Download citation
Download citation
link to html
In the title mol­ecule, C15H11NO4S, the phenyl and benzene rings are quite planar, with maximum deviations from planarity of 0.009 (2) and 0.004 (1) Å, respectively. The γ-pyrone ring deviates from planarity and makes a dihedral angle of 8.3 (3)° with the 2-phenyl substituent. The sulfon­amide group is involved in N—H...O hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016923/fr1229sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016923/fr1229Isup2.hkl
Contains datablock I

CCDC reference: 144633

Comment top

Besides the extensive biological activity of flavonoids, this class of compounds exhibits antidiabetic (Hii & Howell, 1985; Basnet et al., 1993; Ragunathan & Sulochana, 1994) and aldose reductase inhibitory activity (Varma & Kinoshita, 1976; Okuda et al., 1984; Aida et al., 1990). Aryl sulfonamides are widely used as starting materials in the synthesis of antidiabetic sulfonylureas (AFECT, 1995). The title compound, (I), is a flavonesulfonamide and was synthesized as a starting material for antidiabetic flavonesulfonylureas. The structure was elucidated by 1H NMR, mass and IR spectroscopic techniques. The X-ray structure was determined in order to establish the conformation of the molecule. \scheme

All bond lengths and angles in (I) are normal. Rings A and B are quite planar: the maximum deviations are 0.009 (2) and 0.004 (1) Å from the ring planes A and B, respectively. The pyrone ring C is distorted (χ2 = 210.2). The angles between rings A and C and B and C are 1.8 (2) and 8.3 (3)°, respectively, showing that the rings A, B and C are coplanar.

In the generally preferred conformation of flavones, the dihedral angle between the phenyl and the γ-pyrone rings is expected to be small, as in the case of (I). This angle is 13.9 (4)° in 2-(2-ethoxycarbonyl-1,4-benzodioxan-7-yl)-4H-1-benzopyran-4-one (Özbey et al., 1997). Another parameter of interest in flavone structures is the bond length between the benzopyrone and phenyl rings. In flavones, the increase in dihedral angle has the effect of increasing the length of this bond to the expected value for an sp2-sp2 single bond. In compound (I), the corresponding C2—C11 bond length is 1.478 (3) Å. In 5-hydroxy-flavone, the dihedral angle is 5.2 (9)° and the C2—C11 bond is 1.465 (4) Å (Shoja, 1990). In 2'-methyl-3'-nitroflavone, these values are 139.8 (2)° and 1.491 (8) Å, respectively (Kendi et al., 1996). The widening of the O1—C9—C10 angle to 121.6 (2)° and the narrowing of the C3—C4—C10 angle to 115.2 (2)° in the γ-pyrone ring may be attributed to the ring strain caused by the neighbouring Csp2—Csp2 atoms.

Atoms S1 and O3 of the sulfonamide group lie close to the plane of ring B, with deviations of 0.032 (1) and 0.045 (1) Å from the plane, respectively. Atoms O4 and N1 are displaced from the least-squares plane of the atoms in ring B by 0.928 (2) and -1.474 (2) Å, respectively.

The sulfonamide group in (I) is involved in intermolecular as well as intramolecular hydrogen bonding. It was proposed by Rossi et al. (1980) that the hydrogen bonds involving O2 would enhance the electron-withdrawing power of the pyrone ring on the phenyl ring, thus giving C2—C11 more double-bond character and forcing coplanarity between rings B and C. The crystal packing shows that the smaller the dihedral angle between the benzopyrone and phenyl rings, the stronger the stacking interactions that occur between adjacent molecules. Details of the hydrogen bonds in (I) are given in Table 2.

Experimental top

Flavone (2.50 g, 0.0113 mol), obtained by the Baker-Venkataraman method (reference?), was added slowly with stirring to chlorosulfonic acid (25 ml, 0.376 mol), cooled to 263 K in an ice-salt bath. The reaction mixture was stirred for 2 d at room temperature and was then poured into iced water. The crude sulfonylchloride (1.40 g, 4.37 mmol) was treated with aqueous ammonia (100 ml) and stirred for 3 h at 273 K, and flavone-3'-sulfonamide, (I), was obtained by removing the excess ammonia under reduced pressure. The crude product was crystallized from ethanol-dimethylsulfoxide (10:1) (yield: 1.10 g, 83.66%; m.p. 481–483 K). Spectrosopic analysis: 1H NMR (DMSO-d6, 400 MHz, δ, p.p.m.): 7.10 (s, 1H, 3-H), 7.52 (ddd, 1H, 6-H), 7.76–7.85 (m, 3H, 7-H, 4'-H, 6'-H), 7.98 (d, 1H, 8-H), 8.05 (dd, 1H, 5'-H), 8.28 (d, 1H, 5-H), 8.48 (s, 1H, 2'-H); mass spectrosopy (70 eV), m/e: 301 (M+), 302 (M+1), 303 (M+2), 221, 193, 121, 120, 101, 92 (%100), 64, 63; IR, cm-1: 1614 (γ-pyrone C=O).

Refinement top

H atoms were placed geometrically 0.95 Å from their parent atoms. Atoms H1N and H2N were refined for a few cycles with isotropic parameters and then for all H atoms a riding model was used with Ueq(H) = 1.3Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: MolEN and PARST (Nardelli, 1995); program(s) used to refine structure: MolEN; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: MolEN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H-atoms are shown as small circles of arbitrary radii.
(I) top
Crystal data top
C15H11NO4SV = 653.6 (2) Å3
Mr = 301.32Z = 2
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.6654 (5) ÅCell parameters from 25 reflections
b = 8.7898 (6) Åθ = 9.4–18.2°
c = 10.0105 (6) ŵ = 0.26 mm1
α = 98.183 (7)°T = 295 K
β = 112.991 (6)°Prismatic, colourless
γ = 104.673 (6)°0.56 × 0.40 × 0.20 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.010
ω/2θ scansθmax = 26.3°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
h = 100
Tmin = 0.869, Tmax = 0.951k = 1010
2834 measured reflectionsl = 1112
2649 independent reflections3 standard reflections every 120 min
2057 reflections with I > 2σ(I) intensity decay: 1.5%
Refinement top
Refinement on FH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.037Calculated w = 1/[σF2]
wR(F2) = 0.044(Δ/σ)max < 0.001
S = 0.90Δρmax = 0.23 e Å3
2057 reflectionsΔρmin = 0.09 e Å3
192 parameters
Crystal data top
C15H11NO4Sγ = 104.673 (6)°
Mr = 301.32V = 653.6 (2) Å3
Triclinic, P1Z = 2
a = 8.6654 (5) ÅMo Kα radiation
b = 8.7898 (6) ŵ = 0.26 mm1
c = 10.0105 (6) ÅT = 295 K
α = 98.183 (7)°0.56 × 0.40 × 0.20 mm
β = 112.991 (6)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2057 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scans (North et al., 1968)
Rint = 0.010
Tmin = 0.869, Tmax = 0.9513 standard reflections every 120 min
2834 measured reflections intensity decay: 1.5%
2649 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037192 parameters
wR(F2) = 0.044H atoms treated by a mixture of independent and constrained refinement
S = 0.90Δρmax = 0.23 e Å3
2057 reflectionsΔρmin = 0.09 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.82621 (6)0.30717 (6)0.67645 (5)0.0414 (2)
O10.4636 (2)0.8412 (2)0.7244 (1)0.0424 (4)
O20.2693 (2)0.6172 (2)0.9823 (2)0.0490 (5)
O30.9381 (2)0.2958 (2)0.6044 (2)0.0587 (5)
O40.6645 (2)0.1769 (2)0.6315 (2)0.0577 (6)
N10.9434 (2)0.3320 (2)0.8538 (2)0.0455 (6)
C20.4998 (2)0.7079 (2)0.7602 (2)0.0348 (5)
C30.4359 (2)0.6304 (2)0.8441 (2)0.0407 (6)
C40.3287 (2)0.6884 (2)0.9043 (2)0.0379 (6)
C50.1996 (2)0.9128 (3)0.9216 (2)0.0470 (7)
C60.1700 (3)1.0478 (3)0.8811 (3)0.0544 (7)
C70.2352 (3)1.1122 (3)0.7871 (3)0.0542 (8)
C80.3328 (3)1.0418 (3)0.7347 (2)0.0490 (7)
C90.3626 (2)0.9044 (2)0.7775 (2)0.0390 (6)
C100.2968 (2)0.8352 (2)0.8687 (2)0.0367 (6)
C110.6187 (2)0.6659 (2)0.6996 (2)0.0349 (6)
C120.6943 (2)0.7709 (2)0.6321 (2)0.0409 (7)
C130.8085 (2)0.7332 (3)0.5782 (2)0.0447 (6)
C140.8491 (2)0.5918 (3)0.5905 (2)0.0426 (6)
C150.7736 (2)0.4878 (2)0.6566 (2)0.0364 (6)
C160.6582 (2)0.5234 (2)0.7108 (2)0.0371 (5)
H30.4620.5350.8640.0519*
H50.1540.8700.9860.0596*
H60.1041.0980.9170.0672*
H70.2131.2060.7590.0685*
H80.3781.0850.6710.0621*
H120.6670.8680.6230.0532*
H130.8600.8050.5330.0583*
H140.9280.5660.5540.0545*
H160.6060.4500.7550.0482*
H1N1.0530.4180.8900.0609*
H2N0.8640.3360.8960.0761*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0517 (2)0.0420 (2)0.0527 (2)0.0272 (1)0.0384 (1)0.0186 (2)
O10.0550 (5)0.0489 (6)0.0541 (5)0.0339 (4)0.0411 (4)0.0283 (5)
O20.0634 (5)0.0525 (7)0.0643 (6)0.0289 (5)0.0511 (4)0.0285 (5)
O30.0806 (5)0.0672 (7)0.0725 (6)0.0496 (5)0.0625 (4)0.0327 (6)
O40.0595 (7)0.0412 (7)0.0793 (9)0.0178 (6)0.0385 (6)0.0150 (7)
N10.0528 (6)0.0505 (8)0.0570 (7)0.0293 (5)0.0384 (5)0.0246 (6)
C20.0392 (6)0.0378 (8)0.0394 (7)0.0205 (6)0.0244 (5)0.0155 (6)
C30.0506 (7)0.0420 (8)0.0534 (8)0.0266 (6)0.0376 (5)0.0229 (7)
C40.0407 (7)0.0428 (9)0.0431 (7)0.0184 (6)0.0280 (5)0.0160 (7)
C50.0497 (7)0.054 (1)0.0569 (9)0.0275 (6)0.0378 (6)0.0194 (8)
C60.0582 (8)0.057 (1)0.067 (1)0.0369 (6)0.0403 (6)0.0185 (9)
C70.0628 (9)0.0517 (9)0.069 (1)0.0379 (7)0.0376 (7)0.0273 (8)
C80.0599 (8)0.0530 (9)0.0599 (9)0.0350 (7)0.0388 (6)0.0296 (8)
C90.0401 (7)0.0452 (9)0.0442 (8)0.0244 (6)0.0261 (5)0.0156 (7)
C100.0355 (6)0.0418 (8)0.0406 (8)0.0181 (6)0.0231 (5)0.0116 (7)
C110.0379 (6)0.0412 (8)0.0377 (7)0.0201 (6)0.0247 (5)0.0149 (6)
C120.0484 (7)0.0418 (8)0.0505 (8)0.0232 (6)0.0320 (6)0.0217 (7)
C130.0514 (7)0.051 (1)0.0591 (8)0.0236 (7)0.0417 (5)0.0283 (7)
C140.0463 (7)0.0511 (9)0.0512 (8)0.0246 (6)0.0365 (5)0.0200 (7)
C150.0420 (7)0.0397 (8)0.0429 (7)0.0221 (6)0.0289 (5)0.0163 (6)
C160.0442 (7)0.0406 (8)0.0453 (7)0.0209 (6)0.0324 (5)0.0189 (7)
Geometric parameters (Å, º) top
S1—O31.431 (2)C6—C71.389 (4)
S1—O41.423 (2)C6—H60.950
S1—N11.613 (2)C7—C81.376 (4)
S1—C151.776 (2)C7—H70.950
O1—C21.348 (3)C8—C91.388 (3)
O1—C91.373 (3)C8—H80.950
O2—C41.247 (3)C9—C101.385 (3)
N1—H1N0.946C11—C121.397 (3)
N1—H2N0.942C11—C161.388 (3)
C2—C31.346 (3)C12—C131.383 (4)
C2—C111.478 (3)C12—H120.950
C3—C41.440 (3)C13—C141.384 (3)
C3—H30.950C13—H130.950
C4—C101.451 (3)C14—C151.381 (3)
C5—C61.360 (4)C14—H140.950
C5—C101.411 (3)C15—C161.388 (3)
C5—H50.950C16—H160.950
O3—S1—O4120.1 (1)C5—C6—C7120.6 (3)
O3—S1—N1107.3 (9)C5—C6—H6119.7
O3—S1—C15107.2 (1)C7—C6—H6119.7
O4—S1—N1106.3 (1)C6—C7—C8120.6 (2)
O4—S1—C15107.9 (1)C6—C7—H7119.5
N1—S1—C15107.3 (1)C8—C7—H7119.8
C2—O1—C9119.9 (2)C7—C8—C9118.1 (2)
S1—N1—H1N110.0C7—C8—H8121.1
S1—N1—H2N104.4C9—C8—H8120.8
H1N—N1—H2N120.5O1—C9—C8115.6 (2)
O1—C2—C3122.1 (2)O1—C9—C10121.6 (2)
O1—C2—C11111.2 (2)C8—C9—C10122.8 (2)
C3—C2—C11126.7 (2)C4—C10—C5123.4 (2)
C2—C3—C4121.7 (2)C4—C10—C9119.4 (2)
C2—C3—H3119.2C5—C10—C9117.2 (2)
C4—C3—H3119.1C2—C11—C12120.1 (2)
O2—C4—C3121.9 (2)C2—C11—C16120.4 (2)
O2—C4—C10122.8 (2)C12—C11—C16119.5 (2)
C3—C4—C10115.2 (2)C11—C12—C13120.1 (2)
C6—C5—C10120.7 (2)C11—C12—H12119.8
C6—C5—H5119.7C13—C12—H12120.1
C10—C5—H5119.7C12—C13—C14120.5 (2)
C12—C13—H13119.8S1—C15—C16118.8 (2)
C14—C13—H13119.8C14—C15—C16121.0 (2)
C13—C14—C15119.4 (2)C11—C16—C15119.7 (2)
C13—C14—H14120.5C11—C16—H16120.2
C15—C14—H14120.1C15—C16—H16120.1
S1—C15—C14120.2 (2)
O3—S1—N1—H1N50.63C5—C6—C7—C80.8 (4)
O3—S1—N1—H2N178.79C5—C6—C7—H7179.58
O4—S1—N1—H1N179.63H6—C6—C7—C8179.39
O4—S1—N1—H2N49.05H6—C6—C7—H70.21
C15—S1—N1—H1N64.31C6—C7—C8—C90.5 (3)
C15—S1—N1—H2N66.27C6—C7—C8—H8179.82
O3—S1—C15—C144.27 (18)H7—C7—C8—C9179.88
O3—S1—C15—C16176.82 (15)H7—C7—C8—H80.22
O4—S1—C15—C14135.03 (16)C7—C8—C9—O1178.80 (19)
O4—S1—C15—C1646.06 (17)C7—C8—C9—C100.7 (3)
N1—S1—C15—C14110.72 (16)H8—C8—C9—O11.54
N1—S1—C15—C1668.18 (17)H8—C8—C9—C10178.93
C9—O1—C2—C31.8 (3)O1—C9—C10—C42.6 (3)
C9—O1—C2—C11176.55 (15)O1—C9—C10—C5177.88 (17)
C2—O1—C9—C8179.93 (19)C8—C9—C10—C4177.92 (19)
C2—O1—C9—C100.4 (3)C8—C9—C10—C51.6 (3)
O1—C2—C3—C41.7 (3)C2—C11—C12—C13178.69 (18)
O1—C2—C3—H3178.07C2—C11—C12—H121.61
C11—C2—C3—C4176.36 (18)C16—C11—C12—C130.5 (3)
C11—C2—C3—H33.83C16—C11—C12—H12179.22
O1—C2—C11—C127.3 (2)C2—C11—C16—C15178.45 (17)
O1—C2—C11—C16173.58 (16)C2—C11—C16—H162.03
C3—C2—C11—C12171.01 (19)C12—C11—C16—C150.7 (3)
C3—C2—C11—C168.2 (3)C12—C11—C16—H16178.80
C2—C3—C4—O2179.9 (2)C11—C12—C13—C140.1 (3)
C2—C3—C4—C100.5 (3)C11—C12—C13—H13179.65
H3—C3—C4—O20.27H12—C12—C13—C14179.78
H3—C3—C4—C10179.74H12—C12—C13—H130.66
O2—C4—C10—C51.5 (3)C12—C13—C14—C150.4 (3)
O2—C4—C10—C9178.02 (18)C12—C13—C14—H14179.62
C3—C4—C10—C5177.97 (19)H13—C13—C14—C15179.95
C3—C4—C10—C92.5 (3)H13—C13—C14—H140.06
C10—C5—C6—C70.1 (3)C13—C14—C15—S1179.03 (15)
C10—C5—C6—H6179.67C13—C14—C15—C160.1 (3)
H5—C5—C6—C7179.96H14—C14—C15—S10.99
H5—C5—C6—H60.17H14—C14—C15—C16179.87
C6—C5—C10—C4178.2 (2)S1—C15—C16—C11178.48 (14)
C6—C5—C10—C91.3 (3)S1—C15—C16—H162.00
H5—C5—C10—C41.61C14—C15—C16—C110.4 (3)
H5—C5—C10—C9178.86C14—C15—C16—H16179.11
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O20.952.6592.906 (3)95.32
C12—H12···O10.952.3342.672 (3)100.28
C14—H14···O30.952.5132.902 (3)104.59
C16—H16···O40.952.7953.056 (3)96.73
C7—H7···O3i0.952.673.442 (3)139
C6—H6···N1i0.952.783.526 (4)137
C8—H8···O4ii0.952.613.417 (3)144
C12—H12···O4ii0.952.713.643 (3)168
C12—H12···O4iii0.952.893.391 (2)115
N1—H1N···O2iv0.951.992.928 (3)172
N1—H2N···O2v0.942.052.976 (3)169
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H11NO4S
Mr301.32
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.6654 (5), 8.7898 (6), 10.0105 (6)
α, β, γ (°)98.183 (7), 112.991 (6), 104.673 (6)
V3)653.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.56 × 0.40 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scans (North et al., 1968)
Tmin, Tmax0.869, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
2834, 2649, 2057
Rint0.010
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.044, 0.90
No. of reflections2057
No. of parameters192
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.09

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), CAD-4 EXPRESS, MolEN (Fair, 1990), MolEN and PARST (Nardelli, 1995), MolEN, ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
S1—O31.431 (2)O1—C91.373 (3)
S1—O41.423 (2)O2—C41.247 (3)
S1—N11.613 (2)C2—C31.346 (3)
S1—C151.776 (2)C2—C111.478 (3)
O1—C21.348 (3)
O3—S1—O4120.1 (1)C3—C4—C10115.2 (2)
O3—S1—N1107.3 (9)O1—C9—C10121.6 (2)
O3—S1—C15107.2 (1)
O3—S1—C15—C16176.82 (15)O1—C2—C11—C16173.58 (16)
O4—S1—C15—C14135.03 (16)C13—C14—C15—S1179.03 (15)
N1—S1—C15—C14110.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.952.673.442 (3)139
C6—H6···N1i0.952.783.526 (4)137
C8—H8···O4ii0.952.613.417 (3)144
C12—H12···O4ii0.952.713.643 (3)168
C12—H12···O4iii0.952.893.391 (2)115
N1—H1N···O2iv0.951.992.928 (3)172
N1—H2N···O2v0.942.052.976 (3)169
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds