Download citation
Download citation
link to html
The crystal structure of MgCoGa2 (magnesium cobalt digallide) was solved by direct methods and refined in two space groups as P21/c (standard choice) and P21/n (non-standard choice). The refined lattice parameters for the standard choice are a = 5.1505 (2), b = 7.2571 (2), c = 8.0264 (3) Å and β = 125.571 (3)°, and for the non-standard choice are a = 5.1505 (2), b = 7.2571 (2), c = 6.5464 (2) Å and β = 94.217 (3)°. All parameters for MgCoGa2 refined to R1 = 0.027 and wR2 = 0.042 using 594 reflections. The crystal structure peculiarities of this com­pound are discussed. Particular attention has been given to relationships with other similar structures, such as YPd2Si and Fe3C. Crystallographic analysis, together with linear muffin-tin orbital electronic structure calculations, reveals the presence of three-dimensional polyatomic nets with partial covalent bonding between the Ga atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322962000594X/fn3333sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322962000594X/fn3333Isup2.hkl
Contains datablock I

CCDC reference: 2000059

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Magnesium cobalt digallide top
Crystal data top
MgCoGa2F(000) = 404
Mr = 222.68Dx = 6.061 Mg m3
Dm = 6.08 (2) Mg m3
Dm measured by volumetric
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1505 (2) ÅCell parameters from 594 reflections
b = 7.2571 (2) Åθ = 4.2–28.5°
c = 8.0264 (3) ŵ = 28.48 mm1
β = 125.571 (3)°T = 293 K
V = 244.03 (2) Å3Prism, metallic dark grey
Z = 40.06 × 0.04 × 0.03 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
594 independent reflections
Radiation source: fine-focus sealed tube524 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
ω scansθmax = 28.5°, θmin = 4.2°
Absorption correction: empirical (using intensity measurements)
ABSPACK in CrysAlis PRO (Rigaku OD, 2015)
h = 66
Tmin = 0.284, Tmax = 0.409k = 99
3025 measured reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.021Secondary atom site location: difference Fourier map
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0169P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
594 reflectionsΔρmax = 1.05 e Å3
37 parametersΔρmin = 0.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg0.1827 (3)0.04414 (19)0.2985 (2)0.0049 (3)
Co0.28699 (13)0.39736 (8)0.19208 (8)0.00378 (14)
Ga10.21859 (10)0.72437 (6)0.08003 (7)0.00448 (13)
Ga20.38498 (11)0.14078 (6)0.03372 (7)0.00476 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg0.0046 (7)0.0055 (7)0.0039 (7)0.0008 (6)0.0021 (6)0.0007 (6)
Co0.0033 (3)0.0038 (3)0.0029 (3)0.0004 (2)0.0011 (2)0.0005 (2)
Ga10.0035 (2)0.0042 (2)0.0036 (2)0.00024 (18)0.00081 (19)0.00008 (18)
Ga20.0054 (2)0.0049 (3)0.0033 (2)0.00067 (18)0.0021 (2)0.00014 (18)
Geometric parameters (Å, º) top
Mg—Coi2.6843 (14)Co—Mgx2.9112 (14)
Mg—Ga2ii2.7550 (14)Ga1—Covi2.3905 (7)
Mg—Co2.8500 (14)Ga1—Coviii2.4469 (7)
Mg—Coiii2.8915 (14)Ga1—Ga2viii2.6046 (7)
Mg—Ga2iv2.8963 (15)Ga1—Ga2xi2.8511 (6)
Mg—Ga1ii2.9072 (14)Ga1—Ga2vi2.8554 (6)
Mg—Coii2.9111 (14)Ga1—Mgx2.9072 (14)
Mg—Ga22.9445 (13)Ga1—Mgviii2.9449 (14)
Mg—Ga1iii2.9450 (14)Ga1—Mgxii2.9784 (14)
Mg—Ga1v2.9785 (14)Ga1—Mgvi3.0030 (14)
Mg—Ga1vi3.0031 (14)Ga1—Mgix3.0459 (13)
Mg—Mgvii3.043 (3)Ga2—Cox2.4981 (7)
Co—Ga1vi2.3905 (7)Ga2—Coiii2.5481 (7)
Co—Ga1iii2.4469 (7)Ga2—Ga2xiii2.5726 (8)
Co—Ga22.4665 (7)Ga2—Ga1iii2.6046 (7)
Co—Ga12.4892 (7)Ga2—Mgx2.7550 (14)
Co—Ga2ii2.4981 (7)Ga2—Ga1xi2.8511 (6)
Co—Ga2viii2.5481 (7)Ga2—Ga1vi2.8554 (6)
Co—Mgix2.6843 (14)Ga2—Mgiv2.8963 (15)
Co—Mgviii2.8915 (14)
Coi—Mg—Ga2ii107.33 (5)Ga2ii—Co—Mgx177.83 (4)
Coi—Mg—Co134.06 (5)Ga2viii—Co—Mgx116.57 (3)
Ga2ii—Mg—Co52.90 (3)Mgix—Co—Mgx111.86 (3)
Coi—Mg—Coiii134.92 (5)Mg—Co—Mgx120.56 (4)
Ga2ii—Mg—Coiii108.23 (5)Mgviii—Co—Mgx63.25 (5)
Co—Mg—Coiii89.96 (4)Covi—Ga1—Coviii168.36 (3)
Coi—Mg—Ga2iv53.02 (3)Covi—Ga1—Co80.08 (2)
Ga2ii—Mg—Ga2iv142.40 (5)Coviii—Ga1—Co110.61 (2)
Co—Mg—Ga2iv113.97 (5)Covi—Ga1—Ga2viii133.20 (2)
Coiii—Mg—Ga2iv106.60 (4)Coviii—Ga1—Ga2viii58.355 (18)
Coi—Mg—Ga1ii50.43 (3)Co—Ga1—Ga2viii59.982 (19)
Ga2ii—Mg—Ga1ii101.30 (4)Covi—Ga1—Ga2xi115.89 (2)
Co—Mg—Ga1ii153.89 (6)Coviii—Ga1—Ga2xi55.636 (17)
Coiii—Mg—Ga1ii95.78 (4)Co—Ga1—Ga2xi117.76 (2)
Ga2iv—Mg—Ga1ii88.78 (4)Ga2viii—Ga1—Ga2xi104.45 (2)
Coi—Mg—Coii68.14 (3)Covi—Ga1—Ga2vi55.235 (18)
Ga2ii—Mg—Coii51.52 (3)Coviii—Ga1—Ga2vi121.95 (2)
Co—Mg—Coii104.24 (4)Co—Ga1—Ga2vi109.95 (2)
Coiii—Mg—Coii116.75 (5)Ga2viii—Ga1—Ga2vi114.47 (2)
Ga2iv—Mg—Coii121.12 (4)Ga2xi—Ga1—Ga2vi128.99 (2)
Ga1ii—Mg—Coii50.66 (3)Covi—Ga1—Mgx59.95 (3)
Coi—Mg—Ga2144.88 (6)Coviii—Ga1—Mgx119.53 (3)
Ga2ii—Mg—Ga298.36 (4)Co—Ga1—Mgx64.75 (3)
Co—Mg—Ga250.35 (3)Ga2viii—Ga1—Mgx114.87 (3)
Coiii—Mg—Ga251.77 (3)Ga2xi—Ga1—Mgx73.43 (3)
Ga2iv—Mg—Ga292.15 (4)Ga2vi—Ga1—Mgx114.58 (3)
Ga1ii—Mg—Ga2146.25 (5)Covi—Ga1—Mgviii120.85 (3)
Coii—Mg—Ga2146.00 (5)Coviii—Ga1—Mgviii63.02 (3)
Coi—Mg—Ga1iii162.59 (6)Co—Ga1—Mgviii63.65 (3)
Ga2ii—Mg—Ga1iii59.92 (3)Ga2viii—Ga1—Mgviii63.74 (3)
Co—Mg—Ga1iii49.92 (3)Ga2xi—Ga1—Mgviii56.73 (3)
Coiii—Mg—Ga1iii50.48 (3)Ga2vi—Ga1—Mgviii173.54 (3)
Ga2iv—Mg—Ga1iii144.34 (5)Mgx—Ga1—Mgviii62.65 (5)
Ga1ii—Mg—Ga1iii117.35 (5)Covi—Ga1—Mgxii114.71 (3)
Coii—Mg—Ga1iii94.54 (4)Coviii—Ga1—Mgxii63.53 (3)
Ga2—Mg—Ga1iii52.49 (3)Co—Ga1—Mgxii125.05 (3)
Coi—Mg—Ga1v94.19 (4)Ga2viii—Ga1—Mgxii75.81 (3)
Ga2ii—Mg—Ga1v157.20 (5)Ga2xi—Ga1—Mgxii102.85 (3)
Co—Mg—Ga1v115.93 (4)Ga2vi—Ga1—Mgxii59.49 (3)
Coiii—Mg—Ga1v49.24 (2)Mgx—Ga1—Mgxii169.16 (5)
Ga2iv—Mg—Ga1v58.14 (3)Mgviii—Ga1—Mgxii124.25 (3)
Ga1ii—Mg—Ga1v86.43 (4)Covi—Ga1—Mgvi62.59 (3)
Coii—Mg—Ga1v135.81 (5)Coviii—Ga1—Mgvi105.89 (3)
Ga2—Mg—Ga1v65.89 (3)Co—Ga1—Mgvi140.20 (4)
Ga1iii—Mg—Ga1v97.43 (4)Ga2viii—Ga1—Mgvi159.41 (3)
Coi—Mg—Ga1vi98.59 (4)Ga2xi—Ga1—Mgvi71.56 (3)
Ga2ii—Mg—Ga1vi89.56 (4)Ga2vi—Ga1—Mgvi60.28 (3)
Co—Mg—Ga1vi48.12 (3)Mgx—Ga1—Mgvi83.88 (2)
Coiii—Mg—Ga1vi108.44 (4)Mgviii—Ga1—Mgvi123.73 (5)
Ga2iv—Mg—Ga1vi66.16 (3)Mgxii—Ga1—Mgvi85.28 (4)
Ga1ii—Mg—Ga1vi148.93 (5)Covi—Ga1—Mgix63.41 (3)
Coii—Mg—Ga1vi126.89 (5)Coviii—Ga1—Mgix125.86 (3)
Ga2—Mg—Ga1vi57.37 (3)Co—Ga1—Mgix56.96 (3)
Ga1iii—Mg—Ga1vi93.35 (4)Ga2viii—Ga1—Mgix74.16 (3)
Ga1v—Mg—Ga1vi94.72 (4)Ga2xi—Ga1—Mgix174.61 (3)
Coi—Mg—Mgvii108.35 (6)Ga2vi—Ga1—Mgix55.55 (3)
Ga2ii—Mg—Mgvii72.66 (5)Mgx—Ga1—Mgix102.29 (3)
Co—Mg—Mgvii103.58 (6)Mgviii—Ga1—Mgix118.56 (5)
Coiii—Mg—Mgvii58.69 (4)Mgxii—Ga1—Mgix81.95 (2)
Ga2iv—Mg—Mgvii140.00 (7)Mgvi—Ga1—Mgix111.61 (5)
Ga1ii—Mg—Mgvii59.28 (4)Co—Ga2—Cox132.69 (2)
Coii—Mg—Mgvii58.06 (4)Co—Ga2—Coiii108.051 (18)
Ga2—Mg—Mgvii101.84 (6)Cox—Ga2—Coiii118.71 (2)
Ga1iii—Mg—Mgvii58.07 (4)Co—Ga2—Ga2xiii164.88 (3)
Ga1v—Mg—Mgvii93.76 (6)Cox—Ga2—Ga2xiii60.31 (2)
Ga1vi—Mg—Mgvii151.03 (7)Coiii—Ga2—Ga2xiii58.40 (2)
Ga1vi—Co—Ga1iii126.89 (2)Co—Ga2—Ga1iii57.623 (18)
Ga1vi—Co—Ga272.00 (2)Cox—Ga2—Ga1iii148.24 (2)
Ga1iii—Co—Ga264.02 (2)Coiii—Ga2—Ga1iii57.762 (19)
Ga1vi—Co—Ga199.91 (2)Ga2xiii—Ga2—Ga1iii107.30 (3)
Ga1iii—Co—Ga1128.77 (3)Co—Ga2—Mgx67.51 (3)
Ga2—Co—Ga1124.19 (3)Cox—Ga2—Mgx65.50 (3)
Ga1vi—Co—Ga2ii112.28 (2)Coiii—Ga2—Mgx164.53 (4)
Ga1iii—Co—Ga2ii70.41 (2)Ga2xiii—Ga2—Mgx123.50 (4)
Ga2—Co—Ga2ii120.72 (2)Ga1iii—Ga2—Mgx110.16 (3)
Ga1—Co—Ga2ii113.45 (3)Co—Ga2—Ga1xi107.77 (2)
Ga1vi—Co—Ga2viii150.21 (3)Cox—Ga2—Ga1xi53.954 (17)
Ga1iii—Co—Ga2viii80.28 (2)Coiii—Ga2—Ga1xi106.02 (2)
Ga2—Co—Ga2viii137.46 (2)Ga2xiii—Ga2—Ga1xi72.66 (2)
Ga1—Co—Ga2viii62.26 (2)Ga1iii—Ga2—Ga1xi95.144 (19)
Ga2ii—Co—Ga2viii61.29 (2)Mgx—Ga2—Ga1xi63.35 (3)
Ga1vi—Co—Mgix69.63 (3)Co—Ga2—Ga1vi52.768 (17)
Ga1iii—Co—Mgix138.21 (4)Cox—Ga2—Ga1vi101.53 (2)
Ga2—Co—Mgix140.54 (4)Coiii—Ga2—Ga1vi124.42 (2)
Ga1—Co—Mgix72.03 (3)Ga2xiii—Ga2—Ga1vi138.93 (3)
Ga2ii—Co—Mgix67.85 (3)Ga1iii—Ga2—Ga1vi104.750 (19)
Ga2viii—Co—Mgix81.73 (3)Mgx—Ga2—Ga1vi65.73 (3)
Ga1vi—Co—Mg69.29 (3)Ga1xi—Ga2—Ga1vi128.99 (2)
Ga1iii—Co—Mg67.06 (3)Co—Ga2—Mgiv115.13 (3)
Ga2—Co—Mg66.81 (3)Cox—Ga2—Mgiv59.14 (3)
Ga1—Co—Mg162.56 (4)Coiii—Ga2—Mgiv106.32 (3)
Ga2ii—Co—Mg61.60 (3)Ga2xiii—Ga2—Mgiv77.30 (3)
Ga2viii—Co—Mg120.70 (4)Ga1iii—Ga2—Mgiv151.19 (3)
Mgix—Co—Mg91.05 (3)Mgx—Ga2—Mgiv88.67 (2)
Ga1vi—Co—Mgviii132.10 (4)Ga1xi—Ga2—Mgiv113.06 (3)
Ga1iii—Co—Mgviii67.23 (3)Ga1vi—Ga2—Mgiv62.37 (3)
Ga2—Co—Mgviii79.53 (3)Co—Ga2—Mg62.84 (3)
Ga1—Co—Mgviii65.87 (3)Cox—Ga2—Mg146.67 (4)
Ga2ii—Co—Mgviii115.31 (4)Coiii—Ga2—Mg63.04 (3)
Ga2viii—Co—Mgviii65.19 (3)Ga2xiii—Ga2—Mg111.24 (4)
Mgix—Co—Mgviii134.92 (5)Ga1iii—Ga2—Mg63.76 (3)
Mg—Co—Mgviii131.56 (4)Mgx—Ga2—Mg122.74 (4)
Ga1vi—Co—Mgx69.33 (3)Ga1xi—Ga2—Mg158.89 (3)
Ga1iii—Co—Mgx109.93 (3)Ga1vi—Ga2—Mg62.34 (3)
Ga2—Co—Mgx60.97 (3)Mgiv—Ga2—Mg87.85 (4)
Ga1—Co—Mgx64.59 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y, z; (v) x, y1, z; (vi) x, y+1, z; (vii) x+1, y, z+1; (viii) x+1, y+1/2, z+1/2; (ix) x, y+1/2, z+1/2; (x) x, y+1/2, z1/2; (xi) x+1, y+1, z; (xii) x, y+1, z; (xiii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds