Download citation
Download citation
link to html
The title compound, μ-[1,3-bis(5-chloro-2-oxidobenzyl­idene­amino)­propan-2-olato(3−)]-O,N,O′:O′,N′,O′′-μ-(3,5-di­methyl­pyrazolato)-N:N′-dinickel(II), [Ni2(C17H13Cl2N2O3)(C5H7N2)], has crystallographic mirror symmetry. The Ni atoms in the dinuclear structure are linked symmetrically by the N atoms of the 3,5-di­methyl­pyrazole group and by the alkoxo O atom. Each NiII ion is coordinated by two N atoms and two O atoms, forming a square plane with trans-N2O2 geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100015808/fr1306sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100015808/fr1306Isup2.hkl
Contains datablock I

CCDC reference: 159978

Comment top

The field of binucleating ligands and their metal complexes has developed considerably in recent years (Fenton & Okawa 1993; Guerriero et al., 1992; Bond et al., 1989). Although a large number of unsymmetric doubly bridged dinuclear copper(II) complexes have been extensively studied (Mazurek et al., 1982, 1985; Nishida & Kida, 1988; Doman et al., 1990; Tandon et al., 1993; Chen et al., 1996; Li et al., 1997), relatively few structures of unsymmetric doubly bridged dinuclear nickel(II) complexes have been reported (Mikuriya et al., 1992; Kruger et al., 1994; Kondrad et al., 1999). We have therefore made a detailed structural study of the title dinuclear µ-pyrazolato-N,N'-bridged nickel(II) complex of 1,3-bis(5-chlorosalicylideneamino)propan-2-ol, (I). \sch

The crystal structure of (I) is illustrated in Fig. 1 and selected bond distances and angles are listed in Table 1. The Ni atoms in the dinuclear structure are linked symmetrically by the N atoms of the 3,5-dimethylpyrazole group and by the alkoxo O atom. Each NiII ion is coordinated by two N atoms and two O atoms, forming a square plane with trans-N2O2 geometry. The molecular structure of (I) has crystallographic mirror symmetry, so the asymmetric unit contains only half of the molecule.

The Ni—O and Ni—N bond distances in (I) are in the range of those of conventional Schiff base and alkoxide-bridged nickel(II) complexes of square-planar coordination (Mikuriya et al., 1992; Kruger et al., 1994). The Ni···Ni separation [3.157 (3) Å] and the Ni—O—Ni angle [117.4 (2)°] are smaller than those reported for unsymmetrical doubly bridged dinuclear nickel(II) complexes (Mikuriya et al., 1992; Kruger et al., 1994). The dihedral angle between the coordinated planes is 33.52 (8)°, showing a considerable bending of the two coordination planes. Thus, the molecule of (I) has a bent structure. This bending of the molecule is caused by the twisting of the Schiff base backbone and leads to a smaller Ni···Ni separation and a smaller Ni—O—Ni angle.

The NiII ion is square-planar, with the mean deviation from the least-squares plane defined by Ni1/O1/N1/O2/N2 being 0.03 Å and the mean deviation from the Ni1/O2/Ni1i/N2i/N2 plane being 0.17 Å [symmetry code: (i) x, 3/2 - y, z]. The remaining five-membered rings are not planar, as seen from the N1—C8—C9—O2 torsion angle of 49.7 (6)°. The six-membered rings are each planar to within 0.007 Å. Another important feature is the geometry of the bridging atom, O2: the bond angles around O2 of 108.8 (2), 117.4 (2) and 108.8 (2)° indicate the pyramidal stereochemistry at this atom.

Complex (I) is diamagnetic, which is consistent with a planar geometry around the NiII ions.

Related literature top

For related literature, see: Bond et al. (1989); Chen et al. (1996); Doman et al. (1990); Fenton & Okawa (1993); Guerriero et al. (1992); Kondrad et al. (1999); Kruger et al. (1994); Li et al. (1997); Mazurek et al. (1982, 1985); Mikuriya et al. (1992); Nishida & Kida (1988); Tandon et al. (1993).

Experimental top

Caution: perchlorate salts of metal complexes with organic ligands are potentially explosive. Only a small quantity of materials should be handled with caution. The Schiff base ligand was prepared by the reaction of 1,3-diaminopropane-2-ol (0.1 mmol) with 5-chlorosalicylaldehyde (0.2 mmol) in methanol (100 ml). The yellow Schiff base precipitated from solution on cooling. The dinuclear complex, (I), was obtained when a sample of ligand (0.1 mmol) in methanol (50 ml) was added dropwise to a stirred mixture containing 3,5-dimethylpyrazole (0.1 mmol) and nickel(II)perchlorate hexahydrate (0.2 mmol) in methanol (25 ml). Triethylamine (0.3 mmol) was added to the solution. The mixture was stirred and thin brown crystals of (I) were collected and washed with methanol. Recrystallization from acetone afforded suitable single crystals.

Refinement top

The positions of the H atoms bonded to C were calculated (C—H distances 0.96 Å) and refined using a riding model, with H-atom displacement parameters constrained to be 1.2Ueq of the parent atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: RC93 (Watkin et al., 1994); program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and 50% probability level displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii [symmetry code: (i) x, 3/2 - y, z].
µ-[1,3-bis(5-chlorosalicylideneamino)propanol]-O,N,O':O',N',O''-µ-(3,5- dimethylpyrazolato)-N:N'-dinickel(II) top
Crystal data top
[Ni2(C17H13Cl2N2O3)(C5H7N2)]F(000) = 1176
Mr = 576.70Dx = 1.71 Mg m3
Orthorhombic, PnmaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2nCell parameters from 24 reflections
a = 7.492 (3) Åθ = 12–20°
b = 28.929 (7) ŵ = 4.57 mm1
c = 10.334 (5) ÅT = 293 K
V = 2239.8 (15) Å3Plate, brown
Z = 40.19 × 0.15 × 0.09 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1070 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 74.2°, θmin = 4.5°
ω/2θ scansh = 09
Absorption correction: ψ-scans
(North et al., 1968)
k = 360
Tmin = 0.482, Tmax = 0.663l = 012
2284 measured reflections3 standard reflections every 120 min
2284 independent reflections intensity decay: 1.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0672P)2 + 2.4402P]
where P = (Fo2 + 2Fc2)/3
2284 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Ni2(C17H13Cl2N2O3)(C5H7N2)]V = 2239.8 (15) Å3
Mr = 576.70Z = 4
Orthorhombic, PnmaCu Kα radiation
a = 7.492 (3) ŵ = 4.57 mm1
b = 28.929 (7) ÅT = 293 K
c = 10.334 (5) Å0.19 × 0.15 × 0.09 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1070 reflections with I > 2σ(I)
Absorption correction: ψ-scans
(North et al., 1968)
Rint = 0.000
Tmin = 0.482, Tmax = 0.6633 standard reflections every 120 min
2284 measured reflections intensity decay: 1.2%
2284 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2284 reflectionsΔρmin = 0.31 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure was solved by direct phase determination. The parameters of the complete structure could be refined by full-matrix anisotropic least-squares including anisotropic displacement parameters for non-H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.11467 (10)0.69543 (3)0.31511 (7)0.0561 (3)
Cl10.1578 (2)0.46218 (5)0.18574 (15)0.0855 (5)
O20.1756 (6)0.75000.2335 (4)0.0610 (11)
O10.0416 (5)0.64295 (12)0.3938 (3)0.0665 (9)
N10.0982 (5)0.67114 (14)0.1479 (4)0.0600 (10)
N20.1425 (4)0.72652 (14)0.4771 (3)0.0534 (9)
C10.0007 (5)0.60325 (18)0.3415 (5)0.0544 (12)
C20.0579 (7)0.56695 (19)0.4222 (6)0.0721 (14)
H20.06070.57140.51130.108*
C30.1087 (8)0.5257 (2)0.3727 (5)0.0727 (15)
H30.14800.50270.42880.109*
C40.1041 (7)0.51684 (17)0.2436 (6)0.0651 (12)
C50.0524 (7)0.5505 (2)0.1591 (5)0.0692 (14)
H50.05110.54450.07070.104*
C60.0000 (6)0.59511 (18)0.2062 (5)0.0598 (13)
C70.0496 (6)0.62977 (18)0.1156 (5)0.0588 (12)
H70.04710.62230.02800.088*
C80.1504 (7)0.70477 (19)0.0466 (5)0.0663 (14)
H8A0.08530.69940.03320.099*
H8B0.27750.70330.02900.099*
C90.1002 (10)0.75000.1061 (6)0.0661 (19)
H90.02990.75000.11620.099*
C100.1876 (6)0.71168 (19)0.5976 (5)0.0631 (13)
C110.2110 (11)0.75000.6742 (6)0.074 (2)
H110.23790.75000.76200.110*
C120.1989 (9)0.6619 (2)0.6404 (6)0.0912 (19)
H12A0.17790.64200.56760.137*
H12B0.11050.65610.70570.137*
H12C0.31540.65590.67510.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0556 (4)0.0573 (5)0.0555 (5)0.0029 (4)0.0002 (4)0.0005 (4)
Cl10.0943 (10)0.0701 (8)0.0922 (10)0.0158 (7)0.0047 (8)0.0078 (9)
O20.077 (3)0.058 (3)0.049 (2)0.0000.002 (2)0.000
O10.085 (2)0.055 (2)0.060 (2)0.0003 (18)0.0077 (18)0.0028 (18)
N10.066 (2)0.054 (2)0.061 (2)0.002 (2)0.017 (2)0.0034 (19)
N20.0424 (16)0.069 (3)0.0489 (19)0.0014 (17)0.0011 (15)0.0060 (18)
C10.043 (2)0.061 (3)0.059 (3)0.019 (2)0.012 (2)0.005 (2)
C20.076 (3)0.065 (3)0.075 (3)0.004 (3)0.003 (3)0.001 (3)
C30.087 (4)0.071 (3)0.061 (3)0.016 (3)0.004 (3)0.001 (3)
C40.074 (3)0.048 (2)0.073 (3)0.006 (3)0.007 (3)0.005 (3)
C50.072 (3)0.077 (4)0.058 (3)0.004 (3)0.001 (2)0.007 (3)
C60.048 (2)0.069 (3)0.063 (3)0.010 (2)0.008 (2)0.000 (3)
C70.047 (2)0.068 (3)0.061 (3)0.003 (2)0.003 (2)0.000 (3)
C80.065 (3)0.079 (4)0.056 (3)0.002 (3)0.002 (2)0.010 (3)
C90.069 (4)0.088 (5)0.041 (3)0.0000.009 (3)0.000
C100.043 (2)0.081 (3)0.065 (3)0.002 (2)0.001 (2)0.009 (3)
C110.092 (5)0.090 (6)0.038 (4)0.0000.001 (4)0.000
C120.109 (5)0.095 (5)0.070 (4)0.007 (4)0.009 (3)0.024 (3)
Geometric parameters (Å, º) top
Ni1—O11.807 (4)C4—C51.365 (7)
Ni1—O21.847 (2)C5—C61.434 (7)
Ni1—N11.869 (4)C5—H50.9300
Ni1—N21.912 (4)C6—C71.421 (7)
Cl1—C41.738 (5)C7—H70.9300
O2—C91.432 (8)C8—C91.494 (6)
O2—Ni1i1.847 (2)C8—H8A0.9700
O1—C11.308 (6)C8—H8B0.9700
N1—C71.295 (6)C9—C8i1.494 (6)
N1—C81.482 (7)C9—H90.9800
N2—N2i1.358 (8)C10—C111.373 (6)
N2—C101.360 (6)C10—C121.509 (8)
C1—C21.407 (7)C11—C10i1.373 (6)
C1—C61.418 (7)C11—H110.9300
C2—C31.353 (7)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.359 (7)C12—H12C0.9600
C3—H30.9300
O1—Ni1—O2176.66 (19)C1—C6—C7122.2 (5)
O1—Ni1—N194.60 (18)C1—C6—C5118.9 (5)
O2—Ni1—N185.14 (18)C7—C6—C5118.9 (5)
O1—Ni1—N291.96 (17)N1—C7—C6123.7 (5)
O2—Ni1—N288.34 (17)N1—C7—H7118.1
N1—Ni1—N2173.43 (17)C6—C7—H7118.1
C9—O2—Ni1i108.8 (2)N1—C8—C9102.5 (4)
C9—O2—Ni1108.8 (2)N1—C8—H8A111.3
Ni1i—O2—Ni1117.4 (2)C9—C8—H8A111.3
C1—O1—Ni1128.7 (3)N1—C8—H8B111.3
C7—N1—C8119.9 (4)C9—C8—H8B111.3
C7—N1—Ni1127.2 (4)H8A—C8—H8B109.2
C8—N1—Ni1112.9 (3)O2—C9—C8106.2 (4)
N2i—N2—C10108.4 (3)O2—C9—C8i106.2 (4)
N2i—N2—Ni1118.06 (12)C8—C9—C8i122.2 (6)
C10—N2—Ni1132.9 (4)O2—C9—H9107.1
O1—C1—C2118.9 (4)C8—C9—H9107.1
O1—C1—C6123.5 (5)C8i—C9—H9107.1
C2—C1—C6117.5 (5)N2—C10—C11107.7 (5)
C3—C2—C1121.3 (5)N2—C10—C12125.7 (5)
C3—C2—H2119.3C11—C10—C12126.5 (5)
C1—C2—H2119.3C10—C11—C10i107.7 (7)
C2—C3—C4122.1 (5)C10—C11—H11126.2
C2—C3—H3119.0C10i—C11—H11126.2
C4—C3—H3119.0C10—C12—H12A109.5
C3—C4—C5120.0 (5)C10—C12—H12B109.5
C3—C4—Cl1120.3 (4)H12A—C12—H12B109.5
C5—C4—Cl1119.7 (4)C10—C12—H12C109.5
C4—C5—C6120.2 (5)H12A—C12—H12C109.5
C4—C5—H5119.9H12B—C12—H12C109.5
C6—C5—H5119.9
N1—Ni1—O2—C926.0 (4)C2—C1—C6—C7177.9 (4)
N2—Ni1—O2—C9154.9 (4)O1—C1—C6—C5178.7 (4)
N1—Ni1—O2—Ni1i150.0 (3)C2—C1—C6—C51.6 (6)
N2—Ni1—O2—Ni1i30.8 (3)C4—C5—C6—C10.8 (7)
N1—Ni1—O1—C11.4 (4)C4—C5—C6—C7178.7 (5)
N2—Ni1—O1—C1178.1 (4)C8—N1—C7—C6179.0 (4)
O1—Ni1—N1—C70.4 (5)Ni1—N1—C7—C60.2 (7)
O2—Ni1—N1—C7177.0 (4)C1—C6—C7—N10.2 (7)
O1—Ni1—N1—C8179.7 (3)C5—C6—C7—N1179.7 (5)
O2—Ni1—N1—C83.6 (3)C7—N1—C8—C9150.5 (5)
O1—Ni1—N2—N2i159.1 (3)Ni1—N1—C8—C930.1 (5)
O2—Ni1—N2—N2i17.56 (15)Ni1i—O2—C9—C8178.8 (4)
O1—Ni1—N2—C1031.4 (4)Ni1—O2—C9—C849.7 (6)
O2—Ni1—N2—C10151.9 (4)Ni1i—O2—C9—C8i49.7 (6)
Ni1—O1—C1—C2178.8 (3)Ni1—O2—C9—C8i178.8 (4)
Ni1—O1—C1—C61.7 (6)N1—C8—C9—O249.7 (6)
O1—C1—C2—C3177.8 (5)N1—C8—C9—C8i171.5 (5)
C6—C1—C2—C30.6 (7)N2i—N2—C10—C111.7 (5)
C1—C2—C3—C41.3 (9)Ni1—N2—C10—C11171.9 (4)
C2—C3—C4—C52.1 (9)N2i—N2—C10—C12178.4 (4)
C2—C3—C4—Cl1176.1 (4)Ni1—N2—C10—C1211.4 (7)
C3—C4—C5—C61.0 (8)N2—C10—C11—C10i2.7 (8)
Cl1—C4—C5—C6177.2 (4)C12—C10—C11—C10i179.4 (4)
O1—C1—C6—C70.8 (7)
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Ni2(C17H13Cl2N2O3)(C5H7N2)]
Mr576.70
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)7.492 (3), 28.929 (7), 10.334 (5)
V3)2239.8 (15)
Z4
Radiation typeCu Kα
µ (mm1)4.57
Crystal size (mm)0.19 × 0.15 × 0.09
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scans
(North et al., 1968)
Tmin, Tmax0.482, 0.663
No. of measured, independent and
observed [I > 2σ(I)] reflections
2284, 2284, 1070
Rint0.000
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.155, 1.04
No. of reflections2284
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), CAD-4 EXPRESS, RC93 (Watkin et al., 1994), SHELXS86 (Sheldrick, 1986), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ni1—O11.807 (4)Ni1—N21.912 (4)
Ni1—O21.847 (2)N2—N2i1.358 (8)
Ni1—N11.869 (4)
O1—Ni1—O2176.66 (19)O2—Ni1—N288.34 (17)
O1—Ni1—N194.60 (18)N1—Ni1—N2173.43 (17)
O2—Ni1—N185.14 (18)Ni1i—O2—Ni1117.4 (2)
O1—Ni1—N291.96 (17)N2i—N2—Ni1118.06 (12)
Symmetry code: (i) x, y+3/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds