Download citation
Download citation
link to html
The structure of (11,12,24,25-tetra­hydro-28,34-di­methoxy-3,6,16,19,31,37-hexa­methyl-1,21[1′,3′]:8,14[1′′,3′′]-di­benzeno-10H,23H-tetrabenzo­[f,h,o,z][1,5,10,14]­tetraoxa­cyclo­octa­decane)­lithium chloride monohydrate, anti-[Li(C50H48O6)]Cl·H2O, at 100 K reveals that the host is less strained than that of the syn-bridged isomer. There are two independent complex cations, each lying on a center of symmetry. Four short [1.944 (2)–1.998 (2) Å] and two long [2.381 (2) and 2.455 (2) Å] Li+...O distances provide six-coordination in a distorted octahedral environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005722/fr1274sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005722/fr1274Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270100005722/fr1274sup3.pdf
Supplementary material

CCDC reference: 147625

Comment top

The synthesis and properties of the bridged spherand host C50H48O6 were first reported in 1979 (Cram et al., 1979). The structure was taken to be that of the anti compound, (I), since that is the only structure that can be assembled using CPK molecular models. However, crystal structure analysis (Cram et al., 1981; Knobler et al., 1992) demonstrated that the synthesis, in fact, had produced the syn compound, (II). Since both models and calculations (Kollman et al., 1985) indicated that (I) should complex Li+ and Na+ ions not only more strongly than (II), but also more strongly than (III), the strongest binder of Li+ known at the time (Cram et al., 1981), the synthesis of (I) was pursued further. When (I) was finally isolated some years later, its tenacious hold on the templating Li+ confirmed these predictions. Indeed, spherand (I) does not release Li+ when the complex is heated at 403 K in methanol–water, whereas (III)·Li+ decomplexes under these conditions. Thus, (I)·Li+ may be the first and smallest carceplex, since it probably cannot dissociate unless covalent bonds are broken (Maverick & Cram, 1996a).

The crystal structure of (I)·LiCl reported here demonstrates as predicted that the anti-bridged host (I) is less strained than (II), both by the absence of very short O···O interactions and in the dihedral angles between adjoining aromatic rings. Model analysis (Cram et al., 1979) showed that spheres of radius 0.65–0.95 Å could be pushed into the cavity of (I). Calculations (Kollman et al., 1985) and the present analysis result in a centrosymmetric distorted octahedral coordination geometry with four short and two long Li+···O distances. Distances and angles about the cation appear in Table 1. The structural features of the Li+ complexes of (I), (II) and (III) are compared in Table 2.

Data taken in 1993 at room temperature [a = 44.603 (9), b = 12.426 (3), c = 17.201 (4) Å, β = 109.414 (6)°, Cu Kα radiation] gave essentially the same structure as that reported here, except that fewer intensities were measured, precision was lower and the anion and solvent were difficult to locate and refine. A drawing of one of the molecules and some structural features were published (Maverick & Cram, 1996b).

The present 100 K Mo Kα data set is much more complete, even though the shadow of the beam stop on many of the frames made it necessary to remove 92 reduntant reflections. The two half-molecules in the asymmetric unit are similar, but not identical. For example, C39 is better located than C9 (represented by a disorder model), perhaps reflecting the somewhat longer Li+···O8 distance. Chloride ions are disordered over two different centers of symmetry, one at 1/4, 3/4,0.5 and one at 0,0, 1/4, and solvent water is similarly disordered, such that in this model each partial-occupancy chloride ion is associated with a water O atom, roughly at hydrogen-bonding distance. Again, the disorder is slightly different at the two sites. A drawing showing the anions and water is included in the supplementary data.

Experimental top

The only isomer formed when tetrahydrofuran is the solvent in the final step in the synthesis is (II) (Cram et al., 1985). However, when the reaction of the precursor dibromide with ferric acetylacetonate is carried out in benzene, both the syn and the anti spherand complexes are formed. The syn isomer (II) decomplexes at 373 K in methanol–water, while the anti complex is unchanged by this treatment and therefore crystalline (II) can be removed by filtration. The remaining anti LiCl complex of (I) was isolated by CHCl3 extraction and recrystallized from methanol.

Refinement top

No solvent water H atoms were located. Other H atoms were treated as riding with fixed C—H distances and Uiso values equal to 1.2Ueq(C). For methyl H atoms, C—O—C—H or C—C—C—H torsion angles were refined and Uiso(H) values were set equal to 1.5Ueq(C). The largest shifts in the final cycle involved torsional parameters for methyl groups, with the largest other shifts being 0.01σ.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SHELXTL (Sheldrick, 1995); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL93 (Sheldrick, 1993) and local programs.

Figures top
[Figure 1] Fig. 1. A view of each of the two independent molecules in the asymmetric unit. Ellipsoids enclose 50% probability. The numbering scheme for non-H atoms is shown; unnumbered atoms are generated from the numbered atoms by the symmetry operations 1/2 − x, 1/2 − y, 1 − z for C1–C28 and −x, 1 − y, −z for C31–C58. Chloride ions and solvent water molecules are not shown.
11,12,24,25-Tetrahydro-28,34-dimethoxy-3,6,16,19,31,37-hexamethyl- 1,21[1',3']:8,14[1",3"]-dibenzeno-10H,23H-tetrabenzo[f,h,o,z][1,5,10,14]- tetraoxacyclooctadecin] top
Crystal data top
[Li(C50H48O6)]Cl·H2OF(000) = 3408
Mr = 805.29Dx = 1.229 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 44.486 (5) ÅCell parameters from 4625 reflections
b = 12.1755 (13) Åθ = 2.2–26.3°
c = 16.995 (2) ŵ = 0.14 mm1
β = 108.958 (2)°T = 100 K
V = 8705.8 (16) Å3Parallelepiped, colorless
Z = 80.45 × 0.25 × 0.15 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4825 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.073
Graphite monochromatorθmax = 28.3°, θmin = 1.7°
ϕ and ω scansh = 5947
27872 measured reflectionsk = 1515
10410 independent reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.241H-atom parameters constrained
S = 0.93Calculated w = 1/[σ2(Fo2) + (0.1366P)2]
where P = (Fo2 + 2Fc2)/3
10410 reflections(Δ/σ)max = 0.026
556 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Li(C50H48O6)]Cl·H2OV = 8705.8 (16) Å3
Mr = 805.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 44.486 (5) ŵ = 0.14 mm1
b = 12.1755 (13) ÅT = 100 K
c = 16.995 (2) Å0.45 × 0.25 × 0.15 mm
β = 108.958 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4825 reflections with I > 2σ(I)
27872 measured reflectionsRint = 0.073
10410 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0740 restraints
wR(F2) = 0.241H-atom parameters constrained
S = 0.93Δρmax = 0.72 e Å3
10410 reflectionsΔρmin = 0.64 e Å3
556 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating refine_ls_R_factor_gt etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.18440 (7)0.2552 (3)0.2846 (2)0.0367 (7)
C20.17092 (8)0.1960 (3)0.2115 (2)0.0432 (8)
H20.149370.17320.19660.052*
C30.18861 (9)0.1697 (3)0.1598 (2)0.0474 (9)
C40.17357 (11)0.1092 (3)0.0782 (2)0.0654 (11)
H4A0.1825 (5)0.0351 (8)0.0823 (6)0.098*
H4B0.1779 (5)0.1492 (12)0.0331 (4)0.098*
H4C0.15055 (14)0.1044 (19)0.0667 (9)0.098*
C50.22093 (9)0.1945 (3)0.1866 (2)0.0501 (9)
H50.233430.17270.15330.060*
C60.23549 (8)0.2508 (3)0.2613 (2)0.0432 (8)
C70.21596 (7)0.2872 (3)0.3057 (2)0.0352 (7)
O80.22861 (5)0.3587 (2)0.37231 (12)0.0371 (5)
C90.2363 (2)0.4594 (8)0.3425 (6)0.059 (3)*0.40
H9A0.24520.50970.38930.088*0.40
H9B0.21710.49180.30330.088*0.40
H9C0.25200.44660.31420.088*0.40
C9'0.2191 (2)0.4742 (5)0.3449 (4)0.052 (2)*0.60
H9D0.22800.52430.39180.078*0.60
H9E0.19590.48010.32530.078*0.60
H9F0.22730.49360.29960.078*0.60
C100.27041 (7)0.2650 (3)0.2982 (2)0.0433 (8)
C110.28909 (8)0.3101 (3)0.2548 (2)0.0536 (10)
H110.279490.32850.19780.064*
C120.32149 (8)0.3290 (3)0.2926 (2)0.0493 (9)
C130.34209 (9)0.3777 (4)0.2451 (2)0.0633 (11)
H13A0.3425 (5)0.4578 (4)0.2507 (13)0.095*
H13B0.3332 (4)0.3578 (17)0.1862 (4)0.095*
H13C0.3637 (2)0.3487 (17)0.2679 (11)0.095*
C140.33476 (8)0.3056 (3)0.3769 (2)0.0415 (8)
H140.356510.32260.40420.050*
C150.31718 (7)0.2579 (3)0.4228 (2)0.0374 (7)
C160.28532 (7)0.2328 (3)0.3804 (2)0.0375 (7)
O170.26808 (5)0.1761 (2)0.42306 (12)0.0364 (5)
C180.25841 (8)0.0650 (3)0.3929 (2)0.0451 (8)
H18A0.277420.01790.40270.059*
H18B0.246870.06670.33230.059*
C190.23709 (8)0.0185 (3)0.4383 (2)0.0485 (9)
H19A0.234190.06090.42570.063*
H19B0.248170.02590.49890.063*
C200.20473 (8)0.0706 (3)0.4182 (2)0.0440 (8)
H20A0.194020.07140.35730.057*
H20B0.191460.02770.44400.057*
O210.20850 (5)0.1813 (2)0.45012 (12)0.0349 (5)
C220.18049 (7)0.2426 (3)0.4269 (2)0.0352 (7)
C230.16722 (7)0.2705 (3)0.4882 (2)0.0358 (7)
C240.13848 (7)0.3267 (3)0.4633 (2)0.0428 (8)
H240.128760.34450.50380.051*
C250.12349 (7)0.3577 (3)0.3817 (2)0.0470 (9)
C260.09218 (8)0.4191 (4)0.3583 (2)0.0687 (12)
H26A0.07472 (10)0.3665 (4)0.3497 (17)0.103*
H26B0.0892 (3)0.4604 (19)0.3068 (10)0.103*
H26C0.0923 (3)0.4700 (17)0.4031 (8)0.103*
C270.13831 (7)0.3333 (3)0.3229 (2)0.0450 (8)
H270.128570.35560.26680.054*
C280.16697 (7)0.2772 (3)0.3448 (2)0.0375 (7)
C310.01326 (7)0.2015 (3)0.0675 (2)0.0377 (7)
C320.02411 (8)0.0966 (3)0.0420 (2)0.0440 (8)
H320.010750.03560.06430.053*
C330.05433 (8)0.0782 (3)0.0158 (2)0.0461 (8)
C340.06707 (9)0.0362 (3)0.0395 (3)0.0648 (11)
H34A0.0692 (6)0.0736 (8)0.0094 (5)0.097*
H34B0.0524 (3)0.0774 (8)0.0607 (16)0.097*
H34C0.0879 (3)0.0319 (3)0.0828 (13)0.097*
C350.07226 (8)0.1685 (3)0.0518 (2)0.0438 (8)
H350.091870.15720.09490.053*
C360.06271 (7)0.2755 (3)0.0273 (2)0.0382 (7)
C370.03425 (7)0.2893 (3)0.0372 (2)0.0367 (7)
O380.02683 (5)0.3923 (2)0.07343 (12)0.0373 (5)
C390.03304 (13)0.3911 (4)0.1513 (3)0.0792 (14)
H39A0.05603 (13)0.388 (2)0.1407 (3)0.119*
H39B0.0245 (6)0.4581 (11)0.1825 (8)0.119*
H39C0.0229 (6)0.3267 (13)0.1836 (8)0.119*
C400.08126 (7)0.3731 (3)0.0684 (2)0.0370 (7)
C410.11335 (7)0.3840 (3)0.0783 (2)0.0390 (7)
H410.123810.32720.05890.047*
C420.13045 (7)0.4757 (3)0.1158 (2)0.0391 (8)
C430.16540 (7)0.4834 (3)0.1257 (2)0.0510 (9)
H43A0.16798 (8)0.4899 (19)0.0708 (2)0.077*
H43B0.17632 (12)0.4172 (9)0.1536 (13)0.077*
H43C0.17457 (14)0.5481 (11)0.1592 (12)0.077*
C440.11448 (7)0.5605 (3)0.1387 (2)0.0381 (7)
H440.125900.62510.16190.046*
C450.08179 (7)0.5547 (3)0.1289 (2)0.0342 (7)
C460.06628 (7)0.4571 (3)0.0980 (2)0.0337 (7)
O470.03450 (4)0.4437 (2)0.09386 (12)0.0352 (5)
C480.02929 (8)0.3594 (3)0.1495 (2)0.0479 (9)
H48A0.038650.38350.20810.062*
H48B0.039860.29020.14250.062*
C490.00581 (8)0.3398 (3)0.1298 (2)0.0444 (8)
H49A0.008850.29420.17490.058*
H49B0.016090.41160.13120.058*
C500.02310 (8)0.2856 (3)0.0484 (2)0.0416 (8)
H50A0.012110.21660.04300.054*
H50B0.045010.26690.04630.054*
O510.02411 (5)0.3586 (2)0.01953 (12)0.0353 (5)
C520.03645 (7)0.3111 (3)0.0984 (2)0.0347 (7)
C530.06544 (7)0.3504 (3)0.1517 (2)0.0356 (7)
C540.07885 (7)0.2932 (3)0.2265 (2)0.0402 (8)
H540.098770.31700.26350.048*
C550.06432 (8)0.2040 (3)0.2483 (2)0.0458 (9)
C560.08022 (10)0.1413 (3)0.3290 (2)0.0626 (11)
H56A0.0931 (5)0.1921 (5)0.3713 (5)0.094*
H56B0.0938 (5)0.0835 (14)0.3189 (4)0.094*
H56C0.06387 (10)0.1081 (18)0.3486 (9)0.094*
C570.03407 (8)0.1724 (3)0.1966 (2)0.0445 (8)
H570.023370.11310.21250.053*
C580.01970 (7)0.2276 (3)0.1222 (2)0.0367 (7)
Li10.25000.25000.50000.058 (2)
Li20.00000.50000.00000.043 (2)
Cl10.2421 (2)0.7445 (9)0.4914 (6)0.069 (2)*0.13
Cl1'0.22247 (8)0.7274 (3)0.4689 (2)0.0758 (8)*0.37
O1S0.1541 (3)0.6376 (8)0.3942 (7)0.170 (4)0.50
Cl20.00777 (11)0.0910 (3)0.2620 (3)0.0822 (13)*0.30
O2S0.0563 (4)0.1611 (13)0.3171 (11)0.147 (5)*0.30
Cl30.0273 (2)0.1102 (6)0.2679 (5)0.106 (2)*0.20
O3S0.0932 (4)0.1068 (14)0.2513 (11)0.099 (5)*0.20
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.044 (2)0.0270 (15)0.0010 (14)0.0103 (13)0.0032 (14)
C20.045 (2)0.048 (2)0.033 (2)0.0013 (15)0.0079 (15)0.0026 (15)
C30.056 (2)0.050 (2)0.031 (2)0.012 (2)0.007 (2)0.003 (2)
C40.089 (3)0.064 (3)0.039 (2)0.011 (2)0.015 (2)0.011 (2)
C50.058 (2)0.063 (2)0.032 (2)0.023 (2)0.018 (2)0.001 (2)
C60.045 (2)0.058 (2)0.028 (2)0.016 (2)0.0133 (14)0.0049 (15)
C70.040 (2)0.041 (2)0.0254 (14)0.0052 (14)0.0111 (13)0.0033 (13)
O80.0357 (12)0.0472 (13)0.0301 (11)0.0001 (9)0.0127 (9)0.0037 (9)
C100.039 (2)0.061 (2)0.033 (2)0.015 (2)0.0164 (14)0.002 (2)
C110.050 (2)0.081 (3)0.037 (2)0.026 (2)0.023 (2)0.018 (2)
C120.049 (2)0.059 (2)0.049 (2)0.019 (2)0.030 (2)0.014 (2)
C130.063 (2)0.084 (3)0.058 (2)0.027 (2)0.041 (2)0.028 (2)
C140.040 (2)0.049 (2)0.042 (2)0.0094 (14)0.0218 (15)0.005 (2)
C150.038 (2)0.042 (2)0.036 (2)0.0057 (14)0.0175 (14)0.0011 (14)
C160.038 (2)0.045 (2)0.033 (2)0.0086 (14)0.0173 (14)0.0004 (14)
O170.0355 (11)0.0463 (13)0.0297 (10)0.0041 (9)0.0135 (9)0.0005 (10)
C180.045 (2)0.046 (2)0.046 (2)0.008 (2)0.017 (2)0.008 (2)
C190.062 (2)0.043 (2)0.041 (2)0.005 (2)0.016 (2)0.000 (2)
C200.053 (2)0.040 (2)0.046 (2)0.004 (2)0.026 (2)0.002 (2)
O210.0367 (12)0.0374 (12)0.0322 (11)0.0029 (9)0.0134 (9)0.0043 (9)
C220.031 (2)0.041 (2)0.033 (2)0.0003 (13)0.0106 (13)0.0010 (14)
C230.033 (2)0.042 (2)0.034 (2)0.0014 (13)0.0120 (13)0.0019 (14)
C240.032 (2)0.058 (2)0.041 (2)0.0044 (15)0.0155 (14)0.000 (2)
C250.031 (2)0.070 (2)0.038 (2)0.006 (2)0.0083 (14)0.001 (2)
C260.040 (2)0.118 (4)0.045 (2)0.026 (2)0.010 (2)0.005 (2)
C270.032 (2)0.067 (2)0.032 (2)0.000 (2)0.0053 (14)0.002 (2)
C280.032 (2)0.046 (2)0.034 (2)0.0038 (13)0.0103 (13)0.0037 (14)
C310.037 (2)0.046 (2)0.038 (2)0.0116 (14)0.0230 (14)0.0047 (15)
C320.048 (2)0.042 (2)0.053 (2)0.0133 (15)0.032 (2)0.007 (2)
C330.052 (2)0.040 (2)0.057 (2)0.007 (2)0.033 (2)0.007 (2)
C340.065 (3)0.048 (2)0.090 (3)0.006 (2)0.037 (2)0.009 (2)
C350.043 (2)0.047 (2)0.047 (2)0.0029 (15)0.022 (2)0.008 (2)
C360.037 (2)0.045 (2)0.037 (2)0.0074 (14)0.0179 (14)0.0001 (15)
C370.039 (2)0.039 (2)0.037 (2)0.0071 (14)0.0195 (14)0.0009 (14)
O380.0375 (12)0.0422 (13)0.0340 (11)0.0091 (9)0.0143 (9)0.0004 (10)
C390.136 (4)0.066 (3)0.052 (2)0.015 (3)0.053 (3)0.004 (2)
C400.035 (2)0.045 (2)0.032 (2)0.0048 (14)0.0110 (13)0.0091 (14)
C410.034 (2)0.047 (2)0.038 (2)0.0007 (14)0.0132 (14)0.0107 (15)
C420.029 (2)0.050 (2)0.038 (2)0.0072 (14)0.0103 (13)0.012 (2)
C430.031 (2)0.059 (2)0.063 (2)0.006 (2)0.016 (2)0.013 (2)
C440.034 (2)0.049 (2)0.031 (2)0.0118 (14)0.0105 (13)0.0034 (14)
C450.033 (2)0.045 (2)0.0258 (14)0.0108 (13)0.0107 (12)0.0043 (13)
C460.029 (2)0.045 (2)0.0280 (14)0.0066 (13)0.0108 (12)0.0063 (13)
O470.0305 (11)0.0462 (13)0.0316 (10)0.0107 (9)0.0138 (9)0.0051 (9)
C480.046 (2)0.065 (2)0.034 (2)0.014 (2)0.0156 (15)0.009 (2)
C490.048 (2)0.055 (2)0.037 (2)0.015 (2)0.022 (2)0.001 (2)
C500.044 (2)0.046 (2)0.043 (2)0.0094 (15)0.0265 (15)0.001 (2)
O510.0398 (12)0.0424 (12)0.0274 (10)0.0067 (9)0.0160 (9)0.0012 (9)
C520.038 (2)0.042 (2)0.0303 (15)0.0158 (14)0.0191 (13)0.0051 (14)
C530.034 (2)0.046 (2)0.033 (2)0.0169 (14)0.0186 (13)0.0036 (14)
C540.034 (2)0.059 (2)0.031 (2)0.0180 (15)0.0154 (14)0.0040 (15)
C550.046 (2)0.063 (2)0.036 (2)0.022 (2)0.023 (2)0.013 (2)
C560.067 (3)0.079 (3)0.049 (2)0.024 (2)0.028 (2)0.023 (2)
C570.045 (2)0.053 (2)0.045 (2)0.017 (2)0.029 (2)0.014 (2)
C580.037 (2)0.040 (2)0.040 (2)0.0144 (14)0.0221 (14)0.0035 (14)
Li10.046 (5)0.073 (6)0.060 (5)0.006 (4)0.026 (4)0.028 (5)
Li20.036 (4)0.050 (5)0.042 (4)0.015 (3)0.010 (3)0.005 (4)
O1S0.173 (10)0.116 (7)0.192 (10)0.012 (6)0.018 (8)0.025 (7)
Geometric parameters (Å, º) top
C1—C71.387 (4)C53—C541.400 (4)
C1—C21.392 (4)C53—C45ii1.483 (4)
C1—C281.495 (4)C54—C551.375 (5)
C2—C31.394 (5)C55—C571.401 (5)
C3—C51.393 (5)C55—C561.529 (5)
C3—C41.520 (5)C57—C581.391 (4)
C5—C61.403 (5)Li1—O21i1.952 (2)
C6—C71.395 (4)Li1—O17i1.962 (2)
C6—C101.484 (4)Li1—O8i2.455 (2)
C7—O81.394 (3)Li2—O47ii1.944 (2)
O8—C91.411 (10)Li2—O51ii1.998 (2)
O8—C9'1.498 (6)Li2—O38ii2.381 (2)
O8—Li12.455 (2)Cl1—Cl1iii0.68 (2)
C10—C111.391 (5)Cl1'—Cl1'iii2.396 (7)
C10—C161.394 (4)Cl2—Cl2iv0.679 (9)
C11—C121.394 (5)Cl3—Cl3iv2.30 (2)
C12—C141.390 (4)C2—H20.95
C12—C131.523 (5)C4—H4A0.98
C14—C151.398 (4)C4—H4B0.98
C15—C161.399 (4)C4—H4C0.98
C15—C23i1.485 (4)C5—H50.95
C16—O171.397 (4)C9—H9A0.98
O17—C181.461 (4)C9—H9B0.98
O17—Li11.962 (2)C9—H9C0.98
C18—C191.515 (5)C9'—H9D0.98
C19—C201.507 (5)C9'—H9E0.98
C20—O211.443 (4)C9'—H9F0.98
O21—C221.394 (3)C11—H110.95
O21—Li11.952 (2)C13—H13A0.98
C22—C281.393 (4)C13—H13B0.98
C22—C231.397 (4)C13—H13C0.98
C23—C241.390 (4)C14—H140.95
C23—C15i1.485 (4)C18—H18A0.99
C24—C251.381 (4)C18—H18B0.99
C25—C271.397 (5)C19—H19A0.99
C25—C261.516 (5)C19—H19B0.99
C27—C281.387 (4)C20—H20A0.99
C31—C321.384 (5)C20—H20B0.99
C31—C371.402 (4)C24—H240.95
C31—C581.493 (4)C26—H26A0.98
C32—C331.401 (5)C26—H26B0.98
C33—C351.379 (5)C26—H26C0.98
C33—C341.509 (5)C27—H270.95
C35—C361.392 (4)C32—H320.95
C36—C371.389 (4)C34—H34A0.98
C36—C401.485 (4)C34—H34B0.98
C37—O381.389 (4)C34—H34C0.98
O38—C391.436 (4)C35—H350.95
O38—Li22.381 (2)C39—H39A0.98
C40—C411.388 (4)C39—H39B0.98
C40—C461.400 (4)C39—H39C0.98
C41—C421.385 (4)C41—H410.95
C42—C441.378 (5)C43—H43A0.98
C42—C431.511 (4)C43—H43B0.98
C44—C451.411 (4)C43—H43C0.98
C45—C461.389 (4)C44—H440.95
C45—C53ii1.483 (4)C48—H48A0.99
C46—O471.402 (3)C48—H48B0.99
O47—C481.464 (4)C49—H49A0.99
O47—Li21.944 (2)C49—H49B0.99
C48—C491.506 (4)C50—H50A0.99
C49—C501.501 (4)C50—H50B0.99
C50—O511.446 (4)C54—H540.95
O51—C521.399 (3)C56—H56A0.98
O51—Li21.998 (2)C56—H56B0.98
C52—C581.396 (4)C56—H56C0.98
C52—C531.398 (4)C57—H570.95
C7—C1—C2118.8 (3)O8i—Li1—O8180.0
C7—C1—C28118.6 (3)O47ii—Li2—O47180.0
C2—C1—C28122.3 (3)O47ii—Li2—O51ii94.05 (8)
C1—C2—C3120.9 (3)O47ii—Li2—O5185.95 (8)
C5—C3—C2118.6 (3)O51ii—Li2—O51180.0
C5—C3—C4120.3 (3)O47ii—Li2—O38ii80.75 (8)
C2—C3—C4121.0 (3)O51ii—Li2—O38ii76.82 (7)
C3—C5—C6121.7 (3)O47ii—Li2—O3899.25 (8)
C7—C6—C5117.3 (3)O51ii—Li2—O38103.18 (7)
C7—C6—C10119.0 (3)O47—Li2—O51ii85.95 (8)
C5—C6—C10123.4 (3)O47—Li2—O5194.05 (8)
C1—C7—O8119.5 (3)O47—Li2—O38ii99.25 (8)
C1—C7—C6121.8 (3)O51—Li2—O38ii103.18 (7)
O8—C7—C6118.7 (3)O47—Li2—O3880.75 (8)
C7—O8—C9109.4 (4)O51—Li2—O3876.82 (7)
C7—O8—C9'109.6 (3)O38ii—Li2—O38180.0
C7—O8—Li1108.6 (2)C1—C2—H2119.5
C9—O8—Li1135.7 (4)C3—C2—H2119.5
C9'—O8—Li1140.4 (3)C3—C4—H4A109.5
C11—C10—C16118.1 (3)C3—C4—H4B109.5
C11—C10—C6123.1 (3)H4A—C4—H4B109.5
C16—C10—C6118.8 (3)C3—C4—H4C109.5
C10—C11—C12121.8 (3)H4A—C4—H4C109.5
C14—C12—C11118.1 (3)H4B—C4—H4C109.5
C14—C12—C13119.9 (3)C3—C5—H5119.2
C11—C12—C13122.0 (3)C6—C5—H5119.2
C12—C14—C15122.2 (3)O8—C9—H9A109.5
C14—C15—C16117.4 (3)O8—C9—H9B109.5
C14—C15—C23i120.3 (3)H9A—C9—H9B109.5
C16—C15—C23i122.3 (3)O8—C9—H9C109.5
C10—C16—O17119.8 (3)H9A—C9—H9C109.5
C10—C16—C15121.8 (3)H9B—C9—H9C109.5
O17—C16—C15118.4 (3)O8—C9'—H9D109.5
C16—O17—C18115.0 (2)O8—C9'—H9E109.5
C16—O17—Li1122.2 (2)H9D—C9'—H9E109.5
C18—O17—Li1121.4 (2)O8—C9'—H9F109.5
O17—C18—C19109.2 (3)H9D—C9'—H9F109.5
C20—C19—C18116.0 (3)H9E—C9'—H9F109.5
O21—C20—C19108.8 (3)C10—C11—H11119.1
C22—O21—C20114.2 (2)C12—C11—H11119.1
C22—O21—Li1121.7 (2)C12—C13—H13A109.5
C20—O21—Li1122.8 (2)C12—C13—H13B109.5
C28—C22—O21120.1 (3)H13A—C13—H13B109.5
C28—C22—C23121.6 (3)C12—C13—H13C109.5
O21—C22—C23118.3 (3)H13A—C13—H13C109.5
C24—C23—C22117.5 (3)H13B—C13—H13C109.5
C24—C23—C15i120.3 (3)C12—C14—H14118.9
C22—C23—C15i122.2 (3)C15—C14—H14118.9
C25—C24—C23122.5 (3)O17—C18—H18A109.8
C24—C25—C27118.3 (3)C19—C18—H18A109.8
C24—C25—C26120.1 (3)O17—C18—H18B109.8
C27—C25—C26121.6 (3)C19—C18—H18B109.8
C28—C27—C25121.3 (3)H18A—C18—H18B108.3
C27—C28—C22118.5 (3)C20—C19—H19A108.3
C27—C28—C1122.8 (3)C18—C19—H19A108.3
C22—C28—C1118.7 (3)C20—C19—H19B108.3
C32—C31—C37117.7 (3)C18—C19—H19B108.3
C32—C31—C58124.3 (3)H19A—C19—H19B107.4
C37—C31—C58117.9 (3)O21—C20—H20A109.9
C31—C32—C33121.6 (3)C19—C20—H20A109.9
C35—C33—C32117.9 (3)O21—C20—H20B109.9
C35—C33—C34120.3 (3)C19—C20—H20B109.9
C32—C33—C34121.8 (3)H20A—C20—H20B108.3
C33—C35—C36122.5 (3)C25—C24—H24118.7
C37—C36—C35117.4 (3)C23—C24—H24118.7
C37—C36—C40120.0 (3)C25—C26—H26A109.5
C35—C36—C40122.6 (3)C25—C26—H26B109.5
O38—C37—C36118.9 (3)H26A—C26—H26B109.5
O38—C37—C31119.5 (3)C25—C26—H26C109.5
C36—C37—C31121.7 (3)H26A—C26—H26C109.5
C37—O38—C39108.1 (3)H26B—C26—H26C109.5
C37—O38—Li2110.7 (2)C28—C27—H27119.3
C39—O38—Li2140.1 (2)C25—C27—H27119.3
C41—C40—C46118.5 (3)C31—C32—H32119.2
C41—C40—C36121.7 (3)C33—C32—H32119.2
C46—C40—C36119.8 (3)C33—C34—H34A109.5
C42—C41—C40121.5 (3)C33—C34—H34B109.5
C44—C42—C41118.5 (3)H34A—C34—H34B109.5
C44—C42—C43121.9 (3)C33—C34—H34C109.5
C41—C42—C43119.5 (3)H34A—C34—H34C109.5
C42—C44—C45122.4 (3)H34B—C34—H34C109.5
C46—C45—C44117.0 (3)C33—C35—H35118.8
C46—C45—C53ii122.7 (3)C36—C35—H35118.8
C44—C45—C53ii120.3 (3)O38—C39—H39A109.5
C45—C46—C40121.7 (3)O38—C39—H39B109.5
C45—C46—O47119.2 (3)H39A—C39—H39B109.5
C40—C46—O47119.1 (3)O38—C39—H39C109.5
C46—O47—C48114.7 (2)H39A—C39—H39C109.5
C46—O47—Li2121.0 (2)H39B—C39—H39C109.5
C48—O47—Li2121.9 (2)C42—C41—H41119.3
O47—C48—C49109.7 (3)C40—C41—H41119.3
C50—C49—C48117.3 (3)C42—C43—H43A109.5
O51—C50—C49109.8 (2)C42—C43—H43B109.5
C52—O51—C50114.3 (2)H43A—C43—H43B109.5
C52—O51—Li2122.5 (2)C42—C43—H43C109.5
C50—O51—Li2121.4 (2)H43A—C43—H43C109.5
C58—C52—C53121.9 (3)H43B—C43—H43C109.5
C58—C52—O51119.9 (3)C42—C44—H44118.8
C53—C52—O51118.2 (3)C45—C44—H44118.8
C52—C53—C54116.7 (3)O47—C48—H48A109.7
C52—C53—C45ii121.6 (3)C49—C48—H48A109.7
C54—C53—C45ii121.6 (3)O47—C48—H48B109.7
C55—C54—C53122.5 (3)C49—C48—H48B109.7
C54—C55—C57119.3 (3)H48A—C48—H48B108.2
C54—C55—C56121.0 (3)C50—C49—H49A108.0
C57—C55—C56119.7 (3)C48—C49—H49A108.0
C58—C57—C55120.0 (3)C50—C49—H49B108.0
C57—C58—C52119.0 (3)C48—C49—H49B108.0
C57—C58—C31122.1 (3)H49A—C49—H49B107.2
C52—C58—C31118.9 (3)O51—C50—H50A109.7
O21i—Li1—O21180.0C49—C50—H50A109.7
O21i—Li1—O17i92.80 (8)O51—C50—H50B109.7
O21i—Li1—O1787.20 (8)C49—C50—H50B109.7
O17i—Li1—O17180.0H50A—C50—H50B108.2
O21i—Li1—O8i78.86 (7)C55—C54—H54118.7
O17i—Li1—O8i77.48 (7)C53—C54—H54118.7
O21i—Li1—O8101.14 (7)C55—C56—H56A109.5
O17i—Li1—O8102.52 (7)C55—C56—H56B109.5
O21—Li1—O17i87.20 (8)H56A—C56—H56B109.5
O21—Li1—O1792.80 (8)C55—C56—H56C109.5
O21—Li1—O8i101.14 (7)H56A—C56—H56C109.5
O17—Li1—O8i102.52 (7)H56B—C56—H56C109.5
O21—Li1—O878.86 (7)C58—C57—H57120.0
O17—Li1—O877.48 (7)C55—C57—H57120.0
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1/2, y+3/2, z+1; (iv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Li(C50H48O6)]Cl·H2O
Mr805.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)44.486 (5), 12.1755 (13), 16.995 (2)
β (°) 108.958 (2)
V3)8705.8 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.45 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27872, 10410, 4825
Rint0.073
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.241, 0.93
No. of reflections10410
No. of parameters556
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.64

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 1995), SHELXTL, SHELXL93 (Sheldrick, 1993) and local programs.

Selected geometric parameters (Å, º) top
O8—Li12.455 (2)O38—Li22.381 (2)
O17—Li11.962 (2)O47—Li21.944 (2)
O21—Li11.952 (2)O51—Li21.998 (2)
O21—Li1—O17i87.20 (8)O47—Li2—O51ii85.95 (8)
O21—Li1—O1792.80 (8)O47—Li2—O5194.05 (8)
O21—Li1—O8i101.14 (7)O47—Li2—O38ii99.25 (8)
O17—Li1—O8i102.52 (7)O51—Li2—O38ii103.18 (7)
O21—Li1—O878.86 (7)O47—Li2—O3880.75 (8)
O17—Li1—O877.48 (7)O51—Li2—O3876.82 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z.
Geometric features and complexation free energies (Å, °, kJ mol−1) for Li+ complexes of (I), (II) and (III)a top
(I) \odot Li+c(I) \odot Li+a(II) \odot Li+b(II) \odot Li+a(III) \odot Li+b(III) \odot Li+a
O···O distances
Number <2.804(6)7(6)6(6)
Number <3.008(6)8(8)6(6)
Shortest2.70(2.74)2.51(2.41)2.79(2.74)
Li+·s O distances
Number <2.506(6)5(5)6(6)
Number <2.004(0)0(0)0(0)
Average <2.502.12(2.10)2.04(2.05)2.14(2.11)
Ranged1.94–2.46(2.02–2.27)2.00–2.89(2.05–2.60)(–)
Li+ radiuse0.72(0.70)0.64(0.65)0.74(0.71)
Aryl–aryl dihedral angle
Average47(62)50(41)56(55)
Range44–52(–)28–51(8–57)(–)
-ΔGo of Complexationf>>96g(–)70(–)>96(–)
Notes: (a) calculated values from Kollman et al. (1985) are given in parentheses; (b) from Knobler et al. (1992); (c) this work; (d) a survey by Hermansson et al. (1977) gives 1.94–1.99 Å for four-coordinate, 2.04–2.12 Å for five-coordinate and 2.13–2.17 Å for six-coordinate Li+. For (II) \odot Li+, the 2.89 Å distance was deemed non-bonded (Knobler et al., 1992). The wide range for (I) reflects the four short and two long Li+···O distances in the distorted octahedron (see Table 1); (e) calculated by subtracting an oxygen radius of 1.40%A from the average Li+···O distance. Shannon (1976) gives 0.76 and 0.59 Å for six- and four-coordination, respectively; (f) Cram & Lein (1985); (g) deduced from the fact that (I) \odot Li+ does not decomplex at 400 K in methanol/water (see text).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds