Download citation
Download citation
link to html
Single crystals of two new bimetallic oxalate com­pounds with the formula [ACr(C2O4)2(H2O)4]n (A = Li or Na), namely catena-poly[[di­aqua­lithium(I)]-μ-oxalato-κ4O1,O2:O1′,O2′-[di­aqua­chromium(III)]-μ-oxalato-κ4O1,O2:O1′,O2′], (I), and catena-poly[[di­aqua­sodium(I)]-μ-oxalato-κ4O1,O2:O1′,O2′-[di-aqua­chro­mium(III)]-μ-oxalato-κ4O1,O2:O1′,O2′], (II), have been synthesized, characterized and their crystal structures elucidated by X-ray diffraction analysis and com­pared. The com­pounds crystallize in the monoclinic space group C2/m for (I) and in the triclinic space group P\overline{1} for (II); however, they have somewhat similar features. In the asymmetric unit of (I), the Li and Cr atoms both have space-group-imposed 2/m site symmetry, while only half of the oxalate ligand is present and two independent water mol­ecules lie on the mirror plane. The water O atoms around the Li atom are disordered over two equivalent positions separated by 0.54 (4) Å. In the asymmetric unit of (II), the atoms of one C2O42− ligand and two independent water mol­ecules are in general positions, and the Na and Cr atoms lie on an inversion centre. Taking into account the symmetry sites of both metallic elements, the unit cells may be described as pseudo-face-centred monoclinic for (I) and as pseudo-centred triclinic for (II). Both crystal structures are com­prised of one-dimensional chains of alternating trans-Cr(CO)4(H2O)2 and trans-A(CO)4(H2O)2 units μ2-bridged by bis-chelating oxalate ligands. The resulting linear chains are parallel to the [101] direction for (I) and to the [11\overline{1}] direction for (II). Within the two coordination polymers, strong hydrogen bonds result in tetra­meric R44(12) synthons which link the metal chains, thus leading to two-dimensaional supra­molecular architectures. The two structures differ from each other with respect to the symmetry relations inside the ligand, the role of electrostatic forces in the crystal structure and the mol­ecular inter­actions of the hydrogen-bonded networks. Moreover, they exhibit the same UV–Vis pattern typical of a CrIII centrosymmetric geometry, while the IR absorption shows some differences due to the oxalate-ligand conformation. Polymers (I) and (II) are also distinguished by a different behaviours during the decom­position process, the precursor (I) leading to the oxide LiCrO2, while the residues of (II) consist of a mixture of sodium carbonate and CrIII oxide.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619014074/fp3074sup1.cif
Contains datablocks LiCrO, NaCrO, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619014074/fp3074LiCrOsup2.hkl
Contains datablock LiCrO

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619014074/fp3074NaCrOsup3.hkl
Contains datablock NaCrO

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229619014074/fp3074sup4.pdf
Addition geometry information and figures

CCDC references: 1959479; 1959480

Computing details top

Data collection: COLLECT (Nonius, 1998) for LiCrO; CrysAlis PRO (Agilent, 2014 ) for NaCrO. Cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997) for LiCrO; CrysAlis PRO (Agilent, 2014 ) for NaCrO. Data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997) for LiCrO; CrysAlis PRO (Agilent, 2014 ) for NaCrO. For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2008) for LiCrO; ORTEP-3 for Windows (Farrugia, 2012) for NaCrO. For both structures, software used to prepare material for publication: WinGX (Farrugia, 2012).

\ catena-Poly[[diaqualithium(I)]-µ-oxalato-\ κ4O1,O2:O1',O2'-[diaquachromium(III)]-\ µ-oxalato-κ4O1,O2:O1',O2'] (LiCrO) top
Crystal data top
[LiCr(C2O4)2(H2O)4]F(000) = 310
Mr = 307.04Dx = 1.987 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
a = 10.097 (8) ÅCell parameters from 2374 reflections
b = 7.787 (8) Åθ = 3.0–30.0°
c = 6.737 (6) ŵ = 1.18 mm1
β = 104.3 (1)°T = 100 K
V = 513.3 (8) Å3Prism, pink
Z = 20.1 × 0.1 × 0.1 mm
Data collection top
Bruker KappaCCD
diffractometer
776 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.048
CCD scansθmax = 30.4°, θmin = 3.1°
Absorption correction: analytical
(Alcock, 1970)
h = 1414
Tmin = 0.876, Tmax = 0.956k = 1010
6772 measured reflectionsl = 99
809 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.6456P]
where P = (Fo2 + 2Fc2)/3
809 reflections(Δ/σ)max = 0.008
61 parametersΔρmax = 0.90 e Å3
5 restraintsΔρmin = 0.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

PLAT112_ALERT_2_C ADDSYM Detects New (Pseudo) Symm. Elem B 83 %Fit Author response:Since the Cr atom is located on an inversion centre, this imposes the occupation of the equivalent inversion centres, which consequently leads to the formation of pseudo-cells B and A respectively, without, however, changing the space group that remains C2/m. PLAT303_ALERT_2_C Full Occupancy Atom H1 with # Connections 2.00 Check Author response: The hydrogen atom H1 is bounded to the each component of the split water oxygen Ow1 (H1-Ow1A and H1-Ow1B).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.50000.00000.50000.01135 (16)
Li10.00000.00000.00000.0144 (10)
C10.24694 (14)0.1007 (2)0.2643 (2)0.0139 (3)
O10.14572 (11)0.17906 (14)0.16642 (19)0.0184 (3)
O20.35762 (10)0.16915 (14)0.37424 (17)0.0141 (2)
OW20.56555 (17)0.00000.2431 (3)0.0162 (3)
H20.6012 (19)0.0898 (11)0.213 (3)0.024*
OW1A0.1201 (14)0.00000.2116 (10)0.0183 (17)0.64 (6)
OW1B0.070 (5)0.00000.263 (7)0.038 (7)0.36 (6)
H10.113 (3)0.0882 (12)0.289 (3)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0086 (2)0.0068 (2)0.0177 (3)0.0000.00137 (16)0.000
Li10.014 (2)0.006 (2)0.021 (3)0.0000.0003 (19)0.000
C10.0124 (6)0.0095 (7)0.0194 (7)0.0004 (5)0.0028 (5)0.0003 (5)
O10.0152 (5)0.0091 (5)0.0274 (6)0.0018 (4)0.0016 (4)0.0001 (4)
O20.0115 (5)0.0078 (5)0.0214 (5)0.0001 (3)0.0009 (4)0.0002 (4)
OW20.0185 (7)0.0088 (7)0.0231 (8)0.0000.0082 (6)0.000
OW1A0.022 (4)0.0103 (14)0.024 (2)0.0000.0074 (19)0.000
OW1B0.053 (14)0.012 (3)0.062 (12)0.0000.038 (12)0.000
Geometric parameters (Å, º) top
Cr1—O21.9794 (19)Li1—O1iv2.133 (2)
Cr1—O2i1.9794 (19)Li1—O1v2.133 (2)
Cr1—O2ii1.9794 (19)Li1—O1i2.133 (2)
Cr1—O2iii1.9794 (19)Li1—O12.133 (2)
Cr1—OW2iii2.000 (2)C1—O11.232 (2)
Cr1—OW22.000 (2)C1—O21.293 (2)
Li1—OW1B2.065 (18)C1—C1i1.568 (4)
Li1—OW1Biv2.065 (18)OW2—H20.835 (8)
Li1—OW1A2.087 (9)OW1A—H10.856 (9)
Li1—OW1Aiv2.087 (9)OW1B—H10.855 (10)
O2—Cr1—O2i83.43 (11)OW1B—Li1—O1i96.4 (12)
O2—Cr1—O2ii96.57 (11)OW1Biv—Li1—O1i83.6 (12)
O2i—Cr1—O2ii180.0OW1A—Li1—O1i85.3 (3)
O2—Cr1—O2iii180.0OW1Aiv—Li1—O1i94.7 (3)
O2i—Cr1—O2iii96.57 (11)O1iv—Li1—O1i98.37 (11)
O2ii—Cr1—O2iii83.43 (11)O1v—Li1—O1i180.00 (10)
O2—Cr1—OW2iii90.56 (8)OW1B—Li1—O196.4 (12)
O2i—Cr1—OW2iii90.56 (8)OW1Biv—Li1—O183.6 (12)
O2ii—Cr1—OW2iii89.44 (8)OW1A—Li1—O185.3 (3)
O2iii—Cr1—OW2iii89.44 (8)OW1Aiv—Li1—O194.7 (3)
O2—Cr1—OW289.44 (8)O1iv—Li1—O1180.0
O2i—Cr1—OW289.44 (8)O1v—Li1—O198.37 (11)
O2ii—Cr1—OW290.56 (8)O1i—Li1—O181.63 (11)
O2iii—Cr1—OW290.56 (8)O1—C1—O2125.98 (16)
OW2iii—Cr1—OW2180.0O1—C1—C1i119.67 (9)
OW1B—Li1—OW1Biv180.0O2—C1—C1i114.34 (9)
OW1A—Li1—OW1Aiv180.0 (5)C1—O1—Li1109.32 (13)
OW1B—Li1—O1iv83.6 (12)C1—O2—Cr1113.85 (12)
OW1Biv—Li1—O1iv96.4 (12)Cr1—OW2—H2117.9 (13)
OW1A—Li1—O1iv94.7 (3)Li1—OW1A—H1116.5 (14)
OW1Aiv—Li1—O1iv85.3 (3)Li1—OW1B—H1119 (3)
OW1B—Li1—O1v83.6 (12)H1—OW1A—H1i107.0 (9)
OW1Biv—Li1—O1v96.4 (12)H1—OW1B—H1i107.2 (9)
OW1A—Li1—O1v94.7 (3)H2—OW2—H2i113.9 (8)
OW1Aiv—Li1—O1v85.3 (3)H1—OW1—H1i107.26 (9)
O1iv—Li1—O1v81.63 (11)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1; (iii) x+1, y, z+1; (iv) x, y, z; (v) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW2—H2···O1vi0.84 (1)1.90 (1)2.716 (3)165 (2)
OW1A—H1···O2vii0.86 (1)2.02 (1)2.830 (4)159 (2)
OW1B—H1···O2vii0.86 (1)2.02 (1)2.828 (5)158 (2)
Symmetry codes: (vi) x+1/2, y1/2, z; (vii) x+1/2, y+1/2, z.
\ catena-Poly[[diaquasodium(I)]-µ-oxalato-\ κ4O1,O2:O1',O2'-[diaquachromium(III)]-\ µ-oxalato-κ4O1,O2:O1',O2'] (NaCrO) top
Crystal data top
[NaCr(C2O4)2(H2O)4]Z = 1
Mr = 323.09F(000) = 163
Triclinic, P1Dx = 2.060 Mg m3
a = 5.3036 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.5842 (3) ÅCell parameters from 3252 reflections
c = 8.1882 (4) Åθ = 3.9–31.9°
α = 96.630 (4)°µ = 1.21 mm1
β = 92.666 (4)°T = 297 K
γ = 112.865 (5)°Prismatic, purple
V = 260.39 (2) Å30.25 × 0.20 × 0.15 mm
Data collection top
Agilent Xcalibur Sapphire2 (large Be window)
diffractometer
1736 independent reflections
Radiation source: Enhance (Mo) X-ray Source1598 reflections with I > 2σ(I)
Detector resolution: 8.3622 pixels mm-1Rint = 0.042
ω scansθmax = 32.7°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 77
Tmin = 0.817, Tmax = 1.000k = 99
4899 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.0519P]
where P = (Fo2 + 2Fc2)/3
1736 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.46 e Å3
6 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Translation ··· ? Check Author response:No additional translation symmetry, we think it is due to the position of Cr atom in the centre of the unit cell (the same crystallographic site that Li) which position is a possible origin by lattice translation. PLATON ADSSYM indicated that P-1 is the correct space group. PLAT112_ALERT_2_B ADDSYM Detects New (Pseudo) Symm. Elem I 100 %Fit Author response: No additional symmetry, it is due to the position of Cr atom in the centre of the unit cell, for the same reason. PLATON ADSSYM indicated that P(-1) is the correct group. PLAT113_ALERT_2_B ADDSYM Suggests Possible Pseudo/New Space Group P-1 Check Author response:No additional symmetry, it may be due to the position of chromium atom in the centre of the unit cell. PLATON ADSSYM indicated that P(-1) is the correct group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.50000.50000.50000.02061 (10)
Na1.00001.00000.00000.02969 (19)
O10.86629 (19)0.69304 (16)0.44984 (12)0.0248 (2)
O21.0752 (2)0.89534 (17)0.25704 (13)0.0280 (2)
O30.38970 (19)0.54995 (17)0.27943 (12)0.0261 (2)
O40.5663 (2)0.74374 (18)0.07621 (13)0.0304 (2)
C10.8714 (2)0.7679 (2)0.31276 (16)0.0208 (2)
C20.5865 (3)0.6834 (2)0.20967 (16)0.0217 (2)
OW11.1380 (2)0.72011 (18)0.14304 (14)0.0313 (2)
H11.232 (4)0.692 (3)0.070 (2)0.047*
H20.985 (3)0.609 (3)0.166 (3)0.047*
OW20.5430 (2)0.22538 (17)0.40057 (14)0.0290 (2)
H30.394 (3)0.115 (3)0.364 (2)0.043*
H40.659 (3)0.245 (3)0.332 (2)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.01482 (14)0.02512 (16)0.01773 (16)0.00227 (10)0.00120 (10)0.00754 (11)
Na0.0323 (4)0.0325 (4)0.0252 (4)0.0111 (3)0.0088 (3)0.0121 (3)
O10.0169 (4)0.0321 (5)0.0213 (5)0.0036 (3)0.0012 (3)0.0099 (4)
O20.0193 (4)0.0318 (5)0.0263 (5)0.0012 (4)0.0034 (4)0.0103 (4)
O30.0170 (4)0.0338 (5)0.0219 (5)0.0025 (4)0.0004 (3)0.0103 (4)
O40.0257 (5)0.0369 (5)0.0241 (5)0.0056 (4)0.0009 (4)0.0135 (4)
C10.0173 (5)0.0224 (5)0.0204 (6)0.0053 (4)0.0015 (4)0.0041 (4)
C20.0192 (5)0.0227 (5)0.0201 (6)0.0048 (4)0.0004 (4)0.0042 (4)
OW10.0236 (5)0.0360 (5)0.0297 (6)0.0076 (4)0.0013 (4)0.0037 (4)
OW20.0209 (5)0.0286 (5)0.0322 (6)0.0044 (4)0.0032 (4)0.0037 (4)
Geometric parameters (Å, º) top
Cr—O11.9581 (9)Na—C1ii3.1007 (13)
Cr—O1i1.9581 (9)Na—C2ii3.1187 (13)
Cr—O31.9751 (10)Na—C23.1187 (13)
Cr—O3i1.9751 (10)O1—C11.2744 (16)
Cr—OW2i1.9956 (10)O2—C11.2286 (15)
Cr—OW21.9956 (10)O3—C21.2832 (16)
Na—O2ii2.3525 (11)O4—C21.2191 (17)
Na—O22.3525 (11)C1—C21.5571 (19)
Na—O42.4263 (10)OW1—H10.840 (9)
Na—O4ii2.4263 (10)OW1—H20.848 (9)
Na—OW1ii2.4357 (11)OW2—H30.848 (9)
Na—OW12.4357 (11)OW2—H40.831 (9)
Na—C13.1007 (13)
O1—Cr—O1i180.0OW1—Na—C1ii86.03 (4)
O1—Cr—O382.62 (4)C1—Na—C1ii180.0
O1i—Cr—O397.38 (4)O2ii—Na—C2ii49.78 (3)
O1—Cr—O3i97.38 (4)O2—Na—C2ii130.22 (3)
O1i—Cr—O3i82.62 (4)O4—Na—C2ii158.98 (4)
O3—Cr—O3i180.0O4ii—Na—C2ii21.02 (4)
O1—Cr—OW2i87.71 (4)OW1ii—Na—C2ii96.39 (4)
O1i—Cr—OW2i92.30 (4)OW1—Na—C2ii83.61 (4)
O3—Cr—OW2i89.31 (5)C1—Na—C2ii151.00 (4)
O3i—Cr—OW2i90.69 (5)C1ii—Na—C2ii29.00 (4)
O1—Cr—OW292.30 (4)O2ii—Na—C2130.22 (3)
O1i—Cr—OW287.70 (4)O2—Na—C249.78 (3)
O3—Cr—OW290.69 (5)O4—Na—C221.02 (4)
O3i—Cr—OW289.31 (5)O4ii—Na—C2158.98 (4)
OW2i—Cr—OW2180.0OW1ii—Na—C283.61 (4)
O2ii—Na—O2180.0OW1—Na—C296.39 (4)
O2ii—Na—O4109.21 (3)C1—Na—C229.00 (4)
O2—Na—O470.80 (3)C1ii—Na—C2151.00 (4)
O2ii—Na—O4ii70.79 (3)C2ii—Na—C2180.0
O2—Na—O4ii109.21 (3)C1—O1—Cr114.76 (8)
O4—Na—O4ii180.0C1—O2—Na116.40 (9)
O2ii—Na—OW1ii91.17 (4)C2—O3—Cr114.55 (8)
O2—Na—OW1ii88.83 (4)C2—O4—Na113.44 (9)
O4—Na—OW1ii83.06 (4)O2—C1—O1126.48 (12)
O4ii—Na—OW1ii96.94 (4)O2—C1—C2118.94 (12)
O2ii—Na—OW188.83 (4)O1—C1—C2114.57 (10)
O2—Na—OW191.17 (4)O2—C1—Na42.81 (7)
O4—Na—OW196.94 (4)O1—C1—Na169.28 (9)
O4ii—Na—OW183.06 (4)C2—C1—Na76.14 (7)
OW1ii—Na—OW1180.0O4—C2—O3126.21 (12)
O2ii—Na—C1159.21 (3)O4—C2—C1120.40 (12)
O2—Na—C120.79 (3)O3—C2—C1113.38 (11)
O4—Na—C150.01 (3)O4—C2—Na45.55 (7)
O4ii—Na—C1129.99 (3)O3—C2—Na171.75 (9)
OW1ii—Na—C186.03 (4)C1—C2—Na74.86 (7)
OW1—Na—C193.97 (4)Na—OW1—H1104.8 (16)
O2ii—Na—C1ii20.79 (3)Na—OW1—H2101.9 (15)
O2—Na—C1ii159.21 (3)H1—OW1—H2108.7 (17)
O4—Na—C1ii129.99 (3)Cr—OW2—H3115.4 (14)
O4ii—Na—C1ii50.01 (3)Cr—OW2—H4115.1 (14)
OW1ii—Na—C1ii93.97 (4)H3—OW2—H4110.9 (17)
Na—O2—C1—O1179.22 (10)O2—C1—C2—O40.4 (2)
Na—O2—C1—C21.27 (15)O1—C1—C2—O4179.91 (12)
Cr—O1—C1—O2178.24 (11)Na—C1—C2—O40.54 (12)
Cr—O1—C1—C22.24 (14)O2—C1—C2—O3179.41 (11)
Cr—O1—C1—Na175.4 (4)O1—C1—C2—O30.16 (17)
Na—O4—C2—O3179.55 (11)Na—C1—C2—O3179.70 (11)
Na—O4—C2—C10.73 (16)O2—C1—C2—Na0.89 (11)
Cr—O3—C2—O4177.81 (12)O1—C1—C2—Na179.55 (11)
Cr—O3—C2—C12.45 (14)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H1···O4iii0.84 (1)1.99 (1)2.7731 (16)156 (2)
OW1—H2···O3iv0.85 (1)1.97 (1)2.7612 (14)154 (2)
OW2—H3···O2v0.85 (1)1.84 (1)2.6849 (14)172 (2)
OW2—H4···OW1vi0.83 (1)1.91 (1)2.7336 (16)168 (2)
Symmetry codes: (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x1, y1, z; (vi) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds