Download citation
Download citation
link to html
The title compound, 2-hydroxy-1-(phenyl­sulfonyl)­spiro­[cyclo­pentene-4,9′-[9H]­fluoren]-3-one, C23H16O4S, crystallized in the centrosymmetric space group P21/n with one mol­ecule as the asymmetric unit. The hydroxyl-H atom is ordered and participates in a single intramolecular hydrogen bond and in a single intermolecular hydrogen bond, in which the OD—H distance is 0.90 (2), H...OA is 2.34 (3), OD...OA is 2.987 (2) Å and OD—H...OA is 129 (2)°. The intermolecular hydrogen bond forms an R{_2^2}(12) cyclic dimer about a center of symmetry. There are six leading C—H...O interactions. Taken together, these interactions form a three-dimensional network. Structural comparisons are made with tetrabenzodi­spiro­[4.0.4.3]­tridecatetraene.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004595/fr1267sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004595/fr1267Isup2.hkl
Contains datablock I

CCDC reference: 147651

Comment top

This report on the title enol, (I), is one of a series on hydrogen bonding in organic solids, and the third structural report on a spirocyclopentyl-1,9'-[9H]fluorene compound. (I) crystallized in the centrosymmetric space group P21/n with one molecule as the asymmetric unit. The refined molecule and the labelling scheme are shown in Fig. 1. The hydroxyl-H atom is ordered and participates in a single intramolecular hydrogen bond and in a single intermolecular hydrogen bond, the geometric parameters of which are given in Table 2. The intermolecular hydrogen bond forms a first-level (Bernstein et al., 1995) cyclic dimer, with descriptor R22(12), about a center of symmetry. In addition, there are six leading C—H···O interactions (Taylor & Kennard, 1982; Steiner & Desiraju, 1998) whose parameters also are given in Table 2. Each molecule is linked directly by these interactions to eleven neighbors. The results of basic first- and second-level graph-set analysis involving all of these interactions, labelled a-h for this purpose in the order of their appearance in Table 2, are given in Table 3. The dominant patterns are rings (8) and chains (26). The chains propagate variously along [100] (6), [010] (10), [101] (4), [101] (3), [210] (2) and [110], and generate a richly three-dimensional network of interactions. It may be noted that, if only those C—H···O interactions having an H···O distance less than the corresponding Bondi (1964) van der Waals radius sum are considered, the resulting interaction network remains three-dimensional. A packing stereodiagram of the structure is given in Fig. 2. \sch

As for the fluorene cores in fluorene carboxylic acids (Blackburn et al., 1996a,b,c), best-fit planes for atoms C1—C4, C10 and C11 and atoms C5—C8, C12 and C13 have been chosen to define the fluorene core dihedral angle in (I). The maximum distance of any of these atoms from the best-fit plane including that atom is 0.007 (2) Å, and the dihedral angle is 2.10 (10)°. For structural comparisons, tetrabenzodispiro[4.0.4.3]tridecatetraene [hereafter, (II)] (Fritze et al., 1995), which can be viewed in the present context as a double spirocyclopentane-1,9'-[9H]fluorene, is particularly appropriate. In (II), there are four independent fluorene cores and for them the maximum deviation of an atom from the corresponding best-fit planes is 0.023 (3) Å, and the dihedral angles are 10.60 (11), 9.19 (8), 8.32 (10) and 6.68 (9)°, all considerably larger than in (I). The central ring of the fluorene core is less nearly planar than the outer rings in (I), the maximum atom deviation from the best-fit plane being 0.018 (2) Å; for (II), the quite similar corresponding values are 0.025 (2), 0.022 (2), 0.027 (2) and 0.020 (2) Å. A second notable difference between (I) and (II) is that the cyclopentyl ring has a 0.033 (2) Å maximum atom deviation from the best-fit plane in (I), but 0.245 (2) and 0.225 (2) Å in (II). A further similarity of (I) and (II) is that the dihedral angles between the best-fit planes describing the spiro-connected five-membered rings are, as expected, close to 90°, being 89.95 (10)° in (I) and 89.67 (10), 88.68 (9), 89.46 (10) and 90.00 (10) ° in (II). For the phenyl ring of (I), C18—C23, the maximum deviation of an atom from the best-fit plane describing them is 0.004 (2) Å.

Selected distances and angles for (I) are given in Table 1. A l l distances and angles fall within normal ranges. The r.m.s. deviation within the seven pairs of chemically equivalent bond distances in the fluorene core is 0.006 Å for (I), while for the four cores in (II) it is 0.007, 0.002, 0.006 and 0.006 Å. Overall, the mean values of the seven chemically equivalent bond distances in the fluorene core of (I) are in good agreement with the corresponding seven grand mean values for the four fluorene cores of (II): C4—C11, 1.388 (2) versus 1.392 (3); C3—C4, 1.378 (3) versus 1.375 (5); C2—C3, 1.374 (3) versus 1.379 (6); C1—C2, 1.388 (3) versus 1.391 (4); C1—C10, 1.380 (2) versus 1.386 (4); C10—C11, 1.394 (2) versus 1.399 (3); and C9—C10, 1.520 (5) versus 1.525 (3) Å. The bond distance for the unique bond of the fluorene core, C11—C12, is 1.460 (2) Å for (I), 1.462 (3) Å (grand mean) for (II). Excluding pairs of atoms in hydrogen-bonded groups or tabulated C—H···O interactions, the closest intermolecular approaches are between C1 and H17Bvii (vii = 1/2 − x, −1/2 + y, 3/2 − z), and are 0.01 Å less than the corresponding Bondi (1964) van der Waals radius sum.

Experimental top

The title compound was obtained as a colorless plate from a coarsely crystalline sample in Dr M. S. Newman's chemical collection. The experimental sample was cut from this plate. A synthesis of (I) is described by Newman (1984).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: TEXSAN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. Labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Packing stereodiagram of (I). The finer interatomic lines depict the intramolecular hydrogen bonds.
(I) top
Crystal data top
C23H16O4SF(000) = 808
Mr = 388.44Dx = 1.377 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.478 (1) ÅCell parameters from 25 reflections
b = 10.406 (1) Åθ = 16.1–17.5°
c = 21.336 (1) ŵ = 0.20 mm1
β = 95.701 (9)°T = 296 K
V = 1873.2 (4) Å3Cut plate, colorless
Z = 40.42 × 0.35 × 0.27 mm
Data collection top
AFC5S
diffractometer
Rint = 0.010
Radiation source: X-ray tubeθmax = 27.6°, θmin = 2.8°
Graphite monochromatorh = 011
ω scansk = 013
4618 measured reflectionsl = 2727
4333 independent reflections6 standard reflections every 150 reflections
3246 reflections with I > 2.0σI intensity decay: 1.8%
Refinement top
Refinement on F2257 parameters
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046w = 1/[σ2cs + (0.012I)2]
wR(F2) = 0.083(Δ/σ)max = 0.001
S = 1.44Δρmax = 0.39 e Å3
4331 reflectionsΔρmin = 0.47 e Å3
Crystal data top
C23H16O4SV = 1873.2 (4) Å3
Mr = 388.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.478 (1) ŵ = 0.20 mm1
b = 10.406 (1) ÅT = 296 K
c = 21.336 (1) Å0.42 × 0.35 × 0.27 mm
β = 95.701 (9)°
Data collection top
AFC5S
diffractometer
Rint = 0.010
4618 measured reflections6 standard reflections every 150 reflections
4333 independent reflections intensity decay: 1.8%
3246 reflections with I > 2.0σI
Refinement top
R[F2 > 2σ(F2)] = 0.046257 parameters
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.44Δρmax = 0.39 e Å3
4331 reflectionsΔρmin = 0.47 e Å3
Special details top

Experimental. Scan widths were (1.50 + 0.35 tanθ)° in ω, with background/scan time-ratio of 0.5. The data were corrected for Lorentz and polarization effects. A linear decay (growth) correction was applied. Due to mis-labelling of (I) in the Newman collection, it was not known to contain sulfur prior to data acquisition and data required for absorption correction were not obtained. The Laue group assignment, systematic absences and centrosymmetric intensity statistics indicated uniquely space group P21/n (No. 14). Since refinement proceeded well, it was adopted. Fourier difference methods were used to locate initial H atom positions, and the H atoms were then refined isotropically. Refined C—H distances ranged from 0.91 (2) to 1.02 (2) Å, with a mean value 0.95 (3) Å. Subsequently, these H atoms were made canonical with C—H = 0.98 Å and Uiso = 1.2 × Ueq of the attached C atom. The refined hydroxyl group O—H distance is 0.90 (2) Å. In late stages of refinement, the extinction coefficient was predicted to be negative, and was not included in the model; however, two intense reflections, 1 0 − 1 and 0 1 4, appeared to suffer from extinction and were excluded from further refinements. The maximum positive residual peak is located ~0.7 Å from C16 and 1.1 Å from S1; the maximum negative peak is located ~0.7 Å from S1.

Geometry. TABLE of LEAST SQUARES PLANES

————– Plane number 1 —————

Atoms Defining Plane Distance e.s.d. C1 (1) −0.0025 0.0019 C2 (1) 0.0071 0.0021 C3 (1) −0.0037 0.0021 C4 (1) −0.0044 0.0020 C10 (1) −0.0030 0.0017 C11 (1) 0.0059 0.0017

Mean deviation from plane is 0.0044 angstroms Chi-squared: 34.6

————– Plane number 2 —————

Atoms Defining Plane Distance e.s.d. C5 (1) 0.0018 0.0021 C6 (1) 0.0014 0.0023 C7 (1) −0.0015 0.0021 C8 (1) −0.0014 0.0019 C12 (1) −0.0034 0.0018 C13 (1) 0.0031 0.0017

Mean deviation from plane is 0.0021 angstroms Chi-squared: 8.7

Dihedral angles between least-squares planes plane plane angle 2 1 2.19

————– Plane number 3 —————

Atoms Defining Plane Distance e.s.d. C9 (1) −0.0176 0.0017 C10 (1) 0.0153 0.0016 C11 (1) −0.0076 0.0017 C12 (1) −0.0063 0.0018 C13 (1) 0.0151 0.0017

Mean deviation from plane is 0.0124 angstroms Chi-squared: 293.0

Dihedral angles between least-squares planes plane plane angle 3 1 2.07 3 2 0.62

————– Plane number 4 —————

Atoms Defining Plane Distance e.s.d. C9 (1) 0.0251 0.0017 C14 (1) −0.0153 0.0018 C15 (1) −0.0048 0.0017 C16 (1) 0.0183 0.0016 C17 (1) −0.0326 0.0019

Mean deviation from plane is 0.0192 angstroms Chi-squared: 735.7

Dihedral angles between least-squares planes plane plane angle 4 1 91.93 4 2 89.76 4 3 90.05

————– Plane number 5 —————

Atoms Defining Plane Distance e.s.d. C18 (1) 0.0035 0.0016 C19 (1) −0.0045 0.0020 C20 (1) 0.0018 0.0022 C21 (1) 0.0015 0.0022 C22 (1) −0.0009 0.0024 C23 (1) −0.0030 0.0021

Mean deviation from plane is 0.0025 angstroms Chi-squared: 12.4

Dihedral angles between least-squares planes plane plane angle 5 1 77.38 5 2 77.03 5 3 76.49 5 4 89.11

————– Plane number 6 —————

Atoms Defining Plane Distance e.s.d. C9 (2) 0.0176 0.0017 C10 (2) −0.0153 0.0016 C11 (2) 0.0076 0.0017 C12 (2) 0.0063 0.0018 C13 (2) −0.0151 0.0017

Mean deviation from plane is 0.0124 angstroms Chi-squared: 293.0

Dihedral angles between least-squares planes plane plane angle 6 1 133.01 6 2 130.87 6 3 130.94 6 4 45.36 6 5 82.60

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17658 (5)0.18786 (5)0.55526 (2)0.0419 (1)
O10.0276 (2)0.0717 (1)0.61194 (7)0.0575 (5)
O20.1509 (2)0.0750 (1)0.51599 (6)0.0618 (5)
O30.0870 (1)0.3021 (1)0.53870 (6)0.0584 (4)
O40.0327 (2)0.0693 (1)0.74399 (6)0.0606 (5)
C10.4418 (2)0.0642 (2)0.77549 (9)0.0491 (6)
C20.5588 (2)0.0450 (2)0.8251 (1)0.0599 (7)
C30.5309 (3)0.0739 (2)0.8860 (1)0.0613 (7)
C40.3885 (2)0.1241 (2)0.89966 (9)0.0520 (6)
C50.0316 (3)0.2487 (2)0.89869 (9)0.0554 (7)
C60.1195 (3)0.2971 (2)0.8842 (1)0.0633 (7)
C70.1888 (2)0.2992 (2)0.8233 (1)0.0581 (7)
C80.1082 (2)0.2527 (2)0.77468 (9)0.0486 (6)
C90.1518 (2)0.1454 (2)0.74426 (7)0.0346 (5)
C100.2985 (2)0.1146 (2)0.78904 (8)0.0356 (5)
C110.2713 (2)0.1456 (2)0.85065 (8)0.0384 (5)
C120.1132 (2)0.2013 (2)0.85033 (8)0.0393 (5)
C130.0428 (2)0.2044 (2)0.78847 (7)0.0360 (5)
C140.0808 (2)0.0201 (2)0.71580 (8)0.0382 (5)
C150.0837 (2)0.0283 (2)0.64629 (8)0.0372 (5)
C160.1443 (2)0.1410 (2)0.63130 (7)0.0329 (5)
C170.1850 (2)0.2282 (2)0.68670 (8)0.0403 (5)
C180.3794 (2)0.2269 (2)0.56277 (8)0.0378 (5)
C190.4904 (2)0.1303 (2)0.56594 (9)0.0524 (6)
C200.6499 (2)0.1627 (2)0.5745 (1)0.0635 (7)
C210.6948 (2)0.2891 (2)0.5803 (1)0.0641 (7)
C220.5830 (3)0.3844 (2)0.5775 (1)0.0691 (8)
C230.4233 (2)0.3539 (2)0.5688 (1)0.0542 (6)
H10.46060.04250.73220.059*
H1O10.039 (3)0.059 (2)0.571 (1)0.11 (1)*
H20.66220.01050.81660.072*
H30.61440.05840.92030.074*
H40.37000.14440.94320.062*
H50.08020.24780.94230.067*
H60.17810.33060.91800.076*
H70.29610.33380.81420.070*
H80.15770.25400.73120.058*
H17B0.11780.30510.68370.048*
H17A0.29660.25390.68940.048*
H190.45750.04010.56220.063*
H200.73070.09510.57640.076*
H210.80760.31130.58640.077*
H220.61600.47450.58170.083*
H230.34290.42180.56700.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0340 (2)0.0635 (3)0.0276 (2)0.0106 (2)0.0011 (2)0.0022 (2)
O10.074 (1)0.0521 (9)0.0457 (8)0.0240 (8)0.0036 (8)0.0164 (7)
O20.0617 (9)0.086 (1)0.0385 (7)0.0310 (8)0.0077 (7)0.0234 (7)
O30.0416 (7)0.083 (1)0.0485 (8)0.0071 (8)0.0041 (6)0.0234 (8)
O40.080 (1)0.0500 (9)0.0493 (8)0.0252 (8)0.0052 (7)0.0105 (7)
C10.045 (1)0.044 (1)0.059 (1)0.002 (1)0.008 (1)0.006 (1)
C20.038 (1)0.046 (1)0.094 (2)0.003 (1)0.003 (1)0.004 (1)
C30.052 (1)0.051 (1)0.075 (2)0.002 (1)0.024 (1)0.002 (1)
C40.057 (1)0.051 (1)0.044 (1)0.002 (1)0.014 (1)0.002 (1)
C50.066 (1)0.064 (1)0.037 (1)0.004 (1)0.009 (1)0.005 (1)
C60.067 (2)0.066 (2)0.061 (1)0.010 (1)0.026 (1)0.003 (1)
C70.044 (1)0.057 (1)0.075 (2)0.010 (1)0.013 (1)0.008 (1)
C80.043 (1)0.052 (1)0.049 (1)0.002 (1)0.0021 (9)0.007 (1)
C90.040 (1)0.035 (1)0.0285 (8)0.0041 (8)0.0006 (7)0.0007 (7)
C100.0351 (9)0.031 (1)0.0397 (9)0.0046 (8)0.0000 (8)0.0010 (8)
C110.043 (1)0.034 (1)0.0360 (9)0.0038 (8)0.0048 (8)0.0004 (8)
C120.043 (1)0.041 (1)0.0335 (9)0.0022 (9)0.0028 (8)0.0005 (8)
C130.0383 (9)0.036 (1)0.0332 (9)0.0012 (8)0.0021 (7)0.0032 (8)
C140.038 (1)0.038 (1)0.037 (1)0.0037 (8)0.0029 (8)0.0023 (8)
C150.036 (1)0.040 (1)0.0354 (9)0.0038 (8)0.0005 (8)0.0067 (8)
C160.0308 (9)0.041 (1)0.0266 (8)0.0023 (8)0.0022 (7)0.0025 (7)
C170.051 (1)0.038 (1)0.0318 (9)0.0057 (9)0.0044 (8)0.0020 (8)
C180.0313 (9)0.052 (1)0.0308 (9)0.0057 (9)0.0057 (7)0.0052 (8)
C190.045 (1)0.050 (1)0.062 (1)0.002 (1)0.007 (1)0.008 (1)
C200.040 (1)0.070 (2)0.080 (2)0.009 (1)0.004 (1)0.009 (1)
C210.036 (1)0.083 (2)0.074 (2)0.011 (1)0.004 (1)0.012 (1)
C220.049 (1)0.059 (1)0.099 (2)0.018 (1)0.006 (1)0.012 (1)
C230.042 (1)0.050 (1)0.071 (1)0.003 (1)0.006 (1)0.007 (1)
Geometric parameters (Å, º) top
S1—O21.4462 (13)C8—H80.98
S1—O31.4358 (14)C9—C101.525 (2)
S1—C161.742 (2)C9—C131.515 (2)
S1—C181.759 (2)C9—C141.536 (2)
O1—C151.333 (2)C9—C171.549 (2)
O1—H1O10.90 (2)C10—C111.395 (2)
O4—C141.201 (2)C11—C121.460 (2)
C1—C21.391 (3)C12—C131.394 (2)
C1—C101.380 (2)C14—C151.488 (2)
C1—H10.98C15—C161.332 (2)
C2—C31.377 (3)C16—C171.503 (2)
C2—H20.98C17—H17B0.98
C3—C41.373 (3)C17—H17A0.98
C3—H30.98C18—C191.374 (2)
C4—C111.387 (2)C18—C231.376 (2)
C4—H40.98C19—C201.388 (3)
C5—C61.383 (3)C19—H190.98
C5—C121.389 (2)C20—C211.371 (3)
C5—H50.98C20—H200.98
C6—C71.371 (3)C21—C221.369 (3)
C6—H60.98C21—H210.98
C7—C81.385 (3)C22—C231.385 (3)
C7—H70.98C22—H220.98
C8—C131.380 (2)C23—H230.98
O1···H7i2.8146O3···C4viii3.599 (2)
O1···O2ii2.987 (2)O4···H7i2.4674
O1···C4iii3.258 (2)O4···H17Aiii2.6625
O1···C11iii3.453 (2)O4···C7i3.407 (2)
O1···C7i3.572 (2)O4···C17iii3.413 (2)
O2···H1O1ii2.34 (3)C1···H17Biii2.8929
O2···H6iv2.8357C2···H17Biii2.9078
O2···H20v2.9011C2···C7ix3.405 (3)
O2···O2ii3.018 (2)C4···H23iii3.0107
O3···H4vi2.6652C6···H19viii3.0460
O3···H21vii2.6716C20···H5iv2.9727
O3···H3vi2.9433C21···H5iv3.0310
O3···C4vi3.351 (2)H3···H22x2.4506
O3···C3viii3.451 (3)H3···H21x2.6624
O3···C3vi3.493 (3)H1O1···O10.90 (2)
O3···C21vii3.528 (2)
O2—S1—O3118.96 (8)C4—C11—C12131.0 (2)
O2—S1—C16106.50 (8)C10—C11—C12109.0 (1)
O2—S1—C18109.26 (8)C5—C12—C11131.5 (2)
O3—S1—C16109.44 (8)C5—C12—C13119.8 (2)
O3—S1—C18108.63 (9)C11—C12—C13108.7 (1)
C16—S1—C18102.85 (8)C8—C13—C9128.7 (2)
C15—O1—H1O1111 (2)C8—C13—C12120.8 (2)
C2—C1—C10118.1 (2)C9—C13—C12110.5 (1)
C2—C1—H1120.9O4—C14—C9126.8 (2)
C10—C1—H1120.9O4—C14—C15125.7 (2)
C1—C2—C3120.6 (2)C9—C14—C15107.51 (14)
C1—C2—H2119.7O1—C15—C14117.6 (2)
C3—C2—H2119.7O1—C15—C16132.9 (2)
C2—C3—C4121.4 (2)C14—C15—C16109.53 (15)
C2—C3—H3119.3S1—C16—C15124.75 (13)
C4—C3—H3119.3S1—C16—C17121.25 (13)
C3—C4—C11118.7 (2)C15—C16—C17114.00 (14)
C3—C4—H4120.7C9—C17—C16104.02 (14)
C11—C4—H4120.7C9—C17—H17B110.8
C6—C5—C12118.8 (2)C9—C17—H17A110.8
C6—C5—H5120.6C16—C17—H17B110.8
C12—C5—H5120.6C16—C17—H17A110.8
C5—C6—C7121.2 (2)H17B—C17—H17A109.5
C5—C6—H6119.4S1—C18—C19119.6 (1)
C7—C6—H6119.4S1—C18—C23118.9 (1)
C6—C7—C8120.5 (2)C19—C18—C23121.4 (2)
C6—C7—H7119.7C18—C19—C20118.8 (2)
C8—C7—H7119.7C18—C19—H19120.6
C7—C8—C13118.9 (2)C20—C19—H19120.6
C7—C8—H8120.5C19—C20—C21120.2 (2)
C13—C8—H8120.5C19—C20—H20119.9
C10—C9—C13101.83 (13)C21—C20—H20119.9
C10—C9—C14109.41 (14)C20—C21—C22120.4 (2)
C10—C9—C17114.39 (14)C20—C21—H21119.8
C13—C9—C14110.53 (14)C22—C21—H21119.8
C13—C9—C17116.01 (14)C21—C22—C23120.2 (2)
C14—C9—C17104.70 (13)C21—C22—H22119.9
C1—C10—C9129.0 (2)C23—C22—H22119.9
C1—C10—C11121.1 (2)C18—C23—C22119.0 (2)
C9—C10—C11110.0 (1)C18—C23—H23120.5
C4—C11—C10120.0 (2)C22—C23—H23120.5
S1—C16—C15—O13.2 (3)C6—C5—C12—C11179.7 (2)
S1—C16—C15—C14177.3 (1)C6—C5—C12—C130.6 (3)
S1—C16—C17—C9175.2 (1)C6—C7—C8—C130.1 (3)
S1—C18—C19—C20177.4 (2)C7—C6—C5—C120.1 (3)
S1—C18—C23—C22177.2 (2)C7—C8—C13—C9178.2 (2)
O1—C15—C14—O40.3 (3)C7—C8—C13—C120.5 (3)
O1—C15—C14—C9179.7 (2)C8—C13—C9—C10179.2 (2)
O1—C15—C16—C17177.0 (2)C8—C13—C9—C1464.6 (2)
O2—S1—C16—C159.5 (2)C8—C13—C9—C1754.4 (3)
O2—S1—C16—C17170.3 (1)C8—C13—C12—C11179.9 (2)
O2—S1—C18—C1935.8 (2)C9—C10—C11—C122.0 (2)
O2—S1—C18—C23147.7 (2)C9—C13—C12—C111.9 (2)
O3—S1—C16—C15120.3 (2)C9—C14—C15—C160.8 (2)
O3—S1—C16—C1759.9 (2)C9—C17—C16—C154.6 (2)
O3—S1—C18—C19167.0 (1)C10—C9—C13—C122.9 (2)
O3—S1—C18—C2316.5 (2)C10—C9—C14—C15119.5 (2)
O4—C14—C9—C1059.8 (2)C10—C9—C17—C16115.1 (2)
O4—C14—C9—C1351.5 (2)C10—C11—C12—C130.1 (2)
O4—C14—C9—C17177.1 (2)C11—C10—C9—C133.0 (2)
O4—C14—C15—C16179.8 (2)C11—C10—C9—C14114.0 (2)
C1—C2—C3—C41.0 (3)C11—C10—C9—C17128.9 (2)
C1—C10—C9—C13176.8 (2)C12—C13—C9—C14113.2 (2)
C1—C10—C9—C1466.2 (2)C12—C13—C9—C17127.8 (2)
C1—C10—C9—C1750.9 (2)C13—C9—C14—C15129.1 (1)
C1—C10—C11—C40.9 (3)C13—C9—C17—C16126.8 (1)
C1—C10—C11—C12177.8 (2)C14—C9—C17—C164.7 (2)
C2—C1—C10—C9179.8 (2)C14—C15—C16—C172.5 (2)
C2—C1—C10—C110.0 (3)C15—C14—C9—C173.5 (2)
C2—C3—C4—C110.0 (3)C15—C16—S1—C18124.3 (2)
C3—C2—C1—C100.9 (3)C16—S1—C18—C1977.0 (2)
C3—C4—C11—C100.9 (3)C16—S1—C18—C2399.4 (2)
C3—C4—C11—C12177.5 (2)C17—C16—S1—C1855.5 (2)
C4—C11—C10—C9179.2 (2)C18—C19—C20—C210.7 (3)
C4—C11—C12—C50.6 (4)C18—C23—C22—C210.3 (3)
C4—C11—C12—C13178.6 (2)C19—C18—C23—C220.8 (3)
C5—C6—C7—C80.1 (4)C19—C20—C21—C220.2 (4)
C5—C12—C11—C10179.1 (2)C20—C19—C18—C231.0 (3)
C5—C12—C13—C80.8 (3)C20—C21—C22—C230.0 (4)
C5—C12—C13—C9178.8 (2)
Symmetry codes: (i) x1/2, y1/2, z+3/2; (ii) x, y, z+1; (iii) x+1/2, y1/2, z+3/2; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y, z+1; (vi) x1/2, y+1/2, z1/2; (vii) x1, y, z; (viii) x+1/2, y+1/2, z+3/2; (ix) x+1, y, z; (x) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.90 (2)2.11 (2)2.836 (2)137 (2)
O1—H1O1···O2ii0.90 (2)2.34 (3)2.987 (2)129 (2)
C7—H7···O4xi0.982.473.407 (3)161
C17—H17A···O4viii0.982.663.413 (2)134
C4—H4···O3xii0.982.673.351 (2)127
C21—H21···O3ix0.982.673.528 (3)146
C7—H7···O1xi0.982.813.572 (3)135
C6—H6···O2xiii0.982.843.816 (2)179
Symmetry codes: (ii) x, y, z+1; (viii) x+1/2, y+1/2, z+3/2; (ix) x+1, y, z; (xi) x1/2, y+1/2, z+3/2; (xii) x+1/2, y+1/2, z+1/2; (xiii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H16O4S
Mr388.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.478 (1), 10.406 (1), 21.336 (1)
β (°) 95.701 (9)
V3)1873.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.42 × 0.35 × 0.27
Data collection
DiffractometerAFC5S
diffractometer
Absorption correction
No. of measured, independent and
observed (I > 2.0σI) reflections
4618, 4333, 3246
Rint0.010
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.083, 1.44
No. of reflections4331
No. of parameters257
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.47

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1995), SHELXS86 (Sheldrick, 1990), ORTEPII (Johnson, 1976), TEXSAN and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
S1—O21.4462 (13)C9—C141.536 (2)
S1—O31.4358 (14)C9—C171.549 (2)
S1—C161.742 (2)C14—C151.488 (2)
S1—C181.759 (2)C15—C161.332 (2)
O1—C151.333 (2)C16—C171.503 (2)
O4—C141.201 (2)
O2—S1—O3118.96 (8)C14—C9—C17104.70 (13)
O2—S1—C16106.50 (8)O4—C14—C9126.8 (2)
O2—S1—C18109.26 (8)O4—C14—C15125.7 (2)
O3—S1—C16109.44 (8)C9—C14—C15107.51 (14)
O3—S1—C18108.63 (9)O1—C15—C14117.6 (2)
C16—S1—C18102.85 (8)O1—C15—C16132.9 (2)
C10—C9—C13101.83 (13)C14—C15—C16109.53 (15)
C10—C9—C14109.41 (14)S1—C16—C15124.75 (13)
C10—C9—C17114.39 (14)S1—C16—C17121.25 (13)
C13—C9—C14110.53 (14)C15—C16—C17114.00 (14)
C13—C9—C17116.01 (14)C9—C17—C16104.02 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.90 (2)2.11 (2)2.836 (2)137 (2)
O1—H1O1···O2i0.90 (2)2.34 (3)2.987 (2)129 (2)
C7—H7···O4ii0.982.473.407 (3)161
C17—H17A···O4iii0.982.663.413 (2)134
C4—H4···O3iv0.982.673.351 (2)127
C21—H21···O3v0.982.673.528 (3)146
C7—H7···O1ii0.982.813.572 (3)135
C6—H6···O2vi0.982.843.816 (2)179
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x1/2, y+1/2, z+1/2.
Basic first- and second-level graph set descriptors involving interactions designated a-h in order as given in Table 2. top
abcdefgh
aS(6)D22(6)C22(15)[S(6)]C22(10)[S(6)]R44(24)[S(6)]C22(13)[S(6)]C22(11)[S(6)]C21(11)[S(6)]
bR22(12)C22(14)C22(10)C22(12)C22(13)C22(11)C21(11)
cC(7)C21(8)R44(28)C22(19)C12(7)[R12(5)R44(20)
dC(5)R44(24)C22(15)C22(12)R44(20)
eC(9)C21(14)R44(26)C22(10)
fC(7)C22(18)C22(17)
gC(8)R44(18)
hC(10)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds