Download citation
Download citation
link to html
The structure of the title compound, 2-[1-(di­methyl­ammon­ioethoxy)-1-phenyl­ethyl]­pyridinium tetra­chloro­cuprate(II), (C17H24N2O)[CuCl4], contains di­hydro cations of doxyl­amine hydrogen bonded to two Cl atoms in two different CuCl42− anions, with Cl...N distances of 3.101 (9) and 3.253 (10) Å. The ethereal O atom is involved in intramolecular hydrogen bonds, with O...N distances of 2.517 (11) and 2.757 (12) Å. The molecular dimensions in the cation are as expected and the CuCl42− anion has a flattened tetrahedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010001917X/fr1314sup1.cif
Contains datablocks Global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010001917X/fr1314Isup2.hkl
Contains datablock I

CCDC reference: 162552

Comment top

Doxylamine, C17H22N2O, is a chiral tertiary aminoalkyl ether effective on H1 receptor site (Casy, 1991). Unlike the crystal structures of tetrachlorozincate and tetrachlorocobaltate salts of doxylamine which have been reported from our laboratory in centrosymmetric space group (Parvez & Sabir, 1998), this antihistamine has now been crystallized as a dihydrocation with CuCl42- anion in a non-centrosymmetric space group. In this paper, we report the structure of doxylamine tetrachlorocuprate(II), (I). \sch

Figure 1 shows an ORTEPII (Johnson, 1976) drawing of (I). The molecular dimensions in the doxylamine dication are normal. The important mean bond distances are: Csp3-Csp3 1.497 (17), Csp3-Csp2 1.514 (9), C—Caromatic 1.378 (15), C—Cpyridyl 1.376 (19), N—Csp3 1.469 (14), N—Csp2 1.324 (2), and O—Csp3 1.429 (16) Å. The pyridyl and phenyl rings are essentially planar with maximum deviations of atoms from the least-squares planes being 0.007 (8) and 0.019 (9) Å, respectively. The dihedral angle between these planes in (I) is 82.9 (3)°; the corresponding angles in the structures of tetrachlorozincate and tetrachlorocobaltate salts of doxylamine are 87.68 (14) and 88.1 (2)°, respectively (Parvez & Sabir, 1998).

The atoms C6, O1, C14 and C15 of the side chain in (I) are coplanar and are fully extended, with N2 lying in a non-extended conformation. This is in contrast to the conformation adopted by the corresponding atoms C6, O1, C14, C15, N2 in the structures of tetrachlorozincate and tetrachlorocobaltate salts of doxylamine were essentially planar with deviations of 0.042 (2) and 0.058 (4) Å, respectively (Parvez & Sabir, 1998).

It is interesting to note that in (I), O1 is hydrogen bonded to two hydrogen atoms, one H from the pyridyl ring [O1···N1 2.517 (11) Å] and one H from the ammonium N [O1···N2 2.757 (12) Å]. A similar pattern of hydrogen bonding has been observed in the structures of tetrachlorozincate and tetrachlorocobaltate salts of doxylamine (Parvez & Sabir, 1998). The N—H groups are also hydrogen bonded to the Cl atoms of two CuCl42- anions with N···Cl distances of 3.101 (9) Å for the pyridinyl N and 3.253 (10) Å for the ammonium N. Similar bifurcated hydrogen bonding has been found in the structure of chloropyramine tetrachlorocuprate (II) (Parvez & Sabir, 1997). The structure of (I) is stabilized by the extensive hydrogen bonding involving the ethereal O and both N atoms of the cations and two Cl atoms of the anions; details of the hydrogen-bonding geometry are presented in Table 2.

The CuCl42- anion shows a flattened tetrahedral geometry. The Cu—Cl bond lengths for Cl-atoms not involved in hydrogen bonding are identical [2.206 (3) and 2.210 (3) Å] while those involved in hydrogen bonds are significantly longer with values 2.248 (4) and 2.299 (3) Å. The bond angles Cl—Cu—Cl lie in two ranges, four being in the range 99.92 (13)–102.57 (12)° and the remaining two angles are 123.09 (13) and 132.81 (14)°.

The crystal structures of a number of closely related compounds have been determined, e.g. diphenhydramine (Glaser & Maartmann-Moe, 1990), diphenhydramine thiourea complex (Wiedenfield & Knoch, 1987), carbinoxamine maleate (Bertolasi et al., 1980), and clemastine hydrogen fumerate (Parvez & Wendling, 1991).

Related literature top

For related literature, see: Bertolasi et al. (1980); Casy (1991); Glaser & Maartmann-Moe (1990); Johnson (1976); Parvez & Sabir (1997, 1998); Parvez & Wendling (1991).

Experimental top

The title compound was synthesized by adding CuCl2·2H20 (1.0 mmol) to doxylamine succinate (Sigma Inc.) (2.0 mmol) in ethanol (20 ml). HCl was added until the pH was 2–3. The solution was evaporated slowly at room temperature and yellow prismatic crystals separated after a few days.

Refinement top

H atoms were located from difference maps and were placed at geometrically idealized positions (N—H 0.88 and 0.93 Å, C—H 0.95–0.99 Å) utilizing a riding model, and a torsional parameter was refined for each Me group. The non-methyl and methyl H atoms were assigned isotropic displacement parameters 1.2 and 1.5 times, respectively, the displacement parameters of the atoms to which they were attached.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with displacement ellipsoids at 50% probability level.
{2-[1-dimethylammonioethoxy)-1-phenylethyl]pyridinium} tetrachlorocuprate(II) top
Crystal data top
(C17H24N2O)[CuCl4]F(000) = 980
Mr = 477.72Dx = 1.539 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71069 Å
a = 16.807 (2) ÅCell parameters from 25 reflections
b = 9.3006 (16) Åθ = 10.0–20.0°
c = 13.7677 (10) ŵ = 1.59 mm1
β = 106.682 (10)°T = 170 K
V = 2061.5 (5) Å3Prismatic, yellow
Z = 40.45 × 0.23 × 0.18 mm
Data collection top
Rigaku AFC6S
diffractometer
1140 reflections with I > 2.0σ(I)
Radiation source: fine-focus sealed tubeRint = 0.00
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω/2θ scansh = 020
Absorption correction: empirical (using intensity measurements)
ψ-scan (3 reflections) (North et al., 1968)
k = 011
Tmin = 0.54, Tmax = 0.76l = 1615
1901 measured reflections3 standard reflections every 200 reflections
1901 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.059P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.01
1901 reflectionsΔρmax = 0.53 e Å3
229 parametersΔρmin = 0.63 e Å3
2 restraintsAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (4)
Crystal data top
(C17H24N2O)[CuCl4]V = 2061.5 (5) Å3
Mr = 477.72Z = 4
Monoclinic, CcMo Kα radiation
a = 16.807 (2) ŵ = 1.59 mm1
b = 9.3006 (16) ÅT = 170 K
c = 13.7677 (10) Å0.45 × 0.23 × 0.18 mm
β = 106.682 (10)°
Data collection top
Rigaku AFC6S
diffractometer
1140 reflections with I > 2.0σ(I)
Absorption correction: empirical (using intensity measurements)
ψ-scan (3 reflections) (North et al., 1968)
Rint = 0.00
Tmin = 0.54, Tmax = 0.763 standard reflections every 200 reflections
1901 measured reflections intensity decay: 0.6%
1901 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128Δρmax = 0.53 e Å3
S = 1.02Δρmin = 0.63 e Å3
1901 reflectionsAbsolute structure: (Flack, 1983)
229 parametersAbsolute structure parameter: 0.02 (4)
2 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.69064 (8)0.81817 (16)0.34263 (9)0.0303 (4)
Cl10.63028 (17)0.7246 (3)0.4590 (2)0.0356 (8)
Cl20.64009 (18)1.0062 (3)0.2465 (2)0.0366 (8)
Cl30.80538 (19)0.9111 (4)0.4439 (2)0.0414 (8)
Cl40.6670 (2)0.6371 (3)0.2297 (2)0.0404 (8)
O10.7734 (5)0.4530 (9)0.5117 (6)0.0304 (19)
N10.7953 (5)0.6688 (9)0.6267 (6)0.026 (2)
H10.75160.65200.57470.032*
N20.6303 (6)0.2951 (10)0.4891 (7)0.033 (2)
H20.66160.34290.54680.039*
C10.7887 (8)0.7712 (12)0.6905 (9)0.032 (3)
H1A0.73790.82200.68010.039*
C20.8549 (9)0.8035 (14)0.7710 (9)0.043 (3)
H2A0.85130.87790.81680.052*
C30.9267 (9)0.7273 (15)0.7850 (11)0.050 (4)
H30.97350.74850.84080.060*
C40.9311 (8)0.6197 (14)0.7182 (9)0.042 (3)
H40.98080.56580.72860.051*
C50.8623 (6)0.5892 (11)0.6346 (8)0.024 (2)
C60.8613 (7)0.4772 (12)0.5554 (9)0.029 (3)
C70.9013 (7)0.3393 (13)0.6063 (9)0.031 (3)
C80.8656 (7)0.2751 (13)0.6746 (9)0.034 (3)
H80.81930.31760.69010.041*
C90.8997 (8)0.1458 (13)0.7198 (10)0.039 (3)
H90.87510.09720.76460.047*
C100.9686 (8)0.0893 (15)0.6995 (9)0.042 (3)
H100.99140.00150.73050.050*
C111.0044 (7)0.1570 (13)0.6358 (10)0.036 (3)
H111.05320.11810.62430.044*
C120.9704 (7)0.2828 (14)0.5872 (10)0.037 (3)
H120.99480.32910.54120.045*
C130.8995 (8)0.5391 (15)0.4777 (10)0.047 (4)
H13A0.89470.46930.42300.071*
H13B0.95830.56030.51000.071*
H13C0.87040.62780.44980.071*
C140.7507 (7)0.3581 (13)0.4281 (8)0.031 (3)
H14A0.77700.26290.44630.037*
H14B0.76730.39730.36990.037*
C150.6592 (8)0.3471 (14)0.4035 (9)0.040 (3)
H15A0.63460.44280.38240.049*
H15B0.63880.28080.34540.049*
C160.5441 (8)0.3294 (15)0.4777 (11)0.052 (4)
H16A0.53450.43190.46200.077*
H16B0.53080.30750.54090.077*
H16C0.50850.27210.42240.077*
C170.6443 (11)0.1394 (16)0.5088 (11)0.065 (5)
H17A0.62750.11280.56890.097*
H17B0.70340.11760.52050.097*
H17C0.61140.08490.45010.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0279 (7)0.0321 (8)0.0291 (8)0.0029 (8)0.0054 (6)0.0028 (8)
Cl10.0255 (15)0.052 (2)0.0303 (16)0.0028 (14)0.0092 (13)0.0096 (14)
Cl20.0375 (17)0.0335 (18)0.0371 (18)0.0025 (15)0.0079 (14)0.0078 (15)
Cl30.0318 (16)0.043 (2)0.0430 (18)0.0065 (15)0.0009 (14)0.0009 (16)
Cl40.055 (2)0.0369 (19)0.0276 (16)0.0113 (15)0.0098 (15)0.0016 (13)
O10.024 (4)0.038 (5)0.028 (4)0.000 (4)0.007 (3)0.008 (4)
N10.029 (5)0.026 (5)0.019 (4)0.005 (5)0.003 (4)0.005 (4)
N20.034 (6)0.033 (6)0.028 (5)0.015 (5)0.004 (4)0.006 (5)
C10.037 (7)0.012 (6)0.048 (8)0.004 (5)0.013 (6)0.000 (5)
C20.065 (10)0.032 (8)0.032 (7)0.015 (8)0.012 (7)0.001 (6)
C30.050 (9)0.043 (8)0.047 (9)0.002 (7)0.002 (7)0.001 (7)
C40.034 (7)0.043 (8)0.048 (8)0.001 (6)0.009 (6)0.003 (7)
C50.023 (6)0.018 (6)0.031 (6)0.006 (5)0.009 (5)0.008 (5)
C60.023 (6)0.021 (6)0.039 (7)0.004 (5)0.004 (5)0.007 (5)
C70.018 (6)0.037 (7)0.034 (6)0.009 (6)0.003 (5)0.002 (6)
C80.029 (7)0.031 (7)0.051 (8)0.001 (5)0.024 (6)0.004 (6)
C90.035 (7)0.040 (8)0.041 (7)0.001 (6)0.011 (6)0.014 (6)
C100.048 (9)0.035 (8)0.036 (8)0.012 (6)0.003 (6)0.003 (6)
C110.025 (7)0.038 (8)0.048 (8)0.012 (6)0.014 (6)0.011 (7)
C120.028 (7)0.041 (9)0.040 (7)0.013 (6)0.007 (6)0.008 (6)
C130.040 (7)0.051 (9)0.059 (9)0.018 (7)0.029 (7)0.003 (7)
C140.032 (7)0.032 (7)0.023 (6)0.004 (5)0.004 (6)0.018 (5)
C150.038 (7)0.046 (9)0.035 (7)0.001 (6)0.006 (6)0.006 (6)
C160.041 (8)0.061 (9)0.054 (8)0.012 (8)0.015 (6)0.013 (8)
C170.094 (13)0.050 (10)0.052 (10)0.005 (9)0.025 (9)0.010 (7)
Geometric parameters (Å, º) top
Cu1—Cl32.206 (3)C7—C81.386 (17)
Cu1—Cl22.210 (3)C8—C91.399 (17)
Cu1—Cl42.248 (4)C8—H80.9500
Cu1—Cl12.299 (3)C9—C101.372 (18)
O1—C141.413 (12)C9—H90.9500
O1—C61.445 (13)C10—C111.353 (18)
N1—C11.322 (14)C10—H100.9500
N1—C51.326 (13)C11—C121.387 (17)
N1—H10.8800C11—H110.9500
N2—C161.449 (16)C12—H120.9500
N2—C151.478 (15)C13—H13A0.9800
N2—C171.479 (17)C13—H13B0.9800
N2—H20.9300C13—H13C0.9800
C1—C21.360 (17)C14—C151.480 (17)
C1—H1A0.9500C14—H14A0.9900
C2—C31.363 (19)C14—H14B0.9900
C2—H2A0.9500C15—H15A0.9900
C3—C41.375 (18)C15—H15B0.9900
C3—H30.9500C16—H16A0.9800
C4—C51.407 (16)C16—H16B0.9800
C4—H40.9500C16—H16C0.9800
C5—C61.505 (16)C17—H17A0.9800
C6—C131.510 (17)C17—H17B0.9800
C6—C71.522 (16)C17—H17C0.9800
C7—C121.368 (16)
Cl3—Cu1—Cl2100.62 (13)C10—C9—C8120.0 (12)
Cl3—Cu1—Cl4132.81 (14)C10—C9—H9120.0
Cl2—Cu1—Cl4102.57 (12)C8—C9—H9120.0
Cl3—Cu1—Cl1100.86 (12)C11—C10—C9120.8 (12)
Cl2—Cu1—Cl1123.09 (13)C11—C10—H10119.6
Cl4—Cu1—Cl199.92 (13)C9—C10—H10119.6
C14—O1—C6116.1 (8)C10—C11—C12120.5 (11)
C1—N1—C5125.4 (10)C10—C11—H11119.8
C1—N1—H1117.3C12—C11—H11119.8
C5—N1—H1117.3C7—C12—C11119.1 (13)
C16—N2—C15112.9 (10)C7—C12—H12120.5
C16—N2—C17109.7 (11)C11—C12—H12120.5
C15—N2—C17113.3 (11)C6—C13—H13A109.5
C16—N2—H2106.9C6—C13—H13B109.5
C15—N2—H2106.9H13A—C13—H13B109.5
C17—N2—H2106.9C6—C13—H13C109.5
N1—C1—C2119.7 (12)H13A—C13—H13C109.5
N1—C1—H1A120.2H13B—C13—H13C109.5
C2—C1—H1A120.2O1—C14—C15104.4 (9)
C1—C2—C3119.0 (13)O1—C14—H14A110.9
C1—C2—H2A120.5C15—C14—H14A110.9
C3—C2—H2A120.5O1—C14—H14B110.9
C2—C3—C4119.9 (13)C15—C14—H14B110.9
C2—C3—H3120.0H14A—C14—H14B108.9
C4—C3—H3120.0N2—C15—C14113.4 (10)
C3—C4—C5120.3 (12)N2—C15—H15A108.9
C3—C4—H4119.8C14—C15—H15A108.9
C5—C4—H4119.8N2—C15—H15B108.9
N1—C5—C4115.7 (10)C14—C15—H15B108.9
N1—C5—C6119.7 (9)H15A—C15—H15B107.7
C4—C5—C6124.6 (10)N2—C16—H16A109.5
O1—C6—C5101.9 (9)N2—C16—H16B109.5
O1—C6—C13110.9 (10)H16A—C16—H16B109.5
C5—C6—C13109.3 (10)N2—C16—H16C109.5
O1—C6—C7108.9 (9)H16A—C16—H16C109.5
C5—C6—C7109.8 (9)H16B—C16—H16C109.5
C13—C6—C7115.2 (10)N2—C17—H17A109.5
C12—C7—C8121.4 (12)N2—C17—H17B109.5
C12—C7—C6121.4 (12)H17A—C17—H17B109.5
C8—C7—C6117.1 (10)N2—C17—H17C109.5
C7—C8—C9118.1 (11)H17A—C17—H17C109.5
C7—C8—H8121.0H17B—C17—H17C109.5
C9—C8—H8121.0
C5—N1—C1—C21.3 (17)C5—C6—C7—C12119.6 (12)
N1—C1—C2—C31.0 (19)C13—C6—C7—C124.3 (16)
C1—C2—C3—C40 (2)O1—C6—C7—C851.6 (14)
C2—C3—C4—C51 (2)C5—C6—C7—C859.1 (14)
C1—N1—C5—C40.4 (16)C13—C6—C7—C8177.0 (11)
C1—N1—C5—C6179.3 (10)C12—C7—C8—C93.3 (18)
C3—C4—C5—N10.7 (17)C6—C7—C8—C9178.0 (11)
C3—C4—C5—C6178.1 (11)C7—C8—C9—C102.7 (19)
C14—O1—C6—C5175.7 (9)C8—C9—C10—C110 (2)
C14—O1—C6—C1359.5 (13)C9—C10—C11—C122 (2)
C14—O1—C6—C768.4 (12)C8—C7—C12—C111.3 (18)
N1—C5—C6—O121.1 (12)C6—C7—C12—C11179.9 (12)
C4—C5—C6—O1160.1 (11)C10—C11—C12—C71.5 (18)
N1—C5—C6—C1396.3 (12)C6—O1—C14—C15176.7 (10)
C4—C5—C6—C1382.5 (13)C16—N2—C15—C14160.5 (11)
N1—C5—C6—C7136.4 (10)C17—N2—C15—C1474.1 (14)
C4—C5—C6—C744.8 (15)O1—C14—C15—N258.0 (13)
O1—C6—C7—C12129.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.882.303.101 (9)152
N2—H2···Cl4i0.932.503.253 (10)138
N1—H1···O10.882.122.517 (11)107
N2—H2···O10.932.312.757 (12)109
Symmetry code: (i) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula(C17H24N2O)[CuCl4]
Mr477.72
Crystal system, space groupMonoclinic, Cc
Temperature (K)170
a, b, c (Å)16.807 (2), 9.3006 (16), 13.7677 (10)
β (°) 106.682 (10)
V3)2061.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.45 × 0.23 × 0.18
Data collection
DiffractometerRigaku AFC6S
diffractometer
Absorption correctionEmpirical (using intensity measurements)
ψ-scan (3 reflections) (North et al., 1968)
Tmin, Tmax0.54, 0.76
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
1901, 1901, 1140
Rint0.00
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.02
No. of reflections1901
No. of parameters229
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.63
Absolute structure(Flack, 1983)
Absolute structure parameter0.02 (4)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), TEXSAN, SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—Cl32.206 (3)N1—C11.322 (14)
Cu1—Cl22.210 (3)N1—C51.326 (13)
Cu1—Cl42.248 (4)N2—C161.449 (16)
Cu1—Cl12.299 (3)N2—C151.478 (15)
O1—C141.413 (12)N2—C171.479 (17)
O1—C61.445 (13)
Cl3—Cu1—Cl2100.62 (13)C14—O1—C6116.1 (8)
Cl3—Cu1—Cl4132.81 (14)C1—N1—C5125.4 (10)
Cl2—Cu1—Cl4102.57 (12)C16—N2—C15112.9 (10)
Cl3—Cu1—Cl1100.86 (12)C16—N2—C17109.7 (11)
Cl2—Cu1—Cl1123.09 (13)C15—N2—C17113.3 (11)
Cl4—Cu1—Cl199.92 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.882.303.101 (9)152
N2—H2···Cl4i0.932.503.253 (10)138
N1—H1···O10.882.122.517 (11)107
N2—H2···O10.932.312.757 (12)109
Symmetry code: (i) x, y+1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds