0.1029 (2)0.0263 (7)
H23A0.554 (3)0.271 (3)0.168 (3)0.046 (10)*
H23B0.622 (3)0.212 (3)0.090 (2)0.043 (10)*
C240.8564 (2)0.3095 (2)0.0121 (2)0.0277 (7)
C250.9052 (3)0.2426 (3)0.0477 (3)0.0353 (8)
C260.9856 (3)0.2634 (3)0.1331 (3)0.0404 (9)
C271.0228 (3)0.3547 (3)0.1613 (2)0.0376 (8)
C280.9770 (3)0.4250 (3)0.1054 (2)0.0348 (8)
C290.8954 (3)0.4011 (2)0.0212 (2)0.0296 (7)
C300.7947 (2)0.1235 (2)0.2128 (2)0.0280 (7)
C310.7203 (3)0.0709 (3)0.2882 (2)0.0331 (8)
C320.7517 (3)0.0254 (3)0.3506 (2)0.0392 (9)
C330.8636 (3)0.0725 (3)0.3397 (3)0.0435 (9)
C340.9423 (3)0.0245 (3)0.2673 (3)0.0388 (9)
C350.9067 (3)0.0700 (2)0.2054 (2)0.0341 (8)
C360.7193 (2)0.3602 (2)0.2226 (2)0.0266 (7)
C370.8110 (3)0.3566 (2)0.2529 (2)0.0302 (7)
C380.8089 (3)0.4103 (3)0.3149 (2)0.0335 (8)
C390.7079 (3)0.4748 (3)0.3500 (2)0.0391 (9)
C400.6129 (3)0.4808 (3)0.3239 (2)0.0369 (8)
C410.6207 (3)0.4244 (2)0.2622 (2)0.0294 (7)
C420.6697 (3)0.3775 (2)0.1289 (2)0.0322 (8)
H42A0.72220.42460.16230.048*
H42B0.61930.38750.16890.048*
H42C0.71240.30380.11650.048*
C430.1269 (5)0.8313 (4)0.4862 (4)0.0794 (16)
H43A0.04990.86750.49220.095*
C440.1737 (4)0.7564 (4)0.4342 (3)0.0729 (14)
H44A0.12870.73990.40510.087*
C450.2853 (4)0.7060 (4)0.4245 (3)0.0717 (14)
H45A0.31710.65400.38900.086*
C460.3522 (4)0.7297 (4)0.4657 (3)0.0699 (14)
H46A0.43000.69540.45750.084*
C470.3049 (5)0.8037 (4)0.5189 (3)0.0741 (14)
H47A0.34970.82040.54810.089*
C480.1925 (5)0.8532 (4)0.5293 (4)0.0822 (17)
H48A0.15960.90320.56690.099*
F10.87264 (17)0.14967 (15)0.02248 (15)0.0490 (5)
F21.02856 (18)0.19539 (17)0.18922 (16)0.0576 (6)
F31.10255 (17)0.37524 (18)0.24308 (15)0.0619 (7)
F41.00995 (17)0.51704 (16)0.13341 (15)0.0506 (6)
F50.85175 (15)0.47535 (14)0.02991 (13)0.0389 (5)
F60.60791 (15)0.11783 (15)0.30520 (14)0.0444 (5)
F70.67309 (18)0.07120 (17)0.42190 (15)0.0616 (7)
F80.89672 (19)0.16596 (16)0.40026 (16)0.0645 (7)
F91.05310 (16)0.07091 (16)0.25674 (17)0.0564 (6)
F100.98908 (14)0.11159 (15)0.13412 (15)0.0456 (5)
F110.91194 (14)0.29469 (15)0.21849 (14)0.0410 (5)
F120.90134 (16)0.40156 (17)0.34182 (15)0.0506 (6)
F130.70205 (19)0.52930 (17)0.41032 (15)0.0577 (6)
F140.51417 (17)0.54291 (17)0.35970 (16)0.0576 (6)
F150.52404 (14)0.43539 (15)0.23844 (14)0.0420 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti0.0245 (3)0.0214 (3)0.0233 (3)0.0091 (2)0.0049 (2)0.0063 (2)
Si0.0306 (5)0.0270 (5)0.0267 (5)0.0124 (4)0.0034 (4)0.0061 (4)
Al10.0247 (5)0.0242 (5)0.0295 (5)0.0068 (4)0.0073 (4)0.0061 (4)
Al20.0257 (5)0.0235 (5)0.0261 (5)0.0085 (4)0.0066 (4)0.0047 (4)
N10.0266 (14)0.0250 (14)0.0243 (14)0.0085 (11)0.0066 (11)0.0063 (11)
C10.0297 (17)0.0218 (16)0.0273 (17)0.0133 (13)0.0063 (14)0.0070 (13)
C20.0307 (17)0.0242 (16)0.0336 (18)0.0108 (13)0.0119 (14)0.0105 (13)
C30.0401 (19)0.0281 (17)0.0278 (18)0.0139 (15)0.0125 (15)0.0098 (14)
C40.040 (2)0.0320 (19)0.036 (2)0.0173 (16)0.0016 (16)0.0150 (15)
C50.0311 (19)0.038 (2)0.053 (2)0.0087 (16)0.0019 (17)0.0269 (18)
C60.0319 (19)0.0250 (18)0.054 (2)0.0062 (15)0.0110 (17)0.0174 (16)
C70.0363 (19)0.0232 (17)0.039 (2)0.0096 (14)0.0131 (16)0.0095 (14)
C80.0317 (17)0.0218 (16)0.0269 (17)0.0081 (13)0.0069 (14)0.0106 (13)
C90.0324 (17)0.0233 (16)0.0265 (17)0.0122 (14)0.0067 (14)0.0098 (13)
C100.058 (2)0.034 (2)0.031 (2)0.0162 (18)0.0100 (17)0.0028 (15)
C110.039 (2)0.051 (2)0.050 (2)0.0213 (18)0.0022 (18)0.0152 (18)
C120.0349 (19)0.0343 (19)0.046 (2)0.0088 (15)0.0174 (17)0.0076 (16)
C130.055 (2)0.042 (2)0.031 (2)0.0202 (18)0.0169 (17)0.0050 (16)
C140.047 (2)0.053 (2)0.037 (2)0.0204 (19)0.0030 (17)0.0202 (18)
C150.041 (2)0.038 (2)0.077 (3)0.0026 (17)0.025 (2)0.027 (2)
C160.0304 (17)0.0256 (17)0.0273 (18)0.0104 (14)0.0063 (14)0.0088 (14)
C170.0306 (18)0.036 (2)0.039 (2)0.0059 (15)0.0056 (15)0.0143 (16)
C180.039 (2)0.043 (2)0.046 (2)0.0055 (17)0.0022 (17)0.0222 (18)
C190.065 (3)0.048 (2)0.036 (2)0.015 (2)0.0038 (19)0.0216 (18)
C200.073 (3)0.049 (2)0.035 (2)0.012 (2)0.019 (2)0.0186 (18)
C210.050 (2)0.042 (2)0.035 (2)0.0046 (17)0.0140 (17)0.0175 (16)
C220.0289 (18)0.0258 (17)0.0248 (18)0.0077 (14)0.0078 (16)0.0062 (14)
C230.0279 (17)0.0260 (18)0.0256 (19)0.0073 (14)0.0077 (14)0.0054 (14)
C240.0251 (16)0.0273 (17)0.0311 (18)0.0047 (14)0.0095 (14)0.0065 (14)
C250.0325 (19)0.0329 (19)0.042 (2)0.0102 (15)0.0103 (16)0.0080 (16)
C260.036 (2)0.044 (2)0.038 (2)0.0013 (17)0.0051 (17)0.0209 (17)
C270.0288 (18)0.048 (2)0.0292 (19)0.0108 (16)0.0006 (15)0.0069 (16)
C280.0309 (18)0.037 (2)0.036 (2)0.0137 (16)0.0103 (15)0.0011 (16)
C290.0304 (17)0.0305 (18)0.0289 (18)0.0062 (14)0.0089 (15)0.0079 (14)
C300.0278 (17)0.0269 (17)0.0317 (18)0.0044 (14)0.0112 (14)0.0083 (14)
C310.0302 (18)0.0356 (19)0.0335 (19)0.0046 (15)0.0086 (15)0.0110 (15)
C320.046 (2)0.040 (2)0.0285 (19)0.0174 (17)0.0081 (16)0.0008 (16)
C330.054 (2)0.0284 (19)0.045 (2)0.0043 (17)0.0227 (19)0.0007 (16)
C340.036 (2)0.0311 (19)0.050 (2)0.0022 (16)0.0174 (17)0.0092 (17)
C350.0354 (19)0.0275 (18)0.042 (2)0.0127 (15)0.0092 (16)0.0082 (15)
C360.0294 (17)0.0222 (16)0.0279 (17)0.0087 (13)0.0088 (14)0.0019 (13)
C370.0274 (17)0.0323 (18)0.0317 (19)0.0097 (14)0.0068 (15)0.0072 (15)
C380.0364 (19)0.039 (2)0.0305 (19)0.0167 (16)0.0119 (16)0.0046 (15)
C390.061 (2)0.039 (2)0.0260 (19)0.0215 (19)0.0107 (17)0.0113 (16)
C400.0359 (19)0.036 (2)0.035 (2)0.0042 (16)0.0048 (16)0.0126 (16)
C410.0298 (18)0.0326 (18)0.0268 (18)0.0091 (15)0.0083 (14)0.0061 (14)
C420.0346 (18)0.0279 (18)0.0339 (19)0.0098 (14)0.0066 (15)0.0071 (14)
C430.078 (4)0.071 (3)0.060 (3)0.001 (3)0.003 (3)0.015 (3)
C440.076 (3)0.078 (3)0.050 (3)0.001 (3)0.011 (2)0.017 (3)
C450.088 (4)0.060 (3)0.045 (3)0.009 (3)0.013 (3)0.013 (2)
C460.079 (3)0.056 (3)0.047 (3)0.004 (3)0.006 (3)0.001 (2)
C470.106 (4)0.055 (3)0.051 (3)0.029 (3)0.009 (3)0.002 (2)
C480.112 (5)0.052 (3)0.058 (3)0.018 (3)0.011 (3)0.016 (2)
F10.0571 (13)0.0386 (12)0.0563 (14)0.0179 (10)0.0069 (11)0.0192 (10)
F20.0571 (14)0.0587 (14)0.0548 (15)0.0043 (11)0.0025 (11)0.0315 (12)
F30.0481 (13)0.0773 (16)0.0467 (14)0.0215 (12)0.0112 (11)0.0148 (12)
F40.0525 (13)0.0509 (13)0.0495 (13)0.0309 (11)0.0052 (10)0.0040 (10)
F50.0452 (11)0.0342 (11)0.0394 (12)0.0152 (9)0.0054 (9)0.0115 (9)
F60.0304 (11)0.0480 (12)0.0429 (12)0.0074 (9)0.0058 (9)0.0013 (10)
F70.0616 (14)0.0571 (14)0.0446 (14)0.0183 (12)0.0075 (11)0.0128 (11)
F80.0708 (15)0.0410 (13)0.0633 (16)0.0034 (11)0.0292 (13)0.0136 (11)
F90.0401 (12)0.0429 (13)0.0778 (17)0.0055 (10)0.0253 (11)0.0086 (11)
F100.0301 (11)0.0405 (12)0.0582 (14)0.0097 (9)0.0077 (10)0.0043 (10)
F110.0282 (10)0.0454 (12)0.0537 (13)0.0060 (9)0.0130 (9)0.0177 (10)
F120.0496 (13)0.0658 (14)0.0529 (14)0.0218 (11)0.0266 (11)0.0144 (11)
F130.0730 (15)0.0681 (15)0.0489 (14)0.0206 (12)0.0136 (11)0.0338 (12)
F140.0482 (13)0.0633 (15)0.0629 (15)0.0022 (11)0.0061 (11)0.0398 (12)
F150.0276 (10)0.0490 (12)0.0533 (13)0.0015 (9)0.0146 (9)0.0203 (10)
Geometric parameters (Å, º) top
Ti—N11.898 (2)C17—H17B0.9900
Ti—C222.195 (3)C18—C191.517 (5)
Ti—C232.230 (3)C18—H18A0.9900
Ti—C12.256 (3)C18—H18B0.9900
Ti—C22.333 (3)C19—C201.517 (5)
Ti—C82.395 (3)C19—H19A0.9900
Ti—C32.474 (3)C19—H19B0.9900
Ti—C92.556 (3)C20—C211.529 (5)
Ti—Al22.826 (2)C20—H20A0.9900
Ti—Si2.890 (2)C20—H20B0.9900
Ti—H22B2.19 (3)C21—H21A0.9900
Ti—H23A2.26 (3)C21—H21B0.9900
Si—N11.762 (2)C22—Al2i2.086 (3)
Si—C111.846 (3)C22—H22A0.87 (3)
Si—C11.861 (3)C22—H22B0.94 (3)
Si—C101.863 (3)C23—H23A0.94 (4)
Al1—C362.000 (3)C23—H23B0.95 (3)
Al1—C242.007 (3)C24—C291.376 (4)
Al1—C302.016 (3)C24—C251.376 (5)
Al1—C232.048 (3)C25—F11.361 (4)
Al2—C421.950 (3)C25—C261.379 (5)
Al2—C232.015 (3)C26—F21.347 (4)
Al2—C222.085 (3)C26—C271.366 (5)
Al2—C22i2.086 (3)C27—F31.339 (4)
Al2—Al2i2.695 (2)C27—C281.368 (5)
N1—C161.486 (4)C28—F41.347 (4)
C1—C81.440 (4)C28—C291.380 (4)
C1—C21.443 (4)C29—F51.360 (4)
C2—C31.409 (4)C30—C311.384 (4)
C2—C121.508 (4)C30—C351.387 (4)
C3—C91.442 (4)C31—F61.364 (3)
C3—C131.507 (4)C31—C321.380 (4)
C4—C51.362 (5)C32—F71.349 (4)
C4—C91.429 (4)C32—C331.362 (5)
C4—C141.509 (5)C33—F81.348 (4)
C5—C61.417 (5)C33—C341.370 (5)
C5—H5A0.9500C34—F91.348 (4)
C6—C71.369 (4)C34—C351.374 (4)
C6—C151.505 (5)C35—F101.356 (3)
C7—C81.420 (4)C36—C411.381 (4)
C7—H7A0.9500C36—C371.384 (4)
C8—C91.438 (4)C37—F111.360 (3)
C10—H10A0.9800C37—C381.370 (5)
C10—H10B0.9800C38—F121.341 (4)
C10—H10C0.9800C38—C391.380 (5)
C11—H11A0.9800C39—F131.338 (4)
C11—H11B0.9800C39—C401.377 (5)
C11—H11C0.9800C40—F141.350 (4)
C12—H12A0.9800C40—C411.368 (5)
C12—H12B0.9800C41—F151.358 (3)
C12—H12C0.9800C42—H42A0.9800
C13—H13A0.9800C42—H42B0.9800
C13—H13B0.9800C42—H42C0.9800
C13—H13C0.9800C43—C481.375 (7)
C14—H14A0.9800C43—C441.376 (7)
C14—H14B0.9800C43—H43A0.9500
C14—H14C0.9800C44—C451.369 (6)
C15—H15A0.9800C44—H44A0.9500
C15—H15B0.9800C45—C461.383 (7)
C15—H15C0.9800C45—H45A0.9500
C16—C171.518 (4)C46—C471.379 (6)
C16—C211.518 (4)C46—H46A0.9500
C16—H16A0.95 (3)C47—C481.375 (7)
C17—C181.531 (5)C47—H47A0.9500
C17—H17A0.9900C48—H48A0.9500
N1—Ti—C22110.38 (12)H12A—C12—H12B109.5
N1—Ti—C23105.62 (12)C2—C12—H12C109.5
C22—Ti—C2389.82 (12)H12A—C12—H12C109.5
N1—Ti—C175.68 (11)H12B—C12—H12C109.5
C22—Ti—C1139.91 (12)C3—C13—H13A109.5
C23—Ti—C1127.82 (11)C3—C13—H13B109.5
N1—Ti—C292.20 (11)H13A—C13—H13B109.5
C22—Ti—C2103.62 (12)C3—C13—H13C109.5
C23—Ti—C2152.51 (12)H13A—C13—H13C109.5
C1—Ti—C236.60 (10)H13B—C13—H13C109.5
N1—Ti—C8101.73 (10)C4—C14—H14A109.5
C22—Ti—C8143.93 (12)C4—C14—H14B109.5
C23—Ti—C897.12 (11)H14A—C14—H14B109.5
C1—Ti—C835.90 (10)C4—C14—H14C109.5
C2—Ti—C858.16 (10)H14A—C14—H14C109.5
N1—Ti—C3126.11 (10)H14B—C14—H14C109.5
C22—Ti—C390.28 (12)C6—C15—H15A109.5
C23—Ti—C3124.29 (12)C6—C15—H15B109.5
C1—Ti—C358.92 (10)H15A—C15—H15B109.5
C2—Ti—C333.92 (10)C6—C15—H15C109.5
C8—Ti—C356.75 (10)H15A—C15—H15C109.5
N1—Ti—C9132.84 (10)H15B—C15—H15C109.5
C22—Ti—C9110.55 (12)N1—C16—C17110.8 (3)
C23—Ti—C996.90 (12)N1—C16—C21111.4 (3)
C1—Ti—C957.96 (10)C17—C16—C21111.1 (3)
C2—Ti—C956.06 (10)N1—C16—H16A110.6 (18)
C8—Ti—C933.57 (9)C17—C16—H16A105.4 (17)
C3—Ti—C933.27 (10)C21—C16—H16A107.4 (18)
N1—Ti—Al2127.24 (8)C16—C17—C18112.0 (3)
C22—Ti—Al247.02 (9)C16—C17—H17A109.2
C23—Ti—Al245.09 (8)C18—C17—H17A109.2
C1—Ti—Al2155.64 (8)C16—C17—H17B109.2
C2—Ti—Al2134.83 (8)C18—C17—H17B109.2
C8—Ti—Al2121.46 (8)H17A—C17—H17B107.9
C3—Ti—Al2103.61 (7)C19—C18—C17111.3 (3)
C9—Ti—Al297.94 (7)C19—C18—H18A109.4
N1—Ti—Si36.24 (7)C17—C18—H18A109.4
C22—Ti—Si138.37 (9)C19—C18—H18B109.4
C23—Ti—Si118.34 (9)C17—C18—H18B109.4
C1—Ti—Si40.07 (8)H18A—C18—H18B108.0
C2—Ti—Si65.89 (8)C18—C19—C20111.0 (3)
C8—Ti—Si66.89 (7)C18—C19—H19A109.4
C3—Ti—Si96.67 (7)C20—C19—H19A109.4
C9—Ti—Si96.62 (7)C18—C19—H19B109.4
Al2—Ti—Si159.25 (3)C20—C19—H19B109.4
N1—Ti—H22B86.6 (9)H19A—C19—H19B108.0
C22—Ti—H22B24.8 (9)C19—C20—C21111.8 (3)
C23—Ti—H22B103.3 (9)C19—C20—H20A109.3
C1—Ti—H22B128.6 (9)C21—C20—H20A109.3
C2—Ti—H22B98.4 (9)C19—C20—H20B109.3
C8—Ti—H22B155.0 (9)C21—C20—H20B109.3
C3—Ti—H22B99.3 (9)H20A—C20—H20B107.9
C9—Ti—H22B127.9 (9)C16—C21—C20111.4 (3)
Al2—Ti—H22B67.3 (9)C16—C21—H21A109.3
Si—Ti—H22B113.9 (9)C20—C21—H21A109.3
N1—Ti—H23A81.4 (9)C16—C21—H21B109.3
C22—Ti—H23A100.1 (8)C20—C21—H21B109.3
C23—Ti—H23A24.3 (9)H21A—C21—H21B108.0
C1—Ti—H23A119.9 (8)Al2—C22—Al2i80.52 (12)
C2—Ti—H23A156.2 (8)Al2—C22—Ti82.62 (12)
C8—Ti—H23A100.5 (8)Al2i—C22—Ti140.60 (19)
C3—Ti—H23A145.0 (9)Al2—C22—H22A113 (2)
C9—Ti—H23A113.0 (9)Al2i—C22—H22A110 (2)
Al2—Ti—H23A63.3 (9)Ti—C22—H22A109 (2)
Si—Ti—H23A97.3 (9)Al2—C22—H22B135 (2)
H22B—Ti—H23A104.0 (12)Al2i—C22—H22B90 (2)
N1—Si—C11117.41 (14)Ti—C22—H22B77.5 (19)
N1—Si—C190.05 (12)H22A—C22—H22B111 (3)
C11—Si—C1115.67 (16)Al2—C23—Al1105.01 (14)
N1—Si—C10113.95 (14)Al2—C23—Ti83.33 (12)
C11—Si—C10106.15 (16)Al1—C23—Ti170.69 (18)
C1—Si—C10113.41 (15)Al2—C23—H23A129 (2)
N1—Si—Ti39.54 (8)Al1—C23—H23A92 (2)
C11—Si—Ti135.78 (13)Ti—C23—H23A80 (2)
C1—Si—Ti51.30 (9)Al2—C23—H23B119 (2)
C10—Si—Ti117.78 (11)Al1—C23—H23B92 (2)
C36—Al1—C24111.13 (13)Ti—C23—H23B87 (2)
C36—Al1—C30102.56 (13)H23A—C23—H23B107 (3)
C24—Al1—C30111.12 (13)C29—C24—C25113.6 (3)
C36—Al1—C23113.48 (14)C29—C24—Al1125.5 (2)
C24—Al1—C23108.44 (14)C25—C24—Al1120.9 (2)
C30—Al1—C23110.06 (13)F1—C25—C24118.9 (3)
C42—Al2—C23110.69 (14)F1—C25—C26116.8 (3)
C42—Al2—C22112.25 (15)C24—C25—C26124.2 (3)
C23—Al2—C2299.24 (13)F2—C26—C27119.3 (3)
C42—Al2—C22i110.23 (14)F2—C26—C25121.3 (3)
C23—Al2—C22i123.53 (15)C27—C26—C25119.4 (3)
C22—Al2—C22i99.48 (12)F3—C27—C26120.2 (3)
C42—Al2—Al2i124.09 (11)F3—C27—C28120.6 (3)
C23—Al2—Al2i123.48 (12)C26—C27—C28119.2 (3)
C22—Al2—Al2i49.75 (9)F4—C28—C27120.1 (3)
C22i—Al2—Al2i49.73 (9)F4—C28—C29120.8 (3)
C42—Al2—Ti110.81 (10)C27—C28—C29119.1 (3)
C23—Al2—Ti51.58 (9)F5—C29—C24119.5 (3)
C22—Al2—Ti50.36 (9)F5—C29—C28116.1 (3)
C22i—Al2—Ti136.19 (10)C24—C29—C28124.4 (3)
Al2i—Al2—Ti93.72 (4)C31—C30—C35113.1 (3)
C16—N1—Si127.1 (2)C31—C30—Al1121.0 (2)
C16—N1—Ti128.52 (19)C35—C30—Al1125.4 (2)
Si—N1—Ti104.22 (13)F6—C31—C32116.7 (3)
C8—C1—C2105.8 (3)F6—C31—C30118.6 (3)
C8—C1—Si125.6 (2)C32—C31—C30124.7 (3)
C2—C1—Si120.7 (2)F7—C32—C33120.6 (3)
C8—C1—Ti77.32 (16)F7—C32—C31120.6 (3)
C2—C1—Ti74.62 (16)C33—C32—C31118.8 (3)
Si—C1—Ti88.62 (12)F8—C33—C32120.0 (3)
C3—C2—C1109.9 (3)F8—C33—C34120.1 (3)
C3—C2—C12124.9 (3)C32—C33—C34119.9 (3)
C1—C2—C12125.2 (3)F9—C34—C33119.8 (3)
C3—C2—Ti78.53 (17)F9—C34—C35121.0 (3)
C1—C2—Ti68.78 (16)C33—C34—C35119.2 (3)
C12—C2—Ti118.5 (2)F10—C35—C34116.0 (3)
C2—C3—C9108.0 (3)F10—C35—C30119.8 (3)
C2—C3—C13125.1 (3)C34—C35—C30124.3 (3)
C9—C3—C13126.6 (3)C41—C36—C37113.2 (3)
C2—C3—Ti67.55 (17)C41—C36—Al1128.0 (2)
C9—C3—Ti76.46 (17)C37—C36—Al1118.7 (2)
C13—C3—Ti126.5 (2)F11—C37—C38116.9 (3)
C5—C4—C9117.1 (3)F11—C37—C36117.6 (3)
C5—C4—C14120.1 (3)C38—C37—C36125.5 (3)
C9—C4—C14122.6 (3)F12—C38—C37122.0 (3)
C4—C5—C6123.8 (3)F12—C38—C39119.8 (3)
C4—C5—H5A118.1C37—C38—C39118.2 (3)
C6—C5—H5A118.1F13—C39—C40120.4 (3)
C7—C6—C5119.8 (3)F13—C39—C38120.3 (3)
C7—C6—C15121.5 (3)C40—C39—C38119.2 (3)
C5—C6—C15118.7 (3)F14—C40—C41121.6 (3)
C6—C7—C8119.4 (3)F14—C40—C39118.8 (3)
C6—C7—H7A120.3C41—C40—C39119.5 (3)
C8—C7—H7A120.3F15—C41—C40116.2 (3)
C7—C8—C9119.6 (3)F15—C41—C36119.4 (3)
C7—C8—C1131.1 (3)C40—C41—C36124.3 (3)
C9—C8—C1109.2 (3)Al2—C42—H42A109.5
C7—C8—Ti120.0 (2)Al2—C42—H42B109.5
C9—C8—Ti79.35 (17)H42A—C42—H42B109.5
C1—C8—Ti66.77 (15)Al2—C42—H42C109.5
C4—C9—C8120.0 (3)H42A—C42—H42C109.5
C4—C9—C3132.9 (3)H42B—C42—H42C109.5
C8—C9—C3107.0 (3)C48—C43—C44119.5 (5)
C4—C9—Ti130.8 (2)C48—C43—H43A120.2
C8—C9—Ti67.08 (16)C44—C43—H43A120.2
C3—C9—Ti70.27 (16)C45—C44—C43119.8 (5)
Si—C10—H10A109.5C45—C44—H44A120.1
Si—C10—H10B109.5C43—C44—H44A120.1
H10A—C10—H10B109.5C44—C45—C46120.9 (5)
Si—C10—H10C109.5C44—C45—H45A119.6
H10A—C10—H10C109.5C46—C45—H45A119.6
H10B—C10—H10C109.5C47—C46—C45119.3 (5)
Si—C11—H11A109.5C47—C46—H46A120.4
Si—C11—H11B109.5C45—C46—H46A120.4
H11A—C11—H11B109.5C48—C47—C46119.6 (5)
Si—C11—H11C109.5C48—C47—H47A120.2
H11A—C11—H11C109.5C46—C47—H47A120.2
H11B—C11—H11C109.5C43—C48—C47120.9 (5)
C2—C12—H12A109.5C43—C48—H48A119.6
C2—C12—H12B109.5C47—C48—H48A119.6
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC84H76Al4N2Si2Ti2·2(C6D6)
Mr2099.58
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)12.8651 (7), 13.7422 (7), 15.2642 (9)
α, β, γ (°)70.595 (2), 70.795 (2), 71.944 (2)
V3)2341.9 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.27 × 0.11 × 0.06
Data collection
DiffractometerSMART CCD area detector
diffractometer
Absorption correctionIntegration
Integration based on measured indexed crystal faces, SHELXTL (Bruker 1998)
Tmin, Tmax0.925, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
15647, 10542, 5884
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.123, 0.96
No. of reflections10542
No. of parameters636
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.37

Computer programs: Bruker SMART (Bruker 1998), Bruker SMART & SAINT (Bruker 1998), Bruker SHELXTL (Bruker 1998), Bruker SHELXTL.

Selected geometric parameters (Å, º) top
Ti—N11.898 (2)Ti—H22B2.19 (3)
Ti—C222.195 (3)Ti—H23A2.26 (3)
Ti—C232.230 (3)Al1—C232.048 (3)
Ti—C12.256 (3)Al2—C421.950 (3)
Ti—C22.333 (3)Al2—C232.015 (3)
Ti—C82.395 (3)Al2—C222.085 (3)
Ti—C32.474 (3)Al2—C22i2.086 (3)
Ti—C92.556 (3)Al2—Al2i2.695 (2)
N1—Ti—C22110.38 (12)Al2i—C22—Ti140.60 (19)
N1—Ti—C23105.62 (12)Ti—C22—H22B77.5 (19)
C22—Ti—C2389.82 (12)Al2—C23—Ti83.33 (12)
C22—Al2—C22i99.48 (12)Ti—C23—H23A80 (2)
Al2—C22—Ti82.62 (12)
Symmetry code: (i) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds