Download citation
Download citation
link to html
The crystal structure of 4-(3-carboxy-1-ethyl-6-fluoro-1,4-di­hydro-4-oxo-7-quinolyl)-1-methyl­piperazinium methane­sulfonate 0.10-hydrate, C17H21FN3O3+·CH3O3S·0.10H2O, contains pefloxacinium cations, methane­sulfonate anions and a partially occupied water of solvation. The quinoline ring system in the cation is essentially planar. The anions lie parallel to each other about inversion centers. The structure is stabilized by strong hydrogen bonds involving the terminal piperazinyl-N atom of the cation and an O atom of the anion [N...O 2.739 (2) Å], and a strong intramolecular hydrogen bond between carbonyl and carboxyl groups [O...O 2.523 (2) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004340/fr1263sup1.cif
Contains datablocks Global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004340/fr1263Isup2.hkl
Contains datablock I

CCDC reference: 147681

Comment top

Pefloxacin belongs to the second generation quinolone antimicrobial agents. These antimicrobials exert their action by inhibiting enzyme DNA-gyrase which is responsible for the continuous introduction of negative supercoils into DNA (Alfred et al., 1996). Pefloxacin gives satisfactory clinical responses in the treatment of respiratory tract infections including gram negative bacillary, staphylococcal pneumonia (Lauwers et al., 1986), gram negative pneumonia (Giamarellou et al., 1987) and chronic bronchitis (Maesens et al., 1987). It is also used in the treatment of prostatitis (Guibert et al., 1990), neisseria, gonorrhea (Ridgway, 1993) and possesses excellent activity against several gram negative meningeal pathogens (Scheld & Sande, 1983). It may cause headache, dizziness, insomnia, rashes, gastrointestinal symptoms like nausea, vomiting, diarrhea (John & Hooper, 1989). The crystal structures of pefloxacinium methanesulfonate dihydrate (Toffoli et al., 1987), silver pefloxacin hexahydrate (Baenziger et al., 1986) and dipefloxacinium tetrachloro platinum(II) dihydrate (Toffoli et al., 1988) have already been reported. In this article, we report the crystal and molecular structure of pefloxacinium methanesulfonate 0.10 hydrate, (I). \sch

The asymmetric unit of (I) contains a pefloxacinium cation, a methanesulfonate anion and a partially occupied water of solvation with 0.10 site occupancy factor (Fig. 1). The cation is composed of an essentially planar quinoline ring system [maximum deviation 0.029 (2) Å] which is substituted with ethyl, fluoro, oxo, carboxyl and methylpiperazinium groups. The bond distances and bond angles in the pefloxacinium ion are in excellent agreement with the corresponding dimensions reported in the structures of pefloxacinium methanesulfonate dihydrate (Toffoli et al., 1987), silver pefloxacin hexahydrate (Baenziger et al., 1986) and dipefloxacinium tetrachloro platinum(II) dihydrate (Toffoli et al., 1988); the mean values being: Csp3—N (ammonium N3) 1.491 (2), Csp3—N 1.462 (10), Csp2—N 1.37 (3), Csp3—Csp3 1.505 (2) and C—Caromatic 1.39 (2) Å. The carboxyl group in (I) lies in the plane of the quinolyl moiety [angle between the two planes being 3.3 (3)°] while the plane of the N1,C10,C11 atoms is inclined at 80.5 (1)° to the quinolyl moiety. The six-membered piperazinyl ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.566 (2) Å, θ = 177.3 (2) and ϕ = 60 (6)°. The methanesulfonate anion also exhibits normal molecular dimensions with a mean SO distance of 1.450 (8) with the longest distance associated with the O6 atom involved in a hydrogen bond [1.462 (2) Å].

The structure is stabilized by hydrogen bonds involving the terminal piperazinyl N atom of the pefloxacinium and an O atom of the methanesulfonate ions with strong N—H···O interactions [N3···O6 2.739 (2) Å and N3—H3···O6 159°]. The carbonyl and carboxyl groups are also involved in a strong intramolecular hydrogen bond O—H···O [O···O 2.523 (2) Å and O1—H1···O3 155°]. The pefloxacinium ions in (I) lie parallel to each other about inversion centers with N-ethyl groups oriented inwards (Fig. 2), similar to the packing observed in dipefloxacinium tetrachloro platinum(II) dihydrate (Toffoli et al., 1988). In the structures of pefloxacinium methanesulfonate dihydrate (Toffoli et al., 1987), and silver pefloxacin hexahydrate (Baenziger et al., 1986), the pefloxacinium moieties lie parallel to each other in a head-to-tail manner with the N-ethyl groups oriented in the opposite directions. The `outwards' motif is also present in (I). The separation o fthe quinoline rings in the `inwards' and `outwards' motifs in (I) is 3.35 and 3.34 Å, respectively.

The atom O7 of the partially occupied water of solvation lies at distances between 3.13 (3) to 3.38 (3) Å from O2, O3, C16 and N1 atoms. There is a short intramolecular contact H8···H16A, 2.01 Å which does not seem to influence the geometry about the atoms in the close proximity of these atoms.

The crystal structures of the quinolones related to (I) which have been reported include: an adduct of magnesium sulfate with ciprofloxacin (Turel et al., 1996), norfloxacin 2DCl·D2O (Wallis et al., 1994), and iron(III) complex of ciprofloxacin (Wallis et al., 1995).

Experimental top

Pefloxacinium methanesulfonate was a gift from Rhone-Poulenc Rorer Pakistan (Pvt) Ltd, Wah Cant., Pakistan. It was recrystallized from dimethylformamide as colourless crystals, m.p. 543–544 K (dec.).

Refinement top

Towards the end of the refinement, a void area was indicated by the program PLATON (Spek, 1990) which was consistent with the position of the largest peak in the difference map suggesting water of solvation. O7 was included in the refinement initially allowing its site occupancy factor to refine in order to determine its % in the crystal. In the final round of calculations, O7 was included at 10% occupancy factor and refined isotropically ignoring H atoms attached to it. Distances used in H-atom calculations were C—H 0.93–0.97, N—H 0.91 and O—H 0.82 Å.

Computing details top

Data collection: Enraf-Nonius CAD-4 Software. Version 5.0. (Enraf-Nonius, 1989); cell refinement: Enraf-Nonius CAD-4 Software. Version 5.0. (Enraf-Nonius, 1989); data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN (Molecular Structure Corporation, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with the atomic numbering scheme and 30% ellipsoids.
[Figure 2] Fig. 2. Packing diagram for (I) showing hydrogen bonds.
4-(3-Carboxy-1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-quinolyl)-1- methylpiperazinium methanesulfonate 0.10 hydrate top
Crystal data top
C17H21FN3O3+·CH3SO3·0.10H2OZ = 2
Mr = 431.26F(000) = 454
Triclinic, P1Dx = 1.44 Mg m3
a = 8.111 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.013 (1) ÅCell parameters from 25 reflections
c = 13.277 (3) Åθ = 10.0–25.0°
α = 101.22 (1)°µ = 1.91 mm1
β = 102.85 (2)°T = 293 K
γ = 102.01 (1)°Prismatic, colourless
V = 994.9 (4) Å30.30 × 0.23 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3167 reflections with I > 2.0σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 68.0°, θmin = 5.0°
ω–2θ scansh = 09
Absorption correction: empirical (using intensity measurements)
ψ-scan (3 reflections) (North et al., 1968)
k = 1211
Tmin = 0.60, Tmax = 0.70l = 1515
3886 measured reflections3 standard reflections every 200 reflections
3612 independent reflections intensity decay: < 0.20%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.4415P]
where P = (Fo2 + 2Fc2)/3
3612 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C17H21FN3O3+·CH3SO3·0.10H2Oγ = 102.01 (1)°
Mr = 431.26V = 994.9 (4) Å3
Triclinic, P1Z = 2
a = 8.111 (3) ÅCu Kα radiation
b = 10.013 (1) ŵ = 1.91 mm1
c = 13.277 (3) ÅT = 293 K
α = 101.22 (1)°0.30 × 0.23 × 0.20 mm
β = 102.85 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3167 reflections with I > 2.0σ(I)
Absorption correction: empirical (using intensity measurements)
ψ-scan (3 reflections) (North et al., 1968)
Rint = 0.012
Tmin = 0.60, Tmax = 0.703 standard reflections every 200 reflections
3886 measured reflections intensity decay: < 0.20%
3612 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.10Δρmax = 0.35 e Å3
3612 reflectionsΔρmin = 0.41 e Å3
266 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.77493 (6)0.29092 (5)0.99532 (4)0.03219 (15)
F10.65338 (19)0.75430 (13)0.57256 (10)0.0514 (3)
O10.9255 (2)0.1756 (2)0.26551 (12)0.0544 (4)
H10.89710.25010.27120.082*
O20.9419 (3)0.0148 (2)0.35648 (14)0.0682 (5)
O30.8243 (2)0.38882 (18)0.33421 (11)0.0485 (4)
O40.6665 (2)0.35098 (17)0.92482 (13)0.0478 (4)
O50.8995 (2)0.23530 (17)0.94905 (13)0.0483 (4)
O60.67168 (18)0.18731 (16)1.03640 (13)0.0438 (4)
N10.7871 (2)0.24239 (18)0.59762 (13)0.0365 (4)
N20.6446 (3)0.66246 (17)0.76079 (15)0.0437 (5)
N30.6690 (2)0.81227 (17)0.97290 (13)0.0340 (4)
H30.56010.82700.95970.041*
C10.8347 (3)0.1697 (2)0.51834 (16)0.0395 (5)
H1A0.85870.08430.52440.047*
C20.8500 (3)0.2140 (2)0.42876 (15)0.0383 (5)
C30.8139 (3)0.3442 (2)0.41591 (15)0.0359 (4)
C40.7670 (2)0.4239 (2)0.50284 (15)0.0325 (4)
C50.7348 (3)0.5560 (2)0.50046 (16)0.0360 (4)
H50.74260.59220.44180.043*
C60.6925 (3)0.6311 (2)0.58265 (16)0.0353 (4)
C70.6817 (2)0.5848 (2)0.67572 (15)0.0322 (4)
C80.7114 (3)0.4528 (2)0.67694 (15)0.0318 (4)
H80.70280.41700.73570.038*
C90.7535 (2)0.3730 (2)0.59286 (15)0.0311 (4)
C100.7612 (3)0.1787 (2)0.68610 (17)0.0459 (5)
H10A0.80790.25090.75300.055*
H10B0.82540.10740.68960.055*
C110.5707 (4)0.1127 (3)0.6721 (2)0.0652 (8)
H11A0.50560.18160.66400.098*
H11B0.55760.07940.73370.098*
H11C0.52710.03500.60970.098*
C120.9093 (3)0.1251 (3)0.34870 (17)0.0453 (5)
C130.6692 (3)0.8148 (2)0.78642 (18)0.0438 (5)
H13A0.55620.83570.76990.053*
H13B0.73760.85570.74330.053*
C140.7623 (3)0.8789 (2)0.90307 (18)0.0411 (5)
H14A0.88040.86740.91740.049*
H14B0.77070.97920.91980.049*
C150.6471 (3)0.6566 (2)0.94408 (16)0.0344 (4)
H15A0.58140.61260.98710.041*
H15B0.76120.63710.95830.041*
C160.5516 (3)0.5967 (2)0.82772 (16)0.0352 (4)
H16A0.53920.49580.80890.042*
H16B0.43510.61150.81490.042*
C170.7584 (3)0.8770 (3)1.08825 (18)0.0495 (6)
H17A0.68920.83711.13040.074*
H17B0.77220.97701.10330.074*
H17C0.87160.85861.10540.074*
C180.8987 (3)0.4291 (3)1.10682 (18)0.0532 (6)
H18A0.97630.39421.15470.080*
H18B0.82140.46631.14290.080*
H18C0.96600.50231.08400.080*
O70.221 (4)0.312 (3)0.717 (2)0.114 (9)*0.10
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0310 (2)0.0324 (3)0.0367 (3)0.01049 (19)0.01174 (19)0.01186 (19)
F10.0725 (9)0.0412 (7)0.0514 (8)0.0250 (7)0.0207 (7)0.0221 (6)
O10.0691 (11)0.0647 (11)0.0332 (8)0.0224 (9)0.0220 (8)0.0068 (8)
O20.1002 (15)0.0716 (12)0.0494 (10)0.0499 (12)0.0310 (10)0.0119 (9)
O30.0600 (10)0.0617 (10)0.0312 (8)0.0207 (8)0.0183 (7)0.0172 (7)
O40.0517 (9)0.0466 (9)0.0502 (9)0.0224 (7)0.0084 (7)0.0203 (7)
O50.0431 (8)0.0529 (9)0.0612 (10)0.0214 (7)0.0281 (8)0.0173 (8)
O60.0344 (7)0.0419 (8)0.0640 (10)0.0103 (6)0.0209 (7)0.0253 (7)
N10.0492 (10)0.0361 (9)0.0294 (8)0.0171 (8)0.0141 (7)0.0099 (7)
N20.0669 (12)0.0253 (8)0.0463 (10)0.0101 (8)0.0316 (9)0.0094 (7)
N30.0315 (8)0.0311 (8)0.0394 (9)0.0122 (7)0.0101 (7)0.0041 (7)
C10.0470 (12)0.0389 (11)0.0338 (10)0.0164 (9)0.0115 (9)0.0057 (9)
C20.0397 (11)0.0444 (12)0.0290 (10)0.0117 (9)0.0094 (8)0.0042 (9)
C30.0332 (10)0.0448 (11)0.0275 (9)0.0081 (9)0.0061 (8)0.0085 (8)
C40.0304 (9)0.0364 (10)0.0274 (9)0.0049 (8)0.0057 (8)0.0075 (8)
C50.0356 (10)0.0404 (11)0.0318 (10)0.0069 (9)0.0072 (8)0.0145 (8)
C60.0373 (10)0.0313 (10)0.0375 (11)0.0086 (8)0.0078 (8)0.0124 (8)
C70.0321 (9)0.0302 (9)0.0316 (10)0.0046 (8)0.0083 (8)0.0062 (8)
C80.0372 (10)0.0317 (10)0.0263 (9)0.0081 (8)0.0092 (8)0.0075 (8)
C90.0318 (9)0.0317 (10)0.0277 (9)0.0068 (8)0.0059 (7)0.0065 (8)
C100.0735 (16)0.0419 (12)0.0372 (11)0.0288 (11)0.0247 (11)0.0184 (9)
C110.088 (2)0.0483 (14)0.0679 (17)0.0093 (14)0.0405 (16)0.0221 (13)
C120.0470 (12)0.0556 (14)0.0320 (11)0.0184 (11)0.0103 (9)0.0032 (10)
C130.0621 (14)0.0282 (10)0.0490 (13)0.0160 (10)0.0242 (11)0.0130 (9)
C140.0448 (12)0.0258 (10)0.0553 (13)0.0089 (9)0.0219 (10)0.0076 (9)
C150.0358 (10)0.0296 (10)0.0425 (11)0.0121 (8)0.0157 (9)0.0106 (8)
C160.0387 (10)0.0288 (9)0.0405 (11)0.0065 (8)0.0188 (9)0.0077 (8)
C170.0465 (13)0.0503 (13)0.0418 (12)0.0116 (11)0.0064 (10)0.0032 (10)
C180.0531 (14)0.0589 (15)0.0382 (12)0.0075 (11)0.0171 (10)0.0089 (11)
Geometric parameters (Å, º) top
S1—O51.444 (2)C5—H50.9300
S1—O41.444 (2)C6—C71.415 (3)
S1—O61.462 (2)C7—C81.395 (3)
S1—C181.754 (2)C8—C91.392 (3)
F1—C61.360 (2)C8—H80.9300
O1—C121.322 (3)C10—C111.503 (4)
O1—H10.8200C10—H10A0.9700
O2—C121.206 (3)C10—H10B0.9700
O3—C31.264 (2)C11—H11A0.9600
N1—C11.336 (3)C11—H11B0.9600
N1—C91.401 (3)C11—H11C0.9600
N1—C101.475 (3)C13—C141.507 (3)
N2—C71.370 (3)C13—H13A0.9700
N2—C161.453 (2)C13—H13B0.9700
N2—C131.457 (3)C14—H14A0.9700
N3—C171.488 (3)C14—H14B0.9700
N3—C141.490 (3)C15—C161.504 (3)
N3—C151.494 (2)C15—H15A0.9700
N3—H30.9100C15—H15B0.9700
C1—C21.369 (3)C16—H16A0.9700
C1—H1A0.9300C16—H16B0.9700
C2—C31.427 (3)C17—H17A0.9600
C2—C121.480 (3)C17—H17B0.9600
C3—C41.442 (3)C17—H17C0.9600
C4—C91.404 (3)C18—H18A0.9600
C4—C51.406 (3)C18—H18B0.9600
C5—C61.352 (3)C18—H18C0.9600
O5—S1—O4113.06 (10)N1—C10—H10B109.3
O5—S1—O6111.81 (9)C11—C10—H10B109.3
O4—S1—O6112.36 (10)H10A—C10—H10B108.0
O5—S1—C18106.28 (12)C10—C11—H11A109.5
O4—S1—C18106.79 (12)C10—C11—H11B109.5
O6—S1—C18105.95 (11)H11A—C11—H11B109.5
C12—O1—H1109.5C10—C11—H11C109.5
C1—N1—C9120.01 (17)H11A—C11—H11C109.5
C1—N1—C10118.77 (17)H11B—C11—H11C109.5
C9—N1—C10121.13 (16)O2—C12—O1121.0 (2)
C7—N2—C16122.13 (16)O2—C12—C2124.1 (2)
C7—N2—C13125.47 (17)O1—C12—C2114.9 (2)
C16—N2—C13111.88 (16)N2—C13—C14110.33 (18)
C17—N3—C14111.99 (17)N2—C13—H13A109.6
C17—N3—C15111.94 (17)C14—C13—H13A109.6
C14—N3—C15109.78 (15)N2—C13—H13B109.6
C17—N3—H3107.6C14—C13—H13B109.6
C14—N3—H3107.6H13A—C13—H13B108.1
C15—N3—H3107.6N3—C14—C13111.74 (17)
N1—C1—C2123.7 (2)N3—C14—H14A109.3
N1—C1—H1A118.2C13—C14—H14A109.3
C2—C1—H1A118.2N3—C14—H14B109.3
C1—C2—C3120.14 (19)C13—C14—H14B109.3
C1—C2—C12118.0 (2)H14A—C14—H14B107.9
C3—C2—C12121.86 (19)N3—C15—C16109.51 (16)
O3—C3—C2122.54 (19)N3—C15—H15A109.8
O3—C3—C4121.47 (19)C16—C15—H15A109.8
C2—C3—C4115.99 (18)N3—C15—H15B109.8
C9—C4—C5117.89 (18)C16—C15—H15B109.8
C9—C4—C3121.24 (18)H15A—C15—H15B108.2
C5—C4—C3120.87 (18)N2—C16—C15111.29 (17)
C6—C5—C4120.66 (18)N2—C16—H16A109.4
C6—C5—H5119.7C15—C16—H16A109.4
C4—C5—H5119.7N2—C16—H16B109.4
C5—C6—F1117.59 (18)C15—C16—H16B109.4
C5—C6—C7123.09 (19)H16A—C16—H16B108.0
F1—C6—C7119.28 (18)N3—C17—H17A109.5
N2—C7—C8120.68 (18)N3—C17—H17B109.5
N2—C7—C6123.39 (18)H17A—C17—H17B109.5
C8—C7—C6115.94 (18)N3—C17—H17C109.5
C9—C8—C7122.00 (18)H17A—C17—H17C109.5
C9—C8—H8119.0H17B—C17—H17C109.5
C7—C8—H8119.0S1—C18—H18A109.5
C8—C9—N1120.67 (17)S1—C18—H18B109.5
C8—C9—C4120.39 (18)H18A—C18—H18B109.5
N1—C9—C4118.92 (17)S1—C18—H18C109.5
N1—C10—C11111.6 (2)H18A—C18—H18C109.5
N1—C10—H10A109.3H18B—C18—H18C109.5
C11—C10—H10A109.3
C9—N1—C1—C21.4 (3)C7—C8—C9—N1178.33 (18)
C10—N1—C1—C2175.1 (2)C7—C8—C9—C40.2 (3)
N1—C1—C2—C30.2 (3)C1—N1—C9—C8177.15 (19)
N1—C1—C2—C12178.1 (2)C10—N1—C9—C86.4 (3)
C1—C2—C3—O3179.2 (2)C1—N1—C9—C41.4 (3)
C12—C2—C3—O32.5 (3)C10—N1—C9—C4175.06 (19)
C1—C2—C3—C41.7 (3)C5—C4—C9—C80.7 (3)
C12—C2—C3—C4176.58 (19)C3—C4—C9—C8178.72 (18)
O3—C3—C4—C9179.21 (19)C5—C4—C9—N1179.24 (17)
C2—C3—C4—C91.7 (3)C3—C4—C9—N10.2 (3)
O3—C3—C4—C51.4 (3)C1—N1—C10—C1198.8 (2)
C2—C3—C4—C5177.73 (18)C9—N1—C10—C1177.6 (3)
C9—C4—C5—C60.1 (3)C1—C2—C12—O21.4 (4)
C3—C4—C5—C6179.34 (19)C3—C2—C12—O2179.7 (2)
C4—C5—C6—F1176.39 (17)C1—C2—C12—O1178.4 (2)
C4—C5—C6—C71.4 (3)C3—C2—C12—O10.1 (3)
C16—N2—C7—C831.1 (3)C7—N2—C13—C14132.3 (2)
C13—N2—C7—C8157.9 (2)C16—N2—C13—C1455.9 (3)
C16—N2—C7—C6148.9 (2)C17—N3—C14—C13178.93 (17)
C13—N2—C7—C622.1 (3)C15—N3—C14—C1356.1 (2)
C5—C6—C7—N2177.8 (2)N2—C13—C14—N355.2 (2)
F1—C6—C7—N24.4 (3)C17—N3—C15—C16178.34 (16)
C5—C6—C7—C82.2 (3)C14—N3—C15—C1656.6 (2)
F1—C6—C7—C8175.57 (17)C7—N2—C16—C15129.6 (2)
N2—C7—C8—C9178.43 (19)C13—N2—C16—C1558.3 (2)
C6—C7—C8—C91.6 (3)N3—C15—C16—N258.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.911.872.739 (2)159
O1—H1···O30.821.762.523 (2)155
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H21FN3O3+·CH3SO3·0.10H2O
Mr431.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.111 (3), 10.013 (1), 13.277 (3)
α, β, γ (°)101.22 (1), 102.85 (2), 102.01 (1)
V3)994.9 (4)
Z2
Radiation typeCu Kα
µ (mm1)1.91
Crystal size (mm)0.30 × 0.23 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
ψ-scan (3 reflections) (North et al., 1968)
Tmin, Tmax0.60, 0.70
No. of measured, independent and
observed [I > 2.0σ(I)] reflections
3886, 3612, 3167
Rint0.012
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.10
No. of reflections3612
No. of parameters266
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.41

Computer programs: Enraf-Nonius CAD-4 Software. Version 5.0. (Enraf-Nonius, 1989), TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
S1—O51.444 (2)N1—C91.401 (3)
S1—O41.444 (2)N1—C101.475 (3)
S1—O61.462 (2)N2—C71.370 (3)
S1—C181.754 (2)N2—C161.453 (2)
F1—C61.360 (2)N2—C131.457 (3)
O1—C121.322 (3)N3—C171.488 (3)
O2—C121.206 (3)N3—C141.490 (3)
O3—C31.264 (2)N3—C151.494 (2)
N1—C11.336 (3)
O5—S1—O4113.06 (10)C9—N1—C10121.13 (16)
O5—S1—O6111.81 (9)C7—N2—C16122.13 (16)
O4—S1—O6112.36 (10)C7—N2—C13125.47 (17)
O5—S1—C18106.28 (12)C16—N2—C13111.88 (16)
O4—S1—C18106.79 (12)C17—N3—C14111.99 (17)
O6—S1—C18105.95 (11)C17—N3—C15111.94 (17)
C1—N1—C9120.01 (17)C14—N3—C15109.78 (15)
C1—N1—C10118.77 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.911.872.739 (2)159
O1—H1···O30.821.762.523 (2)155
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds