Download citation
Download citation
link to html
3-Acetyl-1,6,7,12b-tetra­hydro­indolo­[2,3-a]­quinolizin-2(12H)-one, C17H16N2O2, consists of two symmetry-independent mol­ecules and each forms a layered structure stabilized by N—H...O and C—H...O hydrogen bonds. In 3-acetyl-6,7-di­hydro­indolo­[2,3-a]­quinolizin-4(12H)-one monohydrate, C17H14N2O2·H2O, the structure is stabilized by O—H...O, N—H...O and C—H...O hydrogen bonds, with the ordered water mol­ecule playing a crucial role in the self-assembly. Contribution from the weak interactions to the strong hydrogen-bonded network is a common feature in both structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014220/fr1299sup1.cif
Contains datablocks global, 1, 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014220/fr12991sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014220/fr12992sup3.hkl
Contains datablock 2

CCDC references: 158268; 158269

Comment top

Indole alkaloids and their derivatives continue to attract the attention of organic and medicinal chemists because of their physiological importance as well as structural diversity. Compound (1) was synthesized with a view to obtaining different indole alkaloids from a common intermediate. Compound (2) was synthesized to obtain the alkaloid flavopereirine, which inhibits cancer producing cells (Giri et al., 1984, 1995). There are ca 90 hits in the Cambridge Structural Database (version 5.19, April 2000, 215 403 entries; Allen, 1998) that contain the tetracyclic skeleton of (1) and (2). However, none of these structures are closely related to the title compounds. Given the novelty of (1) and (2) and the fact that their conformation and packing motifs in the solid state will provide useful inputs for structural and medicinal studies currently ongoing in our laboratories, their crystallographic analysis was performed. \sch

There are two symmetry-independent molecules (A and B) with similar conformations in the crystal structure of (1). Compound (2) crystallizes as a hydrate. The indole moiety is planar while the quinolizine portion adopts chair, half-chair, boat conformations in both compounds. The bond distances and angles in both molecules are in the expected ranges (Orpen et al., 1989). The molecular geometry and numbering of (1) and (2) are displayed in Figs. 1 and 2 (ORTEPII; Johnson, 1976).

The crystal packing in (1) consists of separate hydrogen-bonded layers of A and B molecules, which in turn are close-packed through van der Waals interactions. The A and B molecules are in different conformations with maximum deviation in the C11—C15 ring portion and orientation of the acetyl group. The mean r.m.s. deviation in the overlay of skeletal atoms in the two molecules is 0.2616 Å. The A layer in (1) is shown in Fig. 3. Inversion-related molecules are connected by N—H···O and C—H···O hydrogen bonds through the multi-point recognition synthon I. C—H···O hydrogen bonds on the other side of the molecule extend through synthon II to form a molecular tape. The molecule being donor rich, both the carbonyl O atoms are bifurcated acceptors to N—H and C—H donors (N1—H1A···O1 2.04, C12—H12B···O1 2.72, C10—H10B···O2 2.36, C15—H15···O2 2.48 Å). It may be noted that the C—H···O bond that is donating together with the N—H group to O1 (synthon I) is significantly longer than the two C—H···O bonds of synthon II that is solely formed with the weak interactions. Layer B (not shown) is constituted with synthons III and IV mediated through one strong and two weak hydrogen bonds (N3—H3B···O3 2.03, C29—H29B···O3 2.57, C27—H27B···O4 2.34 Å). The presence of multiple molecules in the asymmetric unit of a crystal is often difficult to rationalize (Steiner, 2000). In the present case, it may be ascribed to different conformations and to distinct intermolecular synthons for each symmetry-independent molecule.

In hydrate (2), translation-related molecules are connected by four different types of hydrogen bonds to the water molecule (Fig. 4) [O3—H3C···O1 1.92 (6), O3—H3B···O2 1.86 (5), N1—H1A···O3 1.98, C10—H10B···O3 2.76 Å]. In this structure, the ordered water molecule donates hydrogen bonds to different carbonyl groups of the heterocycle and accepts from N—H and C—H donors (Desiraju & Steiner, 1999). The water O atom is tetracoordinated, though the geometry is far from ideal (107.3, 100.3, 78.4, 120.5, 123.2, 123.3°). Both these crystal structures illustrate the fortification of N—H···O and O—H···O networks by the weak C—H···O hydrogen bonds.

Experimental top

The synthesis of (1) and (2) have been reported previously (Giri et al., 1984, 1995). Orange needle-shaped crystals of compounds (1) and (2) were obtained from 1:1 mixtures of methanol and chloroform.

Refinement top

In both structures, C—H distances were constrained to distances in the range 0.93–0.98 Å, depending on c-atom type, with Uiso = 1.2Ueq for the C atom (1.5 for methyl). N—H distances were constrained to be 0.86 Å, with Uiso = 1.2Ueq. Water H atoms in (2) were refined isotropically.

Computing details top

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: Xtal (Hall et al., 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON-(C) (Spek, 1979-1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) and atom numbering in (1); displacement ellipsoids are drawn at 35% probability level for non-H atoms.
[Figure 2] Fig. 2. ORTEPII view (Johnson, 1976) and atom numbering in (2); displacement ellipsoids are drawn at 35% probability level for non-H atoms.
[Figure 3] Fig. 3. Layered structure of A molecules in (1) viewed down [011]. O and N atoms are shaded differently. Hydrogen bonds are shown as dotted lines. Notice the centrosymmetric synthons I and II.
[Figure 4] Fig. 4. Structure of hydrate (2) viewed down [011]. O and N atoms are shaded differently. Hydrogen bonds are shown as dotted lines. Notice the crucial role of water in aggregating translation-related molecules of (2).
(1) 3-Acetyl-1,2,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-2-one. top
Crystal data top
C17H16N2O2Z = 4
Mr = 280.32F(000) = 592
Triclinic, P1Dx = 1.340 Mg m3
a = 8.169 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.841 (3) ÅCell parameters from 25 reflections
c = 14.772 (3) Åθ = 9.1–18.2°
α = 72.60 (3)°µ = 0.09 mm1
β = 75.54 (3)°T = 293 K
γ = 72.64 (3)°Needles, orange
V = 1389 (3) Å30.52 × 0.48 × 0.32 mm
Data collection top
CAD4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.7°
Graphite monochromatorh = 09
ω scank = 1415
4883 measured reflectionsl = 1617
4883 independent reflections3 standard reflections every 100 reflections
3225 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.2875P]
where P = (Fo2 + 2Fc2)/3
4883 reflections(Δ/σ)max = 0.004
379 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H16N2O2γ = 72.64 (3)°
Mr = 280.32V = 1389 (3) Å3
Triclinic, P1Z = 4
a = 8.169 (16) ÅMo Kα radiation
b = 12.841 (3) ŵ = 0.09 mm1
c = 14.772 (3) ÅT = 293 K
α = 72.60 (3)°0.52 × 0.48 × 0.32 mm
β = 75.54 (3)°
Data collection top
CAD4
diffractometer
Rint = 0.000
4883 measured reflections3 standard reflections every 100 reflections
4883 independent reflections intensity decay: none
3225 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
4883 reflectionsΔρmin = 0.22 e Å3
379 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5851 (3)0.3160 (2)0.01938 (16)0.0513 (6)
H1B0.52780.39000.00470.062*
C20.6863 (3)0.2508 (2)0.04178 (18)0.0613 (7)
H2A0.69900.28170.10790.074*
C30.7706 (3)0.1395 (2)0.00736 (18)0.0635 (7)
H3A0.83840.09720.05080.076*
C40.7554 (3)0.0906 (2)0.09016 (18)0.0570 (6)
H4A0.81140.01590.11320.068*
C50.6538 (3)0..15648 (19)0.15270 (16)0.0434 (5)
C60.5688 (3)0.26972 (18)0.11867 (15)0.0414 (5)
C70.4787 (3)0.31179 (17)0.20191 (15)0.0402 (5)
C80.5109 (3)0.22554 (17)0.28016 (15)0.0397 (5)
C90.3757 (3)0.42663 (18)0.21131 (16)0.0482 (6)
H9A0.25830.43890.20050.058*
H9B0.42920.48290.16350.058*
C100.3698 (3)0.43724 (18)0.31155 (15)0.0488 (6)
H10A0.48230.44400.31620.059*
H10B0.28380.50500.32270.059*
C110.4420 (3)0.22816 (17)0.38277 (15)0.0393 (5)
H11A0.53980.21720.41460.047*
C120.3426 (3)0.13922 (17)0.43730 (15)0.0424 (5)
H12A0.25280.14490.40250.051*
H12B0.42170.06540.44030.051*
C130.2591 (3)0.15046 (18)0.53838 (15)0.0416 (5)
C140.1835 (3)0.26439 (17)0.54585 (15)0.0413 (5)
C150.2143 (3)0.35051 (18)0.46543 (15)0.0434 (5)
H15A0.14970.42290.46840.052*
C160.0682 (3)0.2987 (2)0.63011 (16)0.0491 (6)
C170.0233 (4)0.2126 (2)0.72053 (18)0.0764 (9)
H17A0.05290.24990.76840.115*
H17B0.12800.16760.74430.115*
H17C0.03380.16510.70680.115*
N10.6158 (2)0.13122 (15)0.25181 (12)0.0447 (5)
H1A0.65180.06710.28960.054*
N20.3255 (2)0.33976 (14)0.38562 (12)0.0421 (4)
O10.2539 (2)0.06512 (13)0.60409 (11)0.0601 (5)
O20.0058 (2)0.39867 (15)0.62885 (12)0.0705 (5)
C180.1661 (3)0.1609 (2)1.47365 (16)0.0492 (6)
H18A0.14100.08271.49100.059*
C190.2608 (3)0.2217 (2)1.53990 (17)0.0571 (7)
H19A0.30100.18431.60220.069*
C200.2974 (3)0.3387 (2)1.51464 (17)0.0588 (7)
H20A0.36250.37811.56060.071*
C210.2396 (3)0.3976 (2)1.42341 (16)0.0527 (6)
H21A0.26310.47571.40740.063*
C220.1452 (3)0.33613 (18)1.35647 (15)0.0420 (5)
C230.1076 (3)0.21772 (18)1.38001 (15)0.0405 (5)
C240.0084 (3)0.18310 (17)1.29447 (15)0.0404 (5)
C250.0087 (3)0.27825 (17)1.22554 (15)0.0395 (5)
C260.1064 (3)0.28455 (17)1.12534 (15)0.0411 (5)
H26A0.19450.32661.11480.049*
C270.2400 (3)0.07979 (19)1.19933 (16)0.0517 (6)
H27A0.32570.09521.22550.062*
H27B0.29060.00901.18070.062*
C280.0785 (3)0.07027 (18)1.27585 (16)0.0492 (6)
H28A0.00030.04351.25380.059*
H28B0.11060.01721.33460.059*
C290.0034 (3)0.34039 (18)1.04736 (15)0.0442 (5)
H29A0.09280.30051.05740.053*
H29B0.06090.41701.05180.053*
C300.1046 (3)0.34160 (18)0.94821 (16)0.0445 (5)
C310.2436 (3)0.24310 (18)0.94250 (16)0.0454 (5)
C320.2672 (3)0.15935 (19)1.02625 (17)0.0479 (6)
H32A0.33910.08971.01950.057*
C330.3611 (3)0.2209 (2)0.85389 (18)0.0580 (7)
C340.3713 (4)0.3148 (3)0.76508 (19)0.0856 (10)
H34A0.45390.28660.71390.128*
H34B0.40770.37260.77800.128*
H34C0.25880.34530.74640.128*
N30.0733 (2)0.37142 (15)1.26140 (13)0.0461 (5)
H3B0.07870.44011.22980.055*
N40.1968 (2)0.16994 (14)1.11444 (13)0.0435 (4)
O30.0624 (2)0.42082 (13)0.87975 (12)0.0640 (5)
O40.4549 (3)0.12762 (17)0.85210 (15)0.0902 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0451 (13)0.0623 (15)0.0373 (13)0.0122 (11)0.0038 (10)0.0022 (12)
C20.0579 (16)0.0805 (19)0.0379 (14)0.0175 (14)0.0015 (12)0.0083 (13)
C30.0631 (17)0.0759 (19)0.0488 (16)0.0144 (14)0.0050 (13)0.0261 (14)
C40.0517 (14)0.0514 (15)0.0568 (16)0.0045 (12)0.0018 (12)0.0144 (13)
C50.0347 (11)0.0490 (13)0.0409 (13)0.0127 (10)0.0013 (10)0.0048 (10)
C60.0330 (11)0.0485 (13)0.0374 (12)0.0118 (10)0.0027 (9)0.0037 (10)
C70.0350 (11)0.0418 (12)0.0365 (12)0.0086 (9)0.0057 (9)0.0001 (10)
C80.0314 (11)0.0431 (12)0.0371 (12)0.0061 (9)0.0045 (9)0.0031 (10)
C90.0472 (13)0.0454 (13)0.0413 (13)0.0089 (11)0.0060 (10)0.0014 (10)
C100.0568 (14)0.0393 (13)0.0443 (14)0.0182 (11)0.0021 (11)0.0005 (10)
C110.0323 (11)0.0406 (12)0.0368 (12)0.0041 (9)0.0072 (9)0.0012 (9)
C120.0409 (12)0.0371 (12)0.0388 (13)0.0038 (9)0.0033 (10)0.0027 (10)
C130.0374 (11)0.0398 (12)0.0371 (12)0.0053 (9)0.0055 (9)0.0013 (10)
C140.0416 (12)0.0407 (12)0.0341 (12)0.0070 (10)0.0056 (9)0.0022 (10)
C150.0488 (13)0.0373 (12)0.0382 (13)0.0051 (10)0.0061 (10)0.0072 (10)
C160.0526 (14)0.0451 (14)0.0405 (14)0.0054 (11)0.0039 (11)0.0072 (11)
C170.100 (2)0.0620 (17)0.0451 (16)0.0181 (16)0.0178 (15)0.0074 (13)
N10.0395 (10)0.0424 (11)0.0377 (11)0.0025 (8)0.0025 (8)0.0003 (8)
N20.0472 (11)0.0369 (10)0.0343 (10)0.0101 (8)0.0017 (8)0.0019 (8)
O10.0638 (11)0.0443 (9)0.0439 (10)0.0012 (8)0.0034 (8)0.0076 (8)
O20.0893 (14)0.0501 (11)0.0502 (11)0.0007 (9)0.0055 (9)0.0125 (8)
C180.0461 (13)0.0526 (14)0.0396 (13)0.0097 (11)0.0101 (11)0.0022 (11)
C190.0541 (15)0.0719 (18)0.0346 (13)0.0125 (13)0.0039 (11)0.0033 (12)
C200.0580 (15)0.0733 (18)0.0396 (14)0.0086 (13)0.0024 (12)0.0183 (13)
C210.0552 (14)0.0521 (14)0.0455 (15)0.0075 (12)0.0051 (11)0.0126 (12)
C220.0371 (11)0.0480 (13)0.0351 (12)0.0084 (10)0.0046 (9)0.0048 (10)
C230.0317 (11)0.0474 (13)0.0373 (12)0.0082 (9)0.0087 (9)0.0021 (10)
C240.0344 (11)0.0425 (12)0.0395 (12)0.0082 (9)0.0061 (9)0.0043 (10)
C250.0376 (11)0.0391 (12)0.0363 (12)0.0063 (9)0.0040 (9)0.0064 (10)
C260.0399 (12)0.0371 (12)0.0407 (13)0.0093 (9)0.0020 (10)0.0054 (10)
C270.0473 (13)0.0440 (13)0.0494 (15)0.0024 (11)0.0082 (11)0.0042 (11)
C280.0510 (14)0.0430 (13)0.0441 (14)0.0071 (11)0.0082 (11)0.0014 (11)
C290.0455 (12)0.0392 (12)0.0409 (13)0.0060 (10)0.0047 (10)0.0064 (10)
C300.0547 (14)0.0391 (13)0.0393 (13)0.0147 (11)0.0056 (11)0.0078 (10)
C310.0478 (13)0.0444 (13)0.0412 (13)0.0124 (10)0.0010 (10)0.0110 (11)
C320.0436 (13)0.0428 (13)0.0520 (15)0.0067 (10)0.0000 (11)0.0144 (11)
C330.0597 (16)0.0624 (17)0.0495 (16)0.0135 (13)0.0022 (12)0.0207 (13)
C340.095 (2)0.089 (2)0.0484 (17)0.0197 (18)0.0178 (16)0.0097 (16)
N30.0519 (11)0.0386 (10)0.0387 (11)0.0082 (9)0.0016 (9)0.0042 (8)
N40.0401 (10)0.0388 (10)0.0410 (11)0.0018 (8)0.0027 (8)0.0058 (8)
O30.0868 (13)0.0474 (10)0.0424 (10)0.0069 (9)0.0079 (9)0.0006 (8)
O40.0989 (16)0.0715 (14)0.0720 (14)0.0088 (12)0.0155 (11)0.0310 (11)
Geometric parameters (Å, º) top
C1—C21.366 (3)C18—C191.372 (3)
C1—C61.397 (3)C18—C231.396 (3)
C1—H1B0.9300C18—H18A0.9300
C2—C31.389 (4)C19—C201.392 (3)
C2—H2A0.9300C19—H19A0.9300
C3—C41.379 (3)C20—C211.377 (3)
C3—H3A0.9300C20—H20A0.9300
C4—C51.387 (3)C21—C221.385 (3)
C4—H4A0.9300C21—H21A0.9300
C5—N11.376 (3)C22—N31.374 (3)
C5—C61.408 (3)C22—C231.409 (3)
C6—C71.433 (3)C23—C241.436 (3)
C7—C81.358 (3)C24—C251.355 (3)
C7—C91.492 (3)C24—C281.485 (3)
C8—N11.372 (3)C25—N31.373 (3)
C8—C111.486 (3)C25—C261.487 (3)
C9—C101.515 (3)C26—N41.473 (3)
C9—H9A0.9700C26—C291.511 (3)
C9—H9B0.9700C26—H26A0.9800
C10—N21.466 (3)C27—N41.465 (3)
C10—H10A0.9700C27—C281.518 (3)
C10—H10B0.9700C27—H27A0.9700
C11—N21.471 (3)C27—H27B0.9700
C11—C121.513 (3)C28—H28A0.9700
C11—H11A0.9800C28—H28B0.9700
C12—C131.509 (3)C29—C301.508 (3)
C12—H12A0.9700C29—H29A0.9700
C12—H12B0.9700C29—H29B0.9700
C13—O11.231 (2)C30—O31.235 (3)
C13—C141.434 (3)C30—C311.434 (3)
C14—C151.389 (3)C31—C321.387 (3)
C14—C161.458 (3)C31—C331.466 (3)
C15—N21.312 (3)C32—N41.316 (3)
C15—H15A0.9300C32—H32A0.9300
C16—O21.228 (3)C33—O41.217 (3)
C16—C171.502 (3)C33—C341.497 (4)
C17—H17A0.9600C34—H34A0.9600
C17—H17B0.9600C34—H34B0.9600
C17—H17C0.9600C34—H34C0.9600
N1—H1A0.8600N3—H3B0.8600
C2—C1—C6119.0 (2)C19—C18—C23119.3 (2)
C2—C1—H1B120.5C19—C18—H18A120.4
C6—C1—H1B120.5C23—C18—H18A120.4
C1—C2—C3121.5 (2)C18—C19—C20120.6 (2)
C1—C2—H2A119.3C18—C19—H19A119.7
C3—C2—H2A119.3C20—C19—H19A119.7
C4—C3—C2121.1 (2)C21—C20—C19121.8 (2)
C4—C3—H3A119.4C21—C20—H20A119.1
C2—C3—H3A119.4C19—C20—H20A119.1
C3—C4—C5117.7 (2)C20—C21—C22117.5 (2)
C3—C4—H4A121.1C20—C21—H21A121.3
C5—C4—H4A121.1C22—C21—H21A121.3
N1—C5—C4130.6 (2)N3—C22—C21130.3 (2)
N1—C5—C6107.70 (19)N3—C22—C23107.83 (19)
C4—C5—C6121.7 (2)C21—C22—C23121.8 (2)
C1—C6—C5119.0 (2)C18—C23—C22119.0 (2)
C1—C6—C7134.3 (2)C18—C23—C24134.4 (2)
C5—C6—C7106.69 (18)C22—C23—C24106.62 (18)
C8—C7—C6106.81 (19)C25—C24—C23106.64 (19)
C8—C7—C9121.9 (2)C25—C24—C28121.2 (2)
C6—C7—C9131.19 (19)C23—C24—C28132.00 (19)
C7—C8—N1110.24 (19)C24—C25—N3110.55 (19)
C7—C8—C11126.6 (2)C24—C25—C26126.3 (2)
N1—C8—C11123.18 (18)N3—C25—C26123.16 (18)
C7—C9—C10109.05 (18)N4—C26—C25109.14 (17)
C7—C9—H9A109.9N4—C26—C29107.90 (18)
C10—C9—H9A109.9C25—C26—C29115.10 (18)
C7—C9—H9B109.9N4—C26—H26A108.2
C10—C9—H9B109.9C25—C26—H26A108.2
H9A—C9—H9B108.3C29—C26—H26A108.2
N2—C10—C9111.50 (18)N4—C27—C28110.67 (18)
N2—C10—H10A109.3N4—C27—H27A109.5
C9—C10—H10A109.3C28—C27—H27A109.5
N2—C10—H10B109.3N4—C27—H27B109.5
C9—C10—H10B109.3C28—C27—H27B109.5
H10A—C10—H10B108.0H27A—C27—H27B108.1
N2—C11—C8108.16 (17)C24—C28—C27108.47 (18)
N2—C11—C12108.92 (16)C24—C28—H28A110.0
C8—C11—C12113.40 (18)C27—C28—H28A110.0
N2—C11—H11A108.8C24—C28—H28B110.0
C8—C11—H11A108.8C27—C28—H28B110.0
C12—C11—H11A108.8H28A—C28—H28B108.4
C13—C12—C11112.51 (18)C30—C29—C26111.82 (18)
C13—C12—H12A109.1C30—C29—H29A109.3
C11—C12—H12A109.1C26—C29—H29A109.3
C13—C12—H12B109.1C30—C29—H29B109.3
C11—C12—H12B109.1C26—C29—H29B109.3
H12A—C12—H12B107.8H29A—C29—H29B107.9
O1—C13—C14126.4 (2)O3—C30—C31126.0 (2)
O1—C13—C12119.4 (2)O3—C30—C29119.3 (2)
C14—C13—C12114.04 (18)C31—C30—C29114.53 (19)
C15—C14—C13118.3 (2)C32—C31—C30118.3 (2)
C15—C14—C16116.2 (2)C32—C31—C33116.3 (2)
C13—C14—C16125.42 (19)C30—C31—C33125.3 (2)
N2—C15—C14126.4 (2)N4—C32—C31125.6 (2)
N2—C15—H15A116.8N4—C32—H32A117.2
C14—C15—H15A116.8C31—C32—H32A117.2
O2—C16—C14120.8 (2)O4—C33—C31120.9 (2)
O2—C16—C17118.5 (2)O4—C33—C34119.3 (2)
C14—C16—C17120.8 (2)C31—C33—C34119.8 (2)
C16—C17—H17A109.5C33—C34—H34A109.5
C16—C17—H17B109.5C33—C34—H34B109.5
H17A—C17—H17B109.5H34A—C34—H34B109.5
C16—C17—H17C109.5C33—C34—H34C109.5
H17A—C17—H17C109.5H34A—C34—H34C109.5
H17B—C17—H17C109.5H34B—C34—H34C109.5
C8—N1—C5108.56 (17)C25—N3—C22108.36 (18)
C8—N1—H1A125.7C25—N3—H3B125.8
C5—N1—H1A125.7C22—N3—H3B125.8
C15—N2—C10122.00 (19)C32—N4—C27121.97 (19)
C15—N2—C11117.85 (17)C32—N4—C26116.62 (18)
C10—N2—C11118.04 (17)C27—N4—C26119.82 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.888 (2)167
N3—H3B···O3ii0.862.032.863 (3)162
C10—H10B···O2iii0.972.363.245 (3)151
C12—H12B···O1i0.972.723.594 (3)150
C15—H15A···O2iii0.932.483.265 (3)142
C27—H27B···O4iv0.972.343.191 (3)146
C29—H29B···O3ii0.972.573.410 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+2; (iii) x, y+1, z+1; (iv) x+1, y, z+2.
(2) 3-Acetyl-4-oxo-6,7-dihydro-12H-indolo[2,3-a]quinolizine monohydrate top
Crystal data top
C17H14N2O2·H2OF(000) = 312
Mr = 296.32Dx = 1.383 Mg m3
Triclinic, P1Melting point: 543K K
a = 7.307 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.405 (2) ÅCell parameters from 25 reflections
c = 10.989 (2) Åθ = 9.1–18.2°
α = 94.82 (3)°µ = 0.10 mm1
β = 108.84 (3)°T = 293 K
γ = 90.96 (3)°Needles, orange
V = 712 (2) Å30.48 × 0.36 × 0.28 mm
Z = 2
Data collection top
CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 08
ω scank = 1111
2490 measured reflectionsl = 1312
2490 independent reflections3 standard reflections every 100 reflections
1072 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0604P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2490 reflectionsΔρmax = 0.25 e Å3
208 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.038 (4)
Crystal data top
C17H14N2O2·H2Oγ = 90.96 (3)°
Mr = 296.32V = 712 (2) Å3
Triclinic, P1Z = 2
a = 7.307 (15) ÅMo Kα radiation
b = 9.405 (2) ŵ = 0.10 mm1
c = 10.989 (2) ÅT = 293 K
α = 94.82 (3)°0.48 × 0.36 × 0.28 mm
β = 108.84 (3)°
Data collection top
CAD-4
diffractometer
Rint = 0.000
2490 measured reflections3 standard reflections every 100 reflections
2490 independent reflections intensity decay: none
1072 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
2490 reflectionsΔρmin = 0.20 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1660 (5)1.0457 (4)0.3310 (3)0.0575 (11)
H1A0.12120.96490.38890.069*
C20.1997 (5)1.1742 (4)0.3748 (4)0.0631 (12)
H2A0.17911.17950.46230.076*
C30.2648 (5)1.2962 (4)0.2875 (4)0.0610 (12)
H3A0.28561.38190.31860.073*
C40.2986 (5)1.2928 (4)0.1576 (4)0.0537 (11)
H4A0.34001.37470.10080.064*
C50.2688 (5)1.1621 (4)0.1132 (3)0.0442 (9)
C60.2001 (5)1.0384 (4)0.1984 (3)0.0444 (9)
C70.1850 (5)0.9281 (3)0.1214 (3)0.0422 (9)
C80.2472 (4)0.9857 (3)0.0036 (3)0.0378 (8)
C90.2567 (5)0.9114 (3)0.1142 (3)0.0399 (9)
C100.1912 (6)0.6915 (4)0.0396 (3)0.0571 (11)
H10A0.10840.60630.05150.069*
H10B0.31700.66090.04040.069*
C110.1078 (5)0.7777 (4)0.1523 (3)0.0536 (11)
H11A0.13910.73550.22630.064*
H11B0.03210.77550.17480.064*
C120.3024 (5)0.9745 (4)0.2362 (3)0.0473 (10)
H12A0.33021.07250.25280.057*
C130.3075 (5)0.8927 (4)0.3361 (3)0.0517 (10)
H13A0.33720.93710.41950.062*
C140.2699 (5)0.7476 (4)0.3154 (3)0.0491 (10)
C150.2282 (5)0.6782 (4)0.1880 (3)0.0486 (10)
C160.2832 (6)0.6692 (4)0.4284 (4)0.0636 (12)
C170.1977 (6)0.5208 (4)0.4120 (4)0.0793 (14)
H17A0.21990.48680.49530.119*
H17B0.25720.45950.36280.119*
H17C0.06100.52050.36740.119*
N10.2954 (4)1.1288 (3)0.0089 (3)0.0467 (8)
H1B0.33541.18700.07770.056*
N20.2145 (4)0.7664 (3)0.0896 (2)0.0423 (8)
O10.2090 (4)0.5469 (3)0.1593 (2)0.0641 (8)
O20.3593 (5)0.7280 (3)0.5366 (3)0.1071 (13)
O30.5232 (5)0.6586 (3)0.7891 (3)0.0751 (10)
H3B0.463 (7)0.674 (5)0.703 (4)0.119 (18)*
H3C0.611 (8)0.602 (6)0.797 (5)0.16 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (2)0.069 (3)0.047 (2)0.001 (2)0.0151 (19)0.013 (2)
C20.055 (2)0.087 (3)0.047 (2)0.001 (2)0.0107 (19)0.026 (2)
C30.053 (2)0.070 (3)0.061 (3)0.003 (2)0.015 (2)0.026 (2)
C40.044 (2)0.050 (2)0.063 (3)0.0028 (18)0.0096 (19)0.0163 (19)
C50.043 (2)0.046 (2)0.043 (2)0.0032 (17)0.0119 (16)0.0109 (17)
C60.0335 (19)0.053 (2)0.047 (2)0.0028 (17)0.0138 (16)0.0075 (18)
C70.040 (2)0.041 (2)0.047 (2)0.0005 (16)0.0139 (16)0.0102 (17)
C80.0387 (19)0.0347 (19)0.0401 (19)0.0000 (16)0.0120 (15)0.0084 (16)
C90.0402 (19)0.039 (2)0.040 (2)0.0071 (16)0.0100 (16)0.0098 (16)
C100.071 (3)0.048 (2)0.048 (2)0.002 (2)0.015 (2)0.0018 (19)
C110.057 (2)0.055 (2)0.043 (2)0.0047 (19)0.0068 (18)0.0061 (18)
C120.055 (2)0.042 (2)0.044 (2)0.0034 (18)0.0133 (18)0.0059 (17)
C130.055 (2)0.060 (3)0.039 (2)0.008 (2)0.0150 (18)0.0042 (19)
C140.048 (2)0.056 (2)0.044 (2)0.0065 (19)0.0134 (17)0.0118 (18)
C150.041 (2)0.051 (2)0.051 (2)0.0008 (18)0.0089 (17)0.0107 (19)
C160.077 (3)0.060 (3)0.059 (3)0.024 (2)0.027 (2)0.014 (2)
C170.093 (3)0.082 (3)0.076 (3)0.015 (3)0.037 (3)0.039 (2)
N10.0560 (18)0.0425 (18)0.0407 (17)0.0002 (14)0.0146 (14)0.0033 (14)
N20.0461 (17)0.0410 (17)0.0389 (16)0.0047 (14)0.0117 (13)0.0073 (14)
O10.087 (2)0.0434 (16)0.0570 (17)0.0002 (14)0.0131 (14)0.0165 (13)
O20.175 (4)0.090 (2)0.0470 (18)0.016 (2)0.019 (2)0.0210 (17)
O30.103 (2)0.0631 (19)0.0500 (18)0.0149 (18)0.0123 (17)0.0005 (15)
Geometric parameters (Å, º) top
C1—C21.385 (5)C10—H10A0.9700
C1—C61.404 (5)C10—H10B0.9700
C1—H1A0.9300C11—H11A0.9700
C2—C31.402 (5)C11—H11B0.9700
C2—H2A0.9300C12—C131.384 (4)
C3—C41.371 (5)C12—H12A0.9300
C3—H3A0.9300C13—C141.373 (5)
C4—C51.399 (5)C13—H13A0.9300
C4—H4A0.9300C14—C151.429 (5)
C5—N11.357 (4)C14—C161.474 (5)
C5—C61.406 (4)C15—O11.242 (4)
C6—C71.417 (4)C15—N21.397 (4)
C7—C81.360 (4)C16—O21.217 (4)
C7—C111.485 (4)C16—C171.493 (5)
C8—N11.377 (4)C17—H17A0.9600
C8—C91.436 (4)C17—H17B0.9600
C9—C121.354 (4)C17—H17C0.9600
C9—N21.377 (4)N1—H1B0.8600
C10—N21.488 (4)O3—H3B0.93 (5)
C10—C111.503 (4)O3—H3C0.82 (6)
C2—C1—C6119.4 (4)C7—C11—H11A109.4
C2—C1—H1A120.3C10—C11—H11A109.4
C6—C1—H1A120.3C7—C11—H11B109.4
C1—C2—C3120.1 (4)C10—C11—H11B109.4
C1—C2—H2A119.9H11A—C11—H11B108.0
C3—C2—H2A119.9C9—C12—C13119.7 (3)
C4—C3—C2121.8 (4)C9—C12—H12A120.1
C4—C3—H3A119.1C13—C12—H12A120.1
C2—C3—H3A119.1C14—C13—C12121.7 (3)
C3—C4—C5117.9 (4)C14—C13—H13A119.2
C3—C4—H4A121.0C12—C13—H13A119.2
C5—C4—H4A121.0C13—C14—C15119.4 (3)
N1—C5—C4129.8 (3)C13—C14—C16117.7 (3)
N1—C5—C6108.5 (3)C15—C14—C16122.8 (3)
C4—C5—C6121.7 (3)O1—C15—N2118.2 (3)
C1—C6—C5119.0 (3)O1—C15—C14125.2 (4)
C1—C6—C7134.6 (3)N2—C15—C14116.5 (3)
C5—C6—C7106.4 (3)O2—C16—C14119.5 (4)
C8—C7—C6107.1 (3)O2—C16—C17119.5 (4)
C8—C7—C11119.5 (3)C14—C16—C17120.9 (3)
C6—C7—C11133.3 (3)C16—C17—H17A109.5
C7—C8—N1109.7 (3)C16—C17—H17B109.5
C7—C8—C9125.9 (3)H17A—C17—H17B109.5
N1—C8—C9124.4 (3)C16—C17—H17C109.5
C12—C9—N2120.1 (3)H17A—C17—H17C109.5
C12—C9—C8124.4 (3)H17B—C17—H17C109.5
N2—C9—C8115.5 (3)C5—N1—C8108.2 (3)
N2—C10—C11115.4 (3)C5—N1—H1B125.9
N2—C10—H10A108.4C8—N1—H1B125.9
C11—C10—H10A108.4C9—N2—C15122.3 (3)
N2—C10—H10B108.4C9—N2—C10121.0 (3)
C11—C10—H10B108.4C15—N2—C10115.6 (3)
H10A—C10—H10B107.5H3B—O3—H3C111 (5)
C7—C11—C10111.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.861.982.819 (4)164 (4)
O3—H3C···O1ii0.83 (6)1.92 (6)2.735 (4)168 (6)
O3—H3B···O20.93 (5)1.86 (5)2.783 (4)173 (4)
C10—H10B···O3iii0.972.763.522 (6)136 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z1.

Experimental details

(1)(2)
Crystal data
Chemical formulaC17H16N2O2C17H14N2O2·H2O
Mr280.32296.32
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)8.169 (16), 12.841 (3), 14.772 (3)7.307 (15), 9.405 (2), 10.989 (2)
α, β, γ (°)72.60 (3), 75.54 (3), 72.64 (3)94.82 (3), 108.84 (3), 90.96 (3)
V3)1389 (3)712 (2)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.090.10
Crystal size (mm)0.52 × 0.48 × 0.320.48 × 0.36 × 0.28
Data collection
DiffractometerCAD4
diffractometer
CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4883, 4883, 3225 2490, 2490, 1072
Rint0.0000.000
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.07 0.062, 0.117, 1.03
No. of reflections48832490
No. of parameters379208
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.220.25, 0.20

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, Xtal (Hall et al., 1995), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLUTON-(C) (Spek, 1979-1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.042.888 (2)167
N3—H3B···O3ii0.862.032.863 (3)162
C10—H10B···O2iii0.972.363.245 (3)151
C12—H12B···O1i0.972.723.594 (3)150
C15—H15A···O2iii0.932.483.265 (3)142
C27—H27B···O4iv0.972.343.191 (3)146
C29—H29B···O3ii0.972.573.410 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z+2; (iii) x, y+1, z+1; (iv) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.861.982.819 (4)164 (4)
O3—H3C···O1ii0.83 (6)1.92 (6)2.735 (4)168 (6)
O3—H3B···O20.93 (5)1.86 (5)2.783 (4)173 (4)
C10—H10B···O3iii0.972.763.522 (6)136 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds