Download citation
Download citation
link to html
The structure of the title compound, 25-ethyl-2,5,12,15,22,28-hexa­oxa-25-aza­tetra­cyclo­[27.4.0.06,11.016,21]­tri­tria­conta-1(29),6(11),7,9,16(21),17,19,30,32-nona­ene, C28H33NO6, does not exhibit a binding cavity for cations, but is collapsed in on itself. The conformation is unique among known tri­benzo-21-crown-7 structures, and may be a result of intermolecular (C—H...π) and intramolecular (C—H...O) hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016534/fr1254sup1.cif
Contains datablocks global, (I)

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016534/fr1254Isup2.hkl
Contains datablock I

CCDC reference: 143275

Comment top

We recently reported that tribenzo-21-crown-7 exhibits modest selectivity for large alkali metal cations over smaller ions (Sachleben et al., 1996). This selectivity was subsequently illuminated by a crystallographic and molecular-mechanics study of six different conformations of the free and complexed crown ether ligand (Bryan et al., 1998). Further examination of the Cs(tribenzo-21-crown-7)NO3 structure reported as part of that study showed that one of the seven crown ether O donor atoms is significantly further from Cs+ and its dipole is roughly orthogonal to the Cs—O bond, suggesting that it binds the cation relatively weakly (Hay & Rustad, 1994). Replacement of this O atom with an NR group may result in orientation of the amine dipole more directly towards Cs+, allowing enhanced binding and selectivity towards Cs+. In this paper, we describe the structure and synthesis of such an NR-containing crown ether, (I).

The structure of (I) is depicted in Fig. 1, which clearly demonstrates that it is not preorganized for cation binding as the ring has collapsed in on itself, which is commonly observed in large uncomplexed crown ether structures (Bryan et al., 1999, 1998, and references therein). In doing so, the crown fills its cavity with methylene groups, which allows for intramolecular hydrogen bonding between methylene H and ether O atoms (Table 2 and Fig. 2). Only those interactions with C—H···O angles greater than 100° and C···O separations less than 3.72 Å are listed in Table 2 (Steiner, 1996).

No π stacking of arene rings is observed in the structure. However, close C—H···π contacts, some of which may represent hydrogen bonds (Steiner et al., 1996; Bryan et al., 1999) or edge-face arene interactions, are clearly present (Fig. 2). These weak intermolecular bonds may also play a role in determining the observed crown conformation. The metrical parameters for these potential hydrogen bonds, as calculated by PLATON (Spek, 1999), are presented in Table 2, with ring centroids represented as Cg2 (C9–C14) and Cg3 (C17–C22).

The crown conformation observed here differs slightly from that of the closely related compound 4,4'-bis-tert-butyl-benzo-benzo-21-crown-7 (Bryan et al., 1998). For instance, the O—C—C—O torsion angles follow the patterns 0 g-0 g-0ag- and 0 g+0 g+0ag+ in the two conformations of the previously reported crown, while the analogous angles in (I) follow the pattern 0 g-0 g+0ag-. All bond lengths and angles are in good agreement with standard values (Allen, et al., 1987). For example, the C(sp3)—C(sp3) bond lengths range from 1.493 (3) to 1.513 (3) Å, while the C(sp2)—C(sp2) lengths range from 1.377 (3) to 1.410 (2) Å.

Experimental top

The title compound was synthesized in 63% yield by heating 1,2-bis[2'(2''-hydroxyphenoxy)ethoxy]benzene (1.3 mmol), N,N-bis(2-chloroethyl)ethylamine (1.3 mmol) and caesium carbonate (13 mmol) in acetonitrile (10 ml) at reflux under argon for 1 h. Aqueous workup was followed by chromatographic purification on silica gel (ether/methanol gradient elution). Crystals were grown by slow evaporation of a diethyl ether solution.

Refinement top

Each H atom was placed in a calculated position, refined using a riding model, and given an isotropic displacement parameter equal to 1.2 (CH2) or 1.5 (CH3) times the equivalent isotropic displacement parameter of the atom to which it was attached. The C—H distances used depend on the type of C atom: Caromatic—H = 0.95, Cprimary—H = 0.98, Csecondary—H = 0.99 Å. Methyl H atoms were allowed to rotate about C—C.

Computing details top

Data collection: CAD-4-PC (Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1995); software used to prepare material for publication: PLATON (Spek, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bond interactions of (I). For clarity, only fragments of symmetry-equivalent molecules are shown, all atoms are represented as circles, and only H atoms functioning as hydrogen-bond donors are drawn. Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) x, y, z - 1; (iii) -x, 1 - y, -z; (iv) x, 3/2 - y, z - 1/2; (v) x, 3/2 - y, 1/2 + z.
(I) top
Crystal data top
C28H33NO6F(000) = 1024
Mr = 479.6Dx = 1.28 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.0160 (12) Åθ = 10.1–12.7°
b = 23.084 (3) ŵ = 0.09 mm1
c = 9.9323 (12) ÅT = 173 K
β = 98.977 (9)°Block, colourless
V = 2494.8 (5) Å30.57 × 0.48 × 0.43 mm
Z = 4
Data collection top
Nonius CAD-4 with cryostat
diffractometer
Rint = 0.037
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 138
ω scansk = 1627
6915 measured reflectionsl = 1111
4373 independent reflections3 standard reflections every 120 min
3312 reflections with I > 2σ(I) intensity decay: 9%
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.040Riding
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.2606P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4373 reflectionsΔρmax = 0.23 e Å3
317 parametersΔρmin = 0.26 e Å3
Crystal data top
C28H33NO6V = 2494.8 (5) Å3
Mr = 479.6Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0160 (12) ŵ = 0.09 mm1
b = 23.084 (3) ÅT = 173 K
c = 9.9323 (12) Å0.57 × 0.48 × 0.43 mm
β = 98.977 (9)°
Data collection top
Nonius CAD-4 with cryostat
diffractometer
Rint = 0.037
6915 measured reflections3 standard reflections every 120 min
4373 independent reflections intensity decay: 9%
3312 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110Riding
S = 1.03Δρmax = 0.23 e Å3
4373 reflectionsΔρmin = 0.26 e Å3
317 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22952 (11)0.42669 (5)0.01095 (12)0.0299 (4)
O20.21392 (11)0.48253 (5)0.22514 (12)0.0293 (4)
O30.29218 (11)0.59750 (5)0.35069 (12)0.0312 (4)
O40.28088 (10)0.70145 (5)0.21709 (11)0.0263 (3)
O50.38584 (10)0.71160 (5)0.02061 (11)0.0255 (3)
O60.42470 (10)0.61440 (5)0.14273 (11)0.0267 (4)
N0.37255 (13)0.46256 (6)0.24132 (13)0.0255 (4)
C10.1308 (2)0.41372 (7)0.0519 (2)0.0274 (5)
C20.1226 (2)0.44409 (7)0.1723 (2)0.0273 (5)
C30.0261 (2)0.43395 (8)0.2424 (2)0.0349 (6)
C40.0640 (2)0.39354 (8)0.1945 (2)0.0386 (6)
C50.0563 (2)0.36372 (8)0.0757 (2)0.0370 (6)
C60.0407 (2)0.37333 (7)0.0050 (2)0.0323 (6)
C70.2063 (2)0.53738 (7)0.1546 (2)0.0301 (5)
C80.3091 (2)0.57575 (7)0.2178 (2)0.0322 (6)
C90.19314 (15)0.63401 (7)0.3511 (2)0.0265 (5)
C100.18538 (15)0.68787 (7)0.2838 (2)0.0245 (5)
C110.08602 (15)0.72370 (8)0.2922 (2)0.0299 (5)
C120.0029 (2)0.70772 (8)0.3702 (2)0.0352 (6)
C130.0058 (2)0.65528 (9)0.4384 (2)0.0399 (6)
C140.1035 (2)0.61854 (8)0.4271 (2)0.0356 (6)
C150.2706 (2)0.75388 (7)0.1388 (2)0.0252 (5)
C160.38233 (15)0.75920 (7)0.0718 (2)0.0246 (5)
C170.48809 (14)0.70980 (7)0.0838 (2)0.0227 (5)
C180.50761 (14)0.65777 (7)0.1516 (2)0.0229 (5)
C190.6075 (2)0.65343 (7)0.2199 (2)0.0279 (5)
C200.6881 (2)0.69952 (8)0.2223 (2)0.0307 (6)
C210.6685 (2)0.75034 (8)0.1564 (2)0.0318 (6)
C220.5692 (2)0.75541 (7)0.0869 (2)0.0283 (5)
C230.4473 (2)0.56049 (7)0.2071 (2)0.0293 (6)
C240.3623 (2)0.51541 (7)0.1624 (2)0.0278 (5)
C250.3723 (2)0.40851 (7)0.1641 (2)0.0280 (5)
C260.2535 (2)0.38928 (7)0.1194 (2)0.0313 (6)
C270.2905 (2)0.46296 (7)0.3718 (2)0.0314 (5)
C280.3245 (2)0.41845 (9)0.4704 (2)0.0485 (7)
H30.02120.45470.32400.042*
H40.13030.38650.24320.046*
H50.11820.33640.04210.044*
H60.04550.35220.07610.039*
H7A0.12640.55610.16060.036*
H7B0.21180.53110.05720.036*
H8A0.38710.55380.22700.039*
H8B0.31590.60900.15630.039*
H110.07860.75940.24420.036*
H120.06980.73290.37670.042*
H130.05450.64450.49240.048*
H140.10870.58220.47250.043*
H15A0.26440.78760.19900.030*
H15B0.19590.75270.06910.030*
H16A0.38010.79630.02130.029*
H16B0.45700.75890.14160.029*
H190.62120.61850.26560.033*
H200.75650.69600.26930.037*
H210.72320.78200.15850.038*
H220.55680.79050.04090.034*
H23A0.53400.54860.17980.035*
H23B0.43130.56480.30750.035*
H24A0.38560.50730.06380.033*
H24B0.27650.52970.17840.033*
H25A0.43490.41210.08150.034*
H25B0.39970.37710.22020.034*
H26A0.18520.39160.19680.038*
H26B0.26070.34860.08730.038*
H27A0.29240.50190.41330.038*
H27B0.20550.45560.35570.038*
H28A0.27500.42460.56020.073*
H28B0.30880.37960.43760.073*
H28C0.41190.42230.47770.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0348 (7)0.0233 (6)0.0321 (7)0.0042 (5)0.0066 (5)0.0037 (5)
O20.0352 (7)0.0194 (6)0.0321 (6)0.0015 (5)0.0018 (5)0.0041 (5)
O30.0329 (7)0.0247 (7)0.0355 (7)0.0030 (5)0.0039 (5)0.0007 (5)
O40.0283 (6)0.0193 (6)0.0326 (6)0.0015 (5)0.0089 (5)0.0017 (5)
O50.0289 (6)0.0199 (6)0.0289 (6)0.0031 (5)0.0083 (5)0.0063 (5)
O60.0328 (7)0.0166 (6)0.0322 (6)0.0023 (5)0.0096 (5)0.0040 (5)
N0.0338 (8)0.0164 (7)0.0257 (7)0.0024 (6)0.0030 (6)0.0012 (6)
C10.0278 (9)0.0206 (9)0.0329 (10)0.0017 (7)0.0016 (7)0.0065 (7)
C20.0281 (9)0.0191 (8)0.0332 (9)0.0007 (7)0.0004 (7)0.0063 (7)
C30.0392 (11)0.0283 (10)0.0382 (10)0.0024 (8)0.0095 (9)0.0041 (8)
C40.0324 (10)0.0348 (11)0.0494 (12)0.0017 (8)0.0089 (9)0.0121 (9)
C50.0335 (10)0.0278 (10)0.0467 (12)0.0063 (8)0.0033 (9)0.0105 (9)
C60.0370 (10)0.0234 (9)0.0341 (10)0.0030 (8)0.0016 (8)0.0031 (8)
C70.0426 (10)0.0182 (9)0.0305 (9)0.0051 (8)0.0088 (8)0.0037 (7)
C80.0369 (10)0.0207 (9)0.0420 (10)0.0025 (8)0.0158 (8)0.0005 (8)
C90.0275 (9)0.0239 (9)0.0276 (9)0.0021 (7)0.0026 (7)0.0052 (7)
C100.0251 (9)0.0237 (9)0.0250 (8)0.0033 (7)0.0045 (7)0.0056 (7)
C110.0272 (9)0.0271 (9)0.0348 (10)0.0008 (7)0.0028 (7)0.0061 (8)
C120.0241 (9)0.0379 (11)0.0441 (11)0.0008 (8)0.0066 (8)0.0113 (9)
C130.0330 (10)0.0458 (12)0.0440 (11)0.0091 (9)0.0157 (9)0.0068 (9)
C140.0385 (11)0.0321 (10)0.0372 (10)0.0088 (8)0.0092 (8)0.0006 (8)
C150.0308 (9)0.0168 (8)0.0273 (9)0.0027 (7)0.0025 (7)0.0010 (7)
C160.0307 (9)0.0161 (8)0.0264 (9)0.0003 (7)0.0030 (7)0.0042 (7)
C170.0245 (8)0.0204 (8)0.0224 (8)0.0022 (7)0.0009 (7)0.0006 (7)
C180.0265 (8)0.0178 (8)0.0237 (8)0.0002 (7)0.0014 (7)0.0023 (7)
C190.0329 (9)0.0233 (9)0.0275 (9)0.0046 (7)0.0051 (7)0.0006 (7)
C200.0248 (9)0.0326 (10)0.0358 (10)0.0033 (8)0.0082 (7)0.0042 (8)
C210.0272 (9)0.0256 (9)0.0424 (11)0.0041 (8)0.0051 (8)0.0013 (8)
C220.0306 (9)0.0201 (9)0.0334 (9)0.0007 (7)0.0026 (7)0.0032 (7)
C230.0368 (10)0.0186 (9)0.0338 (10)0.0004 (7)0.0094 (8)0.0058 (7)
C240.0345 (10)0.0207 (9)0.0291 (9)0.0008 (7)0.0076 (8)0.0037 (7)
C250.0359 (10)0.0198 (9)0.0276 (9)0.0019 (7)0.0030 (7)0.0004 (7)
C260.0425 (11)0.0211 (9)0.0295 (9)0.0039 (8)0.0031 (8)0.0026 (7)
C270.0407 (10)0.0223 (9)0.0297 (9)0.0029 (8)0.0006 (8)0.0020 (8)
C280.0694 (15)0.0453 (12)0.0281 (10)0.0131 (11)0.0008 (10)0.0054 (9)
Geometric parameters (Å, º) top
O1—C11.369 (2)C25—C261.513 (3)
O1—C261.437 (2)C27—C281.506 (3)
O2—C21.382 (2)C3—H30.95
O2—C71.443 (2)C4—H40.95
O3—C81.451 (2)C5—H50.95
O3—C91.379 (2)C6—H60.95
O4—C101.364 (2)C7—H7A0.99
O4—C151.433 (2)C7—H7B0.99
O5—C161.436 (2)C8—H8A0.99
O5—C171.373 (2)C8—H8B0.99
O6—C181.367 (2)C11—H110.95
O6—C231.438 (2)C12—H120.95
N—C241.464 (2)C13—H130.95
N—C251.465 (2)C14—H140.95
N—C271.460 (2)C15—H15A0.99
C1—C21.401 (3)C15—H15B0.99
C1—C61.388 (3)C16—H16A0.99
C2—C31.379 (3)C16—H16B0.99
C3—C41.391 (3)C19—H190.95
C4—C51.380 (3)C20—H200.95
C5—C61.385 (3)C21—H210.95
C7—C81.496 (3)C22—H220.95
C9—C101.408 (2)C23—H23A0.99
C9—C141.380 (3)C23—H23B0.99
C10—C111.385 (2)C24—H24A0.99
C11—C121.390 (3)C24—H24B0.99
C12—C131.383 (3)C25—H25A0.99
C13—C141.388 (3)C25—H25B0.99
C15—C161.493 (3)C26—H26A0.99
C17—C181.410 (2)C26—H26B0.99
C17—C221.384 (2)C27—H27A0.99
C18—C191.383 (3)C27—H27B0.99
C19—C201.388 (3)C28—H28A0.98
C20—C211.377 (3)C28—H28B0.98
C21—C221.387 (3)C28—H28C0.98
C23—C241.512 (3)
C1—O1—C26117.6 (1)O3—C8—H8B109
C2—O2—C7113.3 (1)C7—C8—H8A109
C8—O3—C9115.4 (1)C7—C8—H8B109
C10—O4—C15117.1 (1)H8A—C8—H8B108
C16—O5—C17114.9 (1)C10—C11—H11120
C18—O6—C23116.2 (1)C12—C11—H11120
C24—N—C25115.0 (1)C11—C12—H12120
C24—N—C27112.4 (1)C13—C12—H12120
C25—N—C27114.8 (1)C12—C13—H13120
O1—C1—C2116.2 (2)C14—C13—H13120
O1—C1—C6124.8 (2)C9—C14—H14120
C2—C1—C6119.0 (2)C13—C14—H14119
O2—C2—C1120.4 (2)O4—C15—H15A110
O2—C2—C3119.4 (2)O4—C15—H15B110
C1—C2—C3120.2 (2)C16—C15—H15A110
C2—C3—C4120.4 (2)C16—C15—H15B110
C3—C4—C5119.4 (2)H15A—C15—H15B108
C4—C5—C6120.6 (2)O5—C16—H16A110
C1—C6—C5120.4 (2)O5—C16—H16B110
O2—C7—C8109.4 (2)C15—C16—H16A110
O3—C8—C7113.0 (2)C15—C16—H16B110
O3—C9—C10121.9 (2)H16A—C16—H16B108
O3—C9—C14118.5 (2)C18—C19—H19120
C10—C9—C14119.5 (2)C20—C19—H19120
O4—C10—C9116.1 (1)C19—C20—H20120
O4—C10—C11124.7 (2)C21—C20—H20120
C9—C10—C11119.3 (2)C20—C21—H21120
C10—C11—C12120.5 (2)C22—C21—H21120
C11—C12—C13120.3 (2)C17—C22—H22120
C12—C13—C14119.4 (2)C21—C22—H22120
C9—C14—C13121.1 (2)O6—C23—H23A110
O4—C15—C16108.1 (2)O6—C23—H23B110
O5—C16—C15109.2 (1)C24—C23—H23A110
O5—C17—C18116.2 (1)C24—C23—H23B110
O5—C17—C22124.4 (2)H23A—C23—H23B108
C18—C17—C22119.4 (2)N—C24—H24A110
O6—C18—C17116.1 (1)N—C24—H24B110
O6—C18—C19124.7 (2)C23—C24—H24A110
C17—C18—C19119.2 (2)C23—C24—H24B110
C18—C19—C20120.8 (2)H24A—C24—H24B108
C19—C20—C21119.8 (2)N—C25—H25A108
C20—C21—C22120.2 (2)N—C25—H25B108
C17—C22—C21120.6 (2)C26—C25—H25A108
O6—C23—C24107.9 (2)C26—C25—H25B108
N—C24—C23108.3 (2)H25A—C25—H25B107
N—C25—C26118.4 (2)O1—C26—H26A110
O1—C26—C25108.2 (1)O1—C26—H26B110
N—C27—C28113.0 (2)C25—C26—H26A110
C2—C3—H3120C25—C26—H26B110
C4—C3—H3120H26A—C26—H26B108
C3—C4—H4120N—C27—H27A109
C5—C4—H4120N—C27—H27B109
C4—C5—H5120C28—C27—H27A109
C6—C5—H5120C28—C27—H27B109
C1—C6—H6120H27A—C27—H27B108
C5—C6—H6120C27—C28—H28A110
O2—C7—H7A110C27—C28—H28B110
O2—C7—H7B110C27—C28—H28C109
C8—C7—H7A110H28A—C28—H28B110
C8—C7—H7B110H28A—C28—H28C109
H7A—C7—H7B108H28B—C28—H28C110
O3—C8—H8A109
C1—C2—C3—C40.0 (3)C26—O1—C1—C2168.7 (2)
C1—O1—C26—C25174.8 (2)C26—O1—C1—C611.2 (3)
C10—C11—C12—C131.2 (3)C27—N—C24—C2386.2 (2)
C10—C9—C14—C130.1 (3)C27—N—C25—C2661.5 (2)
C10—O4—C15—C16178.3 (1)C3—C4—C5—C60.6 (3)
C11—C12—C13—C140.6 (3)C4—C5—C6—C10.8 (3)
C12—C13—C14—C91.2 (3)C6—C1—C2—O2176.9 (2)
C14—C9—C10—O4176.5 (2)C6—C1—C2—C30.2 (3)
C14—C9—C10—C111.7 (3)C7—O2—C2—C3105.2 (2)
C15—O4—C10—C9175.2 (2)C7—O2—C2—C177.7 (2)
C15—O4—C10—C116.8 (3)C8—O3—C9—C14120.9 (2)
C16—O5—C17—C18166.9 (2)C8—O3—C9—C1063.3 (2)
C16—O5—C17—C2214.5 (2)C9—C10—C11—C122.3 (3)
C17—C18—C19—C200.0 (3)C9—O3—C8—C765.0 (2)
C17—O5—C16—C15176.8 (1)N—C25—C26—O172.4 (2)
C18—C17—C22—C210.3 (3)O1—C1—C2—C3179.9 (2)
C18—C19—C20—C210.2 (3)O1—C1—C2—O23.1 (3)
C18—O6—C23—C24168.8 (2)O1—C1—C6—C5179.5 (2)
C19—C20—C21—C220.5 (3)O2—C2—C3—C4177.1 (2)
C2—C1—C6—C50.6 (3)O2—C7—C8—O372.5 (2)
C2—C3—C4—C50.2 (3)O3—C9—C10—C11177.5 (2)
C2—O2—C7—C8179.5 (2)O3—C9—C10—O40.7 (3)
C20—C21—C22—C170.6 (3)O3—C9—C14—C13175.9 (2)
C22—C17—C18—O6179.2 (2)O4—C10—C11—C12175.7 (2)
C22—C17—C18—C190.0 (3)O4—C15—C16—O562.9 (2)
C23—O6—C18—C17177.5 (2)O5—C17—C18—C19178.6 (2)
C23—O6—C18—C191.7 (3)O5—C17—C18—O62.1 (2)
C24—N—C25—C2671.2 (2)O5—C17—C22—C21178.2 (2)
C24—N—C27—C28163.3 (2)O6—C18—C19—C20179.2 (2)
C25—N—C24—C23140.0 (2)O6—C23—C24—N172.4 (1)
C25—N—C27—C2862.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O10.992.523.071 (2)115
C8—H8B···O40.992.272.918 (2)122
C25—H25A···O6i0.992.583.527 (2)160
C28—H28A···O2ii0.982.523.416 (2)152
C6—H6···Cg2iii0.953.053.84142
C15—H15B···Cg2iv0.992.813.56134
C16—H16B···Cg3v0.992.463.37154
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z1; (iii) x, y+1, z; (iv) x, y+3/2, z1/2; (v) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H33NO6
Mr479.6
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.0160 (12), 23.084 (3), 9.9323 (12)
β (°) 98.977 (9)
V3)2494.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.57 × 0.48 × 0.43
Data collection
DiffractometerNonius CAD-4 with cryostat
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6915, 4373, 3312
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.03
No. of reflections4373
No. of parameters317
H-atom treatmentRiding
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: CAD-4-PC (Nonius, 1993), CAD-4-PC, XCAD4 (Harms, 1995), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1995), PLATON (Spek, 1999).

Selected geometric parameters (Å, º) top
O1—C11.369 (2)O5—C161.436 (2)
O1—C261.437 (2)O5—C171.373 (2)
O2—C21.382 (2)O6—C181.367 (2)
O2—C71.443 (2)O6—C231.438 (2)
O3—C81.451 (2)N—C241.464 (2)
O3—C91.379 (2)N—C251.465 (2)
O4—C101.364 (2)N—C271.460 (2)
O4—C151.433 (2)
C1—O1—C26117.6 (1)C18—O6—C23116.2 (1)
C2—O2—C7113.3 (1)C24—N—C25115.0 (1)
C8—O3—C9115.4 (1)C24—N—C27112.4 (1)
C10—O4—C15117.1 (1)C25—N—C27114.8 (1)
C16—O5—C17114.9 (1)
N—C25—C26—O172.4 (2)O4—C15—C16—O562.9 (2)
O1—C1—C2—O23.1 (3)O5—C17—C18—O62.1 (2)
O2—C7—C8—O372.5 (2)O6—C23—C24—N172.4 (1)
O3—C9—C10—O40.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O10.992.523.071 (2)115
C8—H8B···O40.992.272.918 (2)122
C25—H25A···O6i0.992.583.527 (2)160
C28—H28A···O2ii0.982.523.416 (2)152
C6—H6···Cg2iii0.953.053.84142
C15—H15B···Cg2iv0.992.813.56134
C16—H16B···Cg3v0.992.463.37154
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z1; (iii) x, y+1, z; (iv) x, y+3/2, z1/2; (v) x, y+3/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds