Download citation
Download citation
link to html
Two novel K/Mn phosphate hydrates, namely, dipotassium trimanganese dipyrophosphate dihydrate, K2Mn3(H2O)2[P2O7]2, (I), and potassium manganese dialuminium triphosphate dihydrate, KMn(H2O)2[Al2(PO4)3], (II), were obtained in the form of single crystals during a single hydro­thermal synthesis experiment. Their crystal structures were studied by X-ray diffraction. Both new com­pounds are members of the morphotropic series of phosphates with the following formulae: A2M3(H2O)2[P2O7]2, where A = K, NH4, Rb or Na and M = Mn, Fe, Co or Ni, and AM2+(H2O)2[M3+2(PO4)3], where A = Cs, Rb, K, NH4 or (H3O); M2+ = Mn, Fe, Co or Ni; and M3+ = Al, Ga or Fe. A detailed crystal chemical analysis revealed correlations between the unit-cell parameters of the members of the series, their structural features and the sizes of the cations. It has been shown that a mixed type anionic framework is formed in (II) by aluminophosphate [(AlO2)2(PO4)2] layers, with a cationic topology similar to the Si/Al-topology of the crystal structures of feldspars. A study of the magnetic susceptibility of (II) demonstrates a paramagnetic behaviour of the com­pound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620002466/fn3331sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620002466/fn3331Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620002466/fn3331IIsup3.hkl
Contains datablock II

CCDC references: 1985366; 1985365

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2018) for (II). Cell refinement: CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2018) for (II). Data reduction: CrysAlis PRO (Agilent, 2014) for (I); CrysAlis PRO (Rigaku OD, 2018) for (II). For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and International Tables for Crystallography (2004).

Dipotassium trimanganese dipyrophosphate dihydrate (I) top
Crystal data top
K2[Mn3(P2O7)2(H2O)2]F(000) = 610
Mr = 626.93Dx = 2.940 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1944 (1) ÅCell parameters from 6532 reflections
b = 8.3134 (1) Åθ = 3.3–32.3°
c = 9.3798 (2) ŵ = 3.76 mm1
β = 98.924 (1)°T = 293 K
V = 708.28 (2) Å3Cube, light pink
Z = 20.14 × 0.09 × 0.08 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
2062 independent reflections
Radiation source: Enhance (Mo) X-ray Source1878 reflections with I > 2σ(I)
Detector resolution: 16.0630 pixels mm-1Rint = 0.043
ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
h = 1212
Tmin = 0.703, Tmax = 0.787k = 1111
13181 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.016P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2062 reflectionsΔρmax = 0.41 e Å3
124 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The X-ray experimental data necessary for the crystal structure solution were collected on an Xcalibur Sapphire3 single-crystal X-ray diffractometer (Mo Kα radiation, graphite monochromator) under normal conditions (phase I) and on Gemini AtlasS2 diffractometer at low temperature T = 150 K (phase II). The reflection intensities were collected over the full sphere of the reciprocal space and corrected for the Lorentz factor and the polarization effect. Empirical absorption corrections based on Gaussian integration over a multifaceted crystal model (I) and multi-scan of equivalent reflections (II) were applied. Atomic scattering curves and corrections for anomalous dispersion were taken from the International Tables for Crystallography (Prince, 2004). All calculations were performed within the WinGX software environment (Farrugia, 2012). Crystal structures were solved by direct methods and refined in an anisotropic approximation of thermal vibrations of atoms using the SHELX program package (Sheldrick, 2015a,b). New compounds with established structural formulae K2Mn3(H2O)2[P2O7]2 (I) and KMn(H2O)2[Al2(PO4)3] (II) are both monoclinic; their crystal structures were refined in P21/c and С2/c space groups to the residuals R 0.0233 and 0.0156, accordingly (Table 1).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.86036 (3)0.64098 (4)0.50150 (3)0.00993 (8)
Mn21.0000000.5000001.0000000.01041 (10)
K10.42510 (5)0.77127 (6)0.51866 (5)0.02126 (11)
P10.89643 (5)0.30438 (6)0.71056 (5)0.00783 (10)
P20.69390 (5)0.56232 (6)0.76840 (5)0.00946 (11)
O10.99081 (15)0.29720 (17)0.85850 (14)0.0121 (3)
O20.95641 (14)0.42380 (17)0.61190 (14)0.0116 (3)
O30.86037 (15)0.14330 (16)0.63972 (15)0.0121 (3)
O40.81499 (15)0.62490 (17)0.88538 (15)0.0133 (3)
O50.68865 (15)0.64677 (18)0.62536 (15)0.0153 (3)
O60.73867 (14)0.37470 (17)0.73998 (15)0.0120 (3)
O70.54689 (15)0.54853 (19)0.81791 (16)0.0164 (3)
O80.72027 (18)0.5077 (2)0.33614 (18)0.0221 (4)
H10.629 (4)0.503 (4)0.297 (3)0.047 (10)*
H20.766 (3)0.477 (4)0.273 (3)0.036 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01057 (14)0.00931 (14)0.00987 (14)0.00041 (11)0.00151 (10)0.00045 (11)
Mn20.01177 (19)0.00897 (19)0.00956 (19)0.00192 (15)0.00128 (15)0.00093 (15)
K10.0183 (2)0.0235 (3)0.0209 (2)0.00230 (19)0.00018 (17)0.00139 (19)
P10.0088 (2)0.0077 (2)0.0072 (2)0.00006 (17)0.00152 (16)0.00010 (17)
P20.0076 (2)0.0114 (2)0.0092 (2)0.00118 (17)0.00088 (17)0.00069 (18)
O10.0150 (7)0.0109 (6)0.0090 (6)0.0016 (5)0.0019 (5)0.0002 (5)
O20.0130 (6)0.0111 (7)0.0113 (6)0.0006 (5)0.0042 (5)0.0029 (5)
O30.0138 (6)0.0096 (6)0.0131 (7)0.0005 (5)0.0025 (5)0.0021 (5)
O40.0126 (6)0.0128 (7)0.0132 (7)0.0007 (5)0.0020 (5)0.0024 (5)
O50.0155 (7)0.0190 (8)0.0117 (7)0.0050 (6)0.0030 (5)0.0042 (6)
O60.0098 (6)0.0105 (6)0.0162 (7)0.0001 (5)0.0037 (5)0.0027 (5)
O70.0102 (6)0.0210 (8)0.0188 (7)0.0011 (6)0.0052 (5)0.0016 (6)
O80.0146 (7)0.0302 (9)0.0211 (8)0.0001 (7)0.0016 (6)0.0118 (7)
Geometric parameters (Å, º) top
Mn1—O52.1008 (14)K1—O6vi3.0314 (14)
Mn1—O82.1615 (16)K1—O8vii3.0962 (19)
Mn1—O1i2.1739 (14)K1—O73.4039 (16)
Mn1—O2ii2.1945 (13)K1—P2vi3.4233 (7)
Mn1—O22.1974 (14)K1—P1vii3.4331 (7)
Mn1—O4iii2.2377 (14)K1—P23.5800 (7)
Mn2—O42.1355 (14)K1—K1viii4.0781 (10)
Mn2—O4iv2.1355 (14)P1—O31.5088 (14)
Mn2—O1iv2.1393 (14)P1—O21.5180 (14)
Mn2—O12.1393 (14)P1—O11.5194 (14)
Mn2—O3i2.3037 (13)P1—O61.6267 (14)
Mn2—O3v2.3037 (13)P2—O71.5002 (14)
K1—O52.6819 (15)P2—O51.5084 (14)
K1—O7vi2.7580 (16)P2—O41.5281 (14)
K1—O7iii2.7745 (15)P2—O61.6454 (15)
K1—O3vii2.8967 (14)O8—H10.86 (3)
K1—O6vii2.9141 (15)O8—H20.82 (3)
O5—Mn1—O889.62 (6)O7iii—K1—P2113.31 (3)
O5—Mn1—O1i96.25 (6)O3vii—K1—P2158.93 (3)
O8—Mn1—O1i171.42 (6)O6vii—K1—P2123.90 (3)
O5—Mn1—O2ii166.64 (6)O6vi—K1—P291.23 (3)
O8—Mn1—O2ii86.75 (6)O8vii—K1—P269.51 (3)
O1i—Mn1—O2ii88.90 (5)O7—K1—P224.64 (2)
O5—Mn1—O292.28 (5)P2vi—K1—P2102.233 (14)
O8—Mn1—O293.91 (6)P1vii—K1—P2139.542 (19)
O1i—Mn1—O292.11 (5)O5—K1—K1viii95.41 (4)
O2ii—Mn1—O275.17 (5)O7vi—K1—K1viii42.67 (3)
O5—Mn1—O4iii98.62 (5)O7iii—K1—K1viii42.36 (3)
O8—Mn1—O4iii92.93 (6)O3vii—K1—K1viii91.06 (3)
O1i—Mn1—O4iii80.03 (5)O6vii—K1—K1viii117.04 (3)
O2ii—Mn1—O4iii94.40 (5)O6vi—K1—K1viii90.75 (3)
O2—Mn1—O4iii167.16 (5)O8vii—K1—K1viii155.64 (4)
O4—Mn2—O4iv180.00 (7)O7—K1—K1viii120.39 (3)
O4—Mn2—O1iv83.16 (5)P2vi—K1—K1viii62.208 (15)
O4iv—Mn2—O1iv96.84 (5)P1vii—K1—K1viii112.74 (2)
O4—Mn2—O196.84 (5)P2—K1—K1viii107.494 (19)
O4iv—Mn2—O183.16 (5)O3—P1—O2112.82 (8)
O1iv—Mn2—O1180.0O3—P1—O1115.01 (8)
O4—Mn2—O3i86.15 (5)O2—P1—O1111.87 (8)
O4iv—Mn2—O3i93.85 (5)O3—P1—O6104.65 (7)
O1iv—Mn2—O3i88.48 (5)O2—P1—O6106.63 (8)
O1—Mn2—O3i91.52 (5)O1—P1—O6104.90 (8)
O4—Mn2—O3v93.85 (5)O3—P1—K1vii56.81 (5)
O4iv—Mn2—O3v86.15 (5)O2—P1—K1vii95.57 (6)
O1iv—Mn2—O3v91.52 (5)O1—P1—K1vii151.53 (6)
O1—Mn2—O3v88.48 (5)O6—P1—K1vii57.87 (5)
O3i—Mn2—O3v180.0O7—P2—O5113.88 (8)
O5—K1—O7vi96.55 (5)O7—P2—O4113.26 (8)
O5—K1—O7iii91.45 (4)O5—P2—O4113.54 (8)
O7vi—K1—O7iii85.03 (5)O7—P2—O6103.75 (8)
O5—K1—O3vii168.64 (5)O5—P2—O6105.75 (8)
O7vi—K1—O3vii94.54 (4)O4—P2—O6105.45 (8)
O7iii—K1—O3vii87.05 (4)O7—P2—K1ix51.72 (6)
O5—K1—O6vii118.05 (4)O5—P2—K1ix151.51 (6)
O7vi—K1—O6vii143.36 (4)O4—P2—K1ix94.87 (6)
O7iii—K1—O6vii82.57 (4)O6—P2—K1ix62.30 (5)
O3vii—K1—O6vii50.59 (4)O7—P2—K171.09 (6)
O5—K1—O6vi110.82 (4)O5—P2—K142.99 (5)
O7vi—K1—O6vi50.37 (4)O4—P2—K1131.05 (6)
O7iii—K1—O6vi130.79 (5)O6—P2—K1121.24 (5)
O3vii—K1—O6vi78.34 (4)K1ix—P2—K1118.296 (15)
O6vii—K1—O6vi119.17 (5)P1—O1—Mn2119.85 (8)
O5—K1—O8vii88.48 (5)P1—O1—Mn1x142.37 (9)
O7vi—K1—O8vii113.02 (5)Mn2—O1—Mn1x97.78 (5)
O7iii—K1—O8vii161.85 (5)P1—O2—Mn1ii120.92 (8)
O3vii—K1—O8vii89.46 (4)P1—O2—Mn1131.85 (8)
O6vii—K1—O8vii81.47 (4)Mn1ii—O2—Mn1104.83 (5)
O6vi—K1—O8vii65.52 (4)P1—O3—Mn2x127.28 (8)
O5—K1—O747.13 (4)P1—O3—K1vii97.35 (6)
O7vi—K1—O790.338 (19)Mn2x—O3—K1vii112.06 (5)
O7iii—K1—O7137.53 (5)P2—O4—Mn2129.10 (8)
O3vii—K1—O7135.42 (4)P2—O4—Mn1xi134.88 (8)
O6vii—K1—O7121.42 (4)Mn2—O4—Mn1xi95.97 (5)
O6vi—K1—O771.12 (4)P2—O5—Mn1123.93 (8)
O8vii—K1—O748.62 (4)P2—O5—K1114.45 (7)
O5—K1—P2vi114.02 (4)Mn1—O5—K1121.03 (6)
O7vi—K1—P2vi25.28 (3)P1—O6—P2128.33 (9)
O7iii—K1—P2vi102.33 (4)P1—O6—K1vii93.92 (6)
O3vii—K1—P2vi77.27 (3)P2—O6—K1vii114.82 (7)
O6vii—K1—P2vi127.55 (3)P1—O6—K1ix125.74 (7)
O6vi—K1—P2vi28.72 (3)P2—O6—K1ix88.98 (6)
O8vii—K1—P2vi94.24 (3)K1vii—O6—K1ix104.55 (4)
O7—K1—P2vi89.85 (3)P2—O7—K1ix103.00 (7)
O5—K1—P1vii143.46 (4)P2—O7—K1xi130.29 (8)
O7vi—K1—P1vii119.89 (3)K1ix—O7—K1xi94.97 (5)
O7iii—K1—P1vii94.18 (3)P2—O7—K184.27 (6)
O3vii—K1—P1vii25.84 (3)K1ix—O7—K1154.61 (6)
O6vii—K1—P1vii28.21 (3)K1xi—O7—K198.64 (4)
O6vi—K1—P1vii92.32 (3)Mn1—O8—K1vii108.55 (7)
O8vii—K1—P1vii75.50 (3)Mn1—O8—H1140 (2)
O7—K1—P1vii123.91 (3)K1vii—O8—H172 (2)
P2vi—K1—P1vii99.948 (16)Mn1—O8—H2111 (2)
O5—K1—P222.55 (3)K1vii—O8—H2113 (2)
O7vi—K1—P292.66 (3)H1—O8—H2105 (3)
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x+2, y+1, z+2; (v) x, y+1/2, z+1/2; (vi) x+1, y+1/2, z+3/2; (vii) x+1, y+1, z+1; (viii) x+1, y+2, z+1; (ix) x+1, y1/2, z+3/2; (x) x+2, y1/2, z+3/2; (xi) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1···O7vii0.86 (3)1.85 (3)2.691 (2)165 (3)
O8—H2···O3xii0.82 (3)1.91 (3)2.714 (2)166 (3)
Symmetry codes: (vii) x+1, y+1, z+1; (xii) x, y+1/2, z1/2.
Potassium manganese dialuminium triphosphate dihydrate (II) top
Crystal data top
K[Al2Mn(PO4)3(H2O)2]F(000) = 924
Mr = 468.94Dx = 2.794 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 13.3117 (3) ÅCell parameters from 5410 reflections
b = 10.0949 (2) Åθ = 2.6–34.2°
c = 8.7261 (2) ŵ = 2.23 mm1
β = 108.057 (2)°T = 152 K
V = 1114.86 (4) Å3Plate, light blue
Z = 40.23 × 0.11 × 0.07 mm
Data collection top
Rigaku Xcalibur AtlasS2 Gemini
diffractometer
1627 independent reflections
Radiation source: Enhance (Mo) X-ray Source1584 reflections with I > 2σ(I)
Detector resolution: 5.2283 pixels mm-1Rint = 0.012
ω scansθmax = 30.0°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2018)
h = 1718
Tmin = 0.741, Tmax = 0.901k = 1414
6128 measured reflectionsl = 129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: difference Fourier map
wR(F2) = 0.047All H-atom parameters refined
S = 1.14 w = 1/[σ2(Fo2) + (0.024P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
1627 reflections(Δ/σ)max = 0.001
105 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The X-ray experimental data necessary for the crystal structure solution were collected on an Xcalibur Sapphire3 single-crystal X-ray diffractometer (Mo Kα radiation, graphite monochromator) under normal conditions (phase I) and on Gemini AtlasS2 diffractometer at low temperature T = 150 K (phase II). The reflection intensities were collected over the full sphere of the reciprocal space and corrected for the Lorentz factor and the polarization effect. Empirical absorption corrections based on Gaussian integration over a multifaceted crystal model (I) and multi-scan of equivalent reflections (II) were applied. Atomic scattering curves and corrections for anomalous dispersion were taken from the International Tables for Crystallography (2004). All calculations were performed within the WinGX software environment (Farrugia, 2012). Crystal structures were solved by direct methods and refined in an anisotropic approximation of thermal vibrations of atoms using the SHELX program package (Sheldrick, 2015a,b). New compounds with established structural formulae K2Mn3(H2O)2[P2O7]2 (I) and KMn(H2O)2[Al2(PO4)3] (II) are both monoclinic; their crystal structures were refined in P21/c and С2/c space groups to the residuals R 0.0233 and 0.0156, accordingly (Table 1).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.5000000.28430 (2)0.7500000.00554 (7)
K10.5000000.63852 (4)0.7500000.02254 (11)
P20.5000000.00175 (4)0.2500000.00380 (9)
P10.70976 (2)0.37648 (3)0.67270 (4)0.00434 (7)
Al10.66933 (3)0.07620 (3)0.57313 (4)0.00384 (8)
O10.43011 (7)0.09455 (8)0.30903 (11)0.00636 (16)
O20.72915 (7)0.45143 (8)0.53130 (10)0.00641 (16)
O30.79374 (7)0.41809 (8)0.83219 (10)0.00607 (16)
O40.59939 (7)0.40892 (9)0.67572 (11)0.00843 (17)
O50.72811 (7)0.22753 (8)0.65832 (11)0.00654 (16)
O60.61051 (8)0.30350 (10)0.99766 (12)0.01195 (18)
O70.56327 (7)0.09181 (8)0.38638 (10)0.00625 (16)
H10.6484 (18)0.244 (2)1.051 (3)0.027 (5)*
H20.645 (2)0.364 (2)1.008 (3)0.030 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00559 (12)0.00479 (12)0.00681 (13)0.0000.00274 (9)0.000
K10.0281 (3)0.00935 (19)0.0357 (3)0.0000.0180 (2)0.000
P20.00391 (18)0.00419 (17)0.00354 (18)0.0000.00149 (14)0.000
P10.00465 (14)0.00433 (13)0.00445 (14)0.00061 (9)0.00201 (10)0.00028 (9)
Al10.00429 (16)0.00369 (15)0.00357 (16)0.00012 (11)0.00124 (12)0.00008 (11)
O10.0065 (4)0.0060 (4)0.0080 (4)0.0001 (3)0.0043 (3)0.0007 (3)
O20.0075 (4)0.0065 (4)0.0063 (4)0.0006 (3)0.0036 (3)0.0009 (3)
O30.0071 (4)0.0056 (4)0.0053 (4)0.0008 (3)0.0017 (3)0.0012 (3)
O40.0063 (4)0.0087 (4)0.0114 (4)0.0002 (3)0.0044 (3)0.0014 (3)
O50.0081 (4)0.0047 (4)0.0069 (4)0.0011 (3)0.0024 (3)0.0012 (3)
O60.0122 (4)0.0083 (4)0.0120 (4)0.0008 (3)0.0011 (3)0.0018 (3)
O70.0063 (4)0.0070 (4)0.0046 (4)0.0002 (3)0.0004 (3)0.0009 (3)
Geometric parameters (Å, º) top
Mn1—O42.0700 (9)K1—P2v3.6314 (6)
Mn1—O4i2.0700 (9)P2—O71.5267 (9)
Mn1—O62.2139 (10)P2—O7viii1.5267 (9)
Mn1—O6i2.2139 (10)P2—O1viii1.5404 (9)
Mn1—O1ii2.2576 (9)P2—O11.5405 (9)
Mn1—O1iii2.2576 (9)P1—O41.5135 (9)
Mn1—P2iii2.8876 (5)P1—O51.5346 (9)
Mn1—K13.5758 (5)P1—O21.5359 (9)
K1—O4i2.8415 (10)P1—O31.5488 (9)
K1—O42.8415 (9)Al1—O51.7715 (9)
K1—O7iv2.9858 (9)Al1—O3ix1.7945 (9)
K1—O7v2.9858 (9)Al1—O71.8021 (9)
K1—O6vi3.0599 (11)Al1—O2x1.8702 (9)
K1—O6vii3.0599 (11)Al1—O1iii1.9204 (9)
K1—O2v3.3930 (9)O6—H10.83 (2)
K1—O2iv3.3930 (9)O6—H20.75 (3)
O4—Mn1—O4i105.15 (5)O2v—K1—Mn174.479 (16)
O4—Mn1—O687.52 (4)O2iv—K1—Mn174.479 (16)
O4i—Mn1—O686.38 (4)O4i—K1—P2v144.654 (19)
O4—Mn1—O6i86.38 (4)O4—K1—P2v144.654 (19)
O4i—Mn1—O6i87.52 (4)O7iv—K1—P2v24.254 (17)
O6—Mn1—O6i169.95 (5)O7v—K1—P2v24.254 (17)
O4—Mn1—O1ii159.34 (3)O6vi—K1—P2v78.97 (2)
O4i—Mn1—O1ii95.49 (3)O6vii—K1—P2v78.97 (2)
O6—Mn1—O1ii92.73 (4)O2v—K1—P2v105.521 (16)
O6i—Mn1—O1ii95.79 (3)O2iv—K1—P2v105.521 (16)
O4—Mn1—O1iii95.49 (3)Mn1—K1—P2v180.0
O4i—Mn1—O1iii159.34 (3)O7—P2—O7viii106.91 (7)
O6—Mn1—O1iii95.79 (3)O7—P2—O1viii113.08 (5)
O6i—Mn1—O1iii92.73 (4)O7viii—P2—O1viii111.07 (5)
O1ii—Mn1—O1iii63.91 (4)O7—P2—O1111.08 (5)
O4—Mn1—P2iii127.43 (3)O7viii—P2—O1113.08 (5)
O4i—Mn1—P2iii127.43 (3)O1viii—P2—O1101.74 (7)
O6—Mn1—P2iii95.02 (3)O7—P2—Mn1iii126.55 (3)
O6i—Mn1—P2iii95.02 (3)O7viii—P2—Mn1iii126.55 (3)
O1ii—Mn1—P2iii31.96 (2)O1viii—P2—Mn1iii50.87 (3)
O1iii—Mn1—P2iii31.96 (2)O1—P2—Mn1iii50.87 (3)
O4—Mn1—K152.57 (3)O7—P2—K1v53.45 (3)
O4i—Mn1—K152.57 (3)O7viii—P2—K1v53.45 (3)
O6—Mn1—K184.98 (3)O1viii—P2—K1v129.13 (3)
O6i—Mn1—K184.98 (3)O1—P2—K1v129.13 (3)
O1ii—Mn1—K1148.04 (2)Mn1iii—P2—K1v180.0
O1iii—Mn1—K1148.04 (2)O4—P1—O5113.17 (5)
P2iii—Mn1—K1180.0O4—P1—O2108.25 (5)
O4i—K1—O470.69 (4)O5—P1—O2110.26 (5)
O4i—K1—O7iv138.29 (3)O4—P1—O3111.09 (5)
O4—K1—O7iv137.80 (2)O5—P1—O3104.50 (5)
O4i—K1—O7v137.80 (2)O2—P1—O3109.52 (5)
O4—K1—O7v138.29 (3)O5—Al1—O3ix123.47 (4)
O7iv—K1—O7v48.51 (3)O5—Al1—O7115.11 (4)
O4i—K1—O6vi68.30 (3)O3ix—Al1—O7121.34 (4)
O4—K1—O6vi132.99 (3)O5—Al1—O2x92.36 (4)
O7iv—K1—O6vi71.21 (3)O3ix—Al1—O2x87.45 (4)
O7v—K1—O6vi88.47 (3)O7—Al1—O2x93.11 (4)
O4i—K1—O6vii132.99 (3)O5—Al1—O1iii88.87 (4)
O4—K1—O6vii68.30 (3)O3ix—Al1—O1iii88.58 (4)
O7iv—K1—O6vii88.47 (3)O7—Al1—O1iii89.94 (4)
O7v—K1—O6vii71.21 (3)O2x—Al1—O1iii175.87 (4)
O6vi—K1—O6vii157.94 (4)P2—O1—Al1iii134.92 (5)
O4i—K1—O2v64.47 (2)P2—O1—Mn1iii97.17 (4)
O4—K1—O2v89.68 (2)Al1iii—O1—Mn1iii127.25 (4)
O7iv—K1—O2v127.70 (2)P1—O2—Al1x130.15 (6)
O7v—K1—O2v82.90 (2)P1—O2—K1v96.44 (4)
O6vi—K1—O2v92.68 (2)Al1x—O2—K1v103.35 (4)
O6vii—K1—O2v93.18 (2)P1—O3—Al1xi132.33 (6)
O4i—K1—O2iv89.68 (2)P1—O4—Mn1126.30 (5)
O4—K1—O2iv64.47 (2)P1—O4—K1134.72 (5)
O7iv—K1—O2iv82.90 (2)Mn1—O4—K192.08 (3)
O7v—K1—O2iv127.71 (2)P1—O5—Al1144.93 (6)
O6vi—K1—O2iv93.18 (2)Mn1—O6—K1vi113.39 (4)
O6vii—K1—O2iv92.68 (2)Mn1—O6—H1126.4 (16)
O2v—K1—O2iv148.96 (3)K1vi—O6—H194.4 (15)
O4i—K1—Mn135.346 (19)Mn1—O6—H2112.8 (19)
O4—K1—Mn135.346 (19)K1vi—O6—H299.5 (19)
O7iv—K1—Mn1155.746 (17)H1—O6—H2106 (2)
O7v—K1—Mn1155.746 (17)P2—O7—Al1137.83 (6)
O6vi—K1—Mn1101.03 (2)P2—O7—K1v102.29 (4)
O6vii—K1—Mn1101.03 (2)Al1—O7—K1v119.03 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y, z+1/2; (iii) x+1, y, z+1; (iv) x, y+1, z+1/2; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+2; (vii) x, y+1, z1/2; (viii) x+1, y, z+1/2; (ix) x+3/2, y1/2, z+3/2; (x) x+3/2, y+1/2, z+1; (xi) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1···O3xii0.83 (2)1.96 (3)2.7675 (13)166 (2)
O6—H1···O5xii0.83 (2)2.57 (2)3.1188 (13)125 (2)
O6—H2···O2iv0.75 (3)2.15 (3)2.9007 (13)174 (2)
Symmetry codes: (iv) x, y+1, z+1/2; (xii) x+3/2, y+1/2, z+2.
Bond-valence data for K2Mn3(H2O)2[P2O7]2 (I) and KMn(H2O)2[Al2(PO4)3] (II) top
K2Mn3(H2O)2[P2O7]2 (I)
KMn1Mn2P1P2H1H2Σ
O10.3540.389↓21.3032.05
O20.335, 0.3331.3071.98
O30.1260.249↓21.3390.221.93
O40.2980.394↓21.2721.96
O50.2260.4311.3432.00
O60.121, 0.0880.9730.9252.11
O70.184, 0.1761.3720.231.96
O80.0740.3660.770.781.99
Σ1.002.122.064.924.911.01.0
KMn(H2O)2[Al2(PO4)3] (II)
KAlMnP1P2H1H2
O10.4830.282↓21.231↓22.0
O20.033↓20.5531.2450.131.96
O30.6781.2020.142.02
O40.147↓2, 0.021↓20.469↓21.3211.96
O50.020↓20.7221.2480.042.03
O60.081↓20.318↓20.820.872.09
O70.099↓20.6651.275↓22.04
Σ0.803.102.145.025.011.01.0
The symbols ↓2 indicate a multiplication of the corresponding contribution along the column due to the symmetry. The bond-valence contributions of the H atoms are approximated from Brown (1976).
Some crystallographic characteristics for the row of isostructural hydrated alumino-, gallo- and ferriphosphates with alkaline and transition-metal cations, A+M2+(H2O)2[M3+2(PO4)3] (C2/c, Z = 4), where A = Cs, Rb, NH4, K, H3O; M2+ = Mn, Fe, Co and Ni; M3+ = Al, Ga and Fe; and for related compounds top
FormulaUnit-cell parameters, a, b, c (Å), β (°)Ionic radii rA+/rM2+/rM3+ (Å)Reference
Aluminophosphates
NH4Fe(H2O)2[(Al1.85Fe0.15)(PO4)3]13.2754 (6), 10.1663 (5) 8.7793 (4), 108.821 (1)1.54/0.80/0.57Bieniok et al. (2008)
NH4Co(H2O)2[Al2(PO4)3]13.110 (2),10.163 (15), 8.7424 (14), 108.830 (13)1.54/0.78/0.57Panz et al. (1998)
KMn(H2O)2[Al2(PO4)3]13.3117 (3),10.0949 (2), 8.7261 (2), 108.057 (2)1.38/0.91/0.57This paper
KNi(H2O)2[Al2(PO4)3]13.075 (1), 10.114 (1), 8.720 (1), 108.158 (10)1.38/0.74/0.57Meyer & Haushalter (1994)
(H3O)Fe(H2O)2[(Al1.2Fe0.8)(PO4)3]13.3200 (14), 10.2104 (11), 8.8412 (9), 108.590 (2)–/0.80/0.57Peng et al. (2005)
Gallophosphates
CsMn(H2O)2[Ga2(PO4)3]13.483 (5), 10.407 (3), 8.913 (3), 109.125 (5)1.74/0.91/0.62Di & Wang (2011)
NH4Mn(H2O)2[Ga2(PO4)3]13.543 (4), 10.2302 (15), 8.894 (3), 108.54 (3)1.54/0.91/0.62Chippindale et al. (1998)
NH4Fe(H2O)2[(Ga1.95Fe0.05)(PO4)3]13.4477 (4), 10.2133 (3), 8.8973 (3), 108.473 (1)1.54/0.80/0.62Bieniok et al. (2008)
NH4Co(H2O)2[Ga2(PO4)3]13.323 (3), 10.245 (1), 8.886 (2), 108.43 (2)1.54/0.78/0.62Chippindale et al. (1996)
NH4Ni(H2O)2[Ga2(PO4)3]13.2358 (3), 10.2372 (2), 8.8594 (2), 108.242 (1)1.54/0.74/0.62Bieniok et al. (2008)
(Rb0.5K0.5)Mn(H2O)2[Ga2(PO4)3]13.5504 (12), 10.2965 (9), 8.9072 (8), 108.527 (1)1.45/0.91/0.62Zhang et al. (2011)
KMn(H2O)2[Ga2(PO4)3]13.534 (1), 10.179 (1), 8.8703 (7), 107.948 (1)1.38/0.91/0.62Li & Duan (2010)
KNi(H2O)2[Ga2(PO4)3]13.2095 (13), 10.1733 (9), 8.8130 (9), 107.6801.38/0.74/0.62Chippindale et al. (2009)
Ferriphosphates
CsFe(H2O)2[Fe2(PO4)3]13.435 (2), 10.488 (1), 9.024 (2), 108.60 (1)1.74/0.80/0.67Lii & Huang (1995)
Related compounds
NaZnAl(PO4)29.520 (1), 8.670 (1), 9.547 (1), 119.16 (1)P21/c, Z = 4Yakubovich et al. (2019)
Orthoclase, KAlSi3O88.5632 (11), 12.963 (14), 7.2099 (11), 116.073 (9)P21/m, Z = 4Prince et al. (1973)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds